Solenopsis invicta Virus (Sinv-1) Infection and Insecticide Interactions in the Red Imported Fire Ant (Hymenoptera: Formicidae)

Authors: Danielle M. Tufts, Wayne B. Hunter, and Blake Bextine
Source: Florida Entomologist, 97(3) : 1251-1254
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.097.0336
Controlling invasive species is a growing concern; however, pesticides can be detrimental for non-target organisms. The red imported fire ant (*Solenopsis invicta* Buren; Hymenoptera: Formicidae) has aggressively invaded ~138 million ha in the USA and causes over $6 billion in damage and control efforts annually (Valles 2011). Myriad research studies have been conducted to discover safe biological control agents to manage these invasive pests (Valles et al. 2004; Milks et al. 2008; Oi et al. 2009; Yang et al. 2009; Wang et al. 2010; Callcott et al. 2011; Porter et al. 2011; Tufts et al. 2011). Viruses may be lethal due to modifications of cellular processes and induction of defense responses or may produce distinct survival outcomes depending on species (i.e. ascoviruses) (Stasiak et al. 2005). The *Solenopsis invicta* virus (SINV-1) is a positive sense, single-stranded RNA virus, which can only infect the genus *Solenopsis* at all stages of development, and is vertically-transmitted within a colony (Valles et al. 2004; Valles 2012).

We determined the sensitivity of SINV-1 infected ants to commercial insecticides: Amdro Fire Ant Bait (5-dimethyl-2(1H)-pyrimidinone[3-[4-(trifluoromethyl)phenyl]-1-[2-[4-(trifluoromethyl)phenyll]ethenyl]-2-propenylidene] hydrazone) and Over n’ Out (O&O) Fire Ant Killer ((RS)-5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-(trifluoromethylsulfinyl)-1H-pyrazole-3-carbonitrile). Amdro (0.73% hydramethylnon) functions as a metabolic inhibitor and interrupts cellular respiration by impeding the electron transport chain within mitochondria (Hollingshaus 1987). Intoxicated individuals become lethargic, unable to feed/groom, and die within 3-4 days (Bacey 2000). O&O (0.0103% Fipronil) targets the central nervous system (CNS) blocking the movement of chloride through the GABA receptor and glutamate-gated chloride channels causing hyperexcitation and death within ~3 days (Raymond-Delpech et al. 2005). We hypothesized that virus infection would potentiate the toxicity of these insecticides eliciting individual mortality.

Polygyne *S. invicta* colonies were collected (Smith and Cherokee Counties, Texas) in 2009 and maintained under standard laboratory conditions. Colonies were tested (50 individuals) for SINV-1 using Reverse Transcriptase PCR and specific primers (Valles & Strong 2005). Positive colonies were subjected to whole virus extractions (Tufts et al. 2010). Virus concentration was estimated on protein levels as 82.7 ng/μL using a NanoDrop 1000 (Thermo Fisher Scientific Inc., Waltham, Massachusetts). Non-infected colonies were used for subsequent experiments. From a single non-infected colony, 100 ants were used in each of 6 treatment groups. Each group was composed of 10 Petri dishes, 10 ants were placed in each dish with Whatman® filter-paper wetted with 500 μL of one treatment: Control (nanopure water); SINV; Amdro; O&O; 50:50 SINV + Amdro combination; or 50:50 SINV + O&O combination. Insecticide formulations were evaluated at producer recommended field rates. Mortality was recorded daily and the experiment was repeated with a second non-infected colony.

SINV-infected individuals experienced the lowest mortality (Fig. 1A) in both trials. Because our data was categorical and followed a binomial distribution we used a repeated measures generalized linear mixed model (GLMM) adjusted for multiple comparisons using Tukey-Kramer. No evidence of overdispersion was detected. After Day 3 virus-infected individuals had significantly lower mortality than non-infected individuals, regardless of chemical treatment (Table 1). Individuals from each treatment group (*n* = 40) were subsequently tested for the presence of SINV-1. In all cases individuals from the SINV groups were infected and those from the chemical groups were not.

To quantify and control the amount of active chemical individuals received, an experiment was performed using laboratory grade Fipronil (ChemServices Inc., West Chester, Pennsylvania). Individuals from a naturally-infected colony (experimental) and individuals from a naturally non-infected colony (control) were used. Ten ants from each colony were dipped in Fipronil solvated in ACS-grade acetone (FischerScientific, Pittsburgh, Pennsylvania). Dosage response ranges...
were established \((n = 720)\) and two concentration series were used to determine dose-response relationships in infected \((n = 60)\) and non-infected \((n = 60)\) ants. Mortality was assessed after 1h of exposure; a PROBIT regression was used to determine effective concentrations (μg/mL) at 10, 20, 50, 85, and 99% mortality (Fig. 2B). No mortality was observed in the control group (~100% acetone). The Fipronil contact toxicity experiment produced similar results as our previous experiment; SINV-1 infected individuals were more resilient against the chemical.

SINV-1, delivered at the rates and concentrations tested, decreases mortality in *S. invicta* exposed to certain insecticides. The underlying mechanism for this protective benefit is unknown. Viruses still have many unknown impacts on immune responses. Viruses may provide a benefit to their hosts, however, benefits imparted by them may only manifest under particular environmental circumstances (Roossinck 2011), some may also inhibit chemically induced apoptosis (Hussain & Asgari 2008). ssRNA viruses may also impart protection to hosts by integrating portions of viral RNA into the host’s genome (Valles 2011) which has been reported for SINV-1 (TX5) (Tufts et al. 2010), although this phenomenon may not be universal (Valles & Bextine 2011).

Hydramethylnon and Fipronil intoxicate ants by different modes of action; hydramethylnon acts as a metabolic inhibitor while Fipronil targets the CNS. Fipronil induced higher mortality compared to hydramethylnon; however when ants were exposed to these toxicants, SINV-infected individuals exhibited greater survival than non-infected individuals. Future work on SINVs for biological control should investigate the broader gene expressions linked to immunity and toxicity in various metabolic pathways. SINV-3, which is ubiquitous in all tissues and at greater titers, may be more effective at causing mortality, unlike SINV-1 which produces chronic, asymptomatic infections which only manifest under certain environmental stressors (Valles 2011). Additional research on virus/ant host interactions is urgently needed to fully elucidate their potential as biological control agents for *S. invicta* populations.

We are extremely grateful to Pavel Chernyavskiy and Stephen Kachman for assistance with sta-
statistical analysis and Christopher Powell for laboratory assistance. We would also like to thank Dr. T. Jack Morris and our reviewers for their helpful suggestions. This project was funded by a University of Texas at Tyler Research Grant. The mention or use of products within does not imply nor guarantee an endorsement by the USDA, ARS, to the exclusion of other similar, suitable products.

SUMMARY

The red imported fire ant, *Solenopsis invicta* Buren (Hymenoptera: Formicidae), is of great concern because of its destructive nature to endemic wildlife, livestock, and people. Various methods for managing this pest are currently being developed, including the use of viruses as biological control agents. In this study, the effectiveness of the *Solenopsis invicta* virus (SINV-1), (a positive sense, single-stranded RNA virus in the Dicistroviridae family (Genus: Aparavirus) which only infects the Genus *Solenopsis*) as an effective biological control agent against *S. invicta* infestation in combination with commonly used insecticides was investigated. Surprisingly, ants treated with the virus experienced significantly greater survival rates than non-infected but chemically treated individuals. SINV-1 might provide some unidentified benefit to aid individual ant survival, however at this point, without fully understanding the virus-ant interaction, the use of SINV-1 as a biological control agent requires further investigation.

Key Words: antagonist, biological control, Fipronil, Hydramethylnon, virus-ant interaction

TABLE 1. VIRUS-INFECTION EXPRESSED AS AN OVERVIEW OF THE SIMPLE EFFECT COMPARISONS OF TREATMENT TYPE BY DAY AFTER EXPOSURE (DAE) INTERACTIONS. ONLY SIGNIFICANT VALUES ARE REPORTED (ADJ. P).

<table>
<thead>
<tr>
<th>DAE</th>
<th>Treatment</th>
<th>Treatment</th>
<th>Std Error</th>
<th>Adj. P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SINV</td>
<td>O&O</td>
<td>0.722</td>
<td>0.0266</td>
</tr>
<tr>
<td>4</td>
<td>SINV</td>
<td>Amdro</td>
<td>0.953</td>
<td>0.0222</td>
</tr>
<tr>
<td>4</td>
<td>SINV</td>
<td>O&O</td>
<td>0.749</td>
<td><0.0001</td>
</tr>
<tr>
<td>4</td>
<td>SINV/Amdro</td>
<td>O&O</td>
<td>0.664</td>
<td>0.0011</td>
</tr>
<tr>
<td>5</td>
<td>SINV</td>
<td>Amdro</td>
<td>1.011</td>
<td>0.0024</td>
</tr>
<tr>
<td>5</td>
<td>SINV</td>
<td>O&O</td>
<td>0.910</td>
<td><0.0001</td>
</tr>
<tr>
<td>5</td>
<td>SINV/Amdro</td>
<td>Amdro</td>
<td>0.935</td>
<td>0.0276</td>
</tr>
<tr>
<td>5</td>
<td>SINV/Amdro</td>
<td>O&O</td>
<td>0.864</td>
<td>0.016</td>
</tr>
<tr>
<td>6</td>
<td>SINV</td>
<td>Amdro</td>
<td>1.012</td>
<td>0.0082</td>
</tr>
<tr>
<td>6</td>
<td>SINV</td>
<td>SINV/O&O</td>
<td>0.768</td>
<td>0.0306</td>
</tr>
<tr>
<td>6</td>
<td>SINV</td>
<td>O&O</td>
<td>0.874</td>
<td><0.0001</td>
</tr>
<tr>
<td>6</td>
<td>SINV/Amdro</td>
<td>Amdro</td>
<td>0.945</td>
<td>0.0426</td>
</tr>
<tr>
<td>6</td>
<td>SINV/Amdro</td>
<td>O&O</td>
<td>0.801</td>
<td><0.0001</td>
</tr>
<tr>
<td>6</td>
<td>SINV/O&O</td>
<td>O&O</td>
<td>0.750</td>
<td>0.0324</td>
</tr>
<tr>
<td>7</td>
<td>SINV</td>
<td>Amdro</td>
<td>1.024</td>
<td>0.0086</td>
</tr>
<tr>
<td>7</td>
<td>SINV</td>
<td>SINV/O&O</td>
<td>0.814</td>
<td>0.0016</td>
</tr>
<tr>
<td>7</td>
<td>SINV</td>
<td>O&O</td>
<td>1.112</td>
<td><0.0001</td>
</tr>
<tr>
<td>7</td>
<td>SINV/Amdro</td>
<td>Amdro</td>
<td>0.953</td>
<td>0.0352</td>
</tr>
<tr>
<td>7</td>
<td>SINV/Amdro</td>
<td>SINV/O&O</td>
<td>0.730</td>
<td>0.0088</td>
</tr>
<tr>
<td>7</td>
<td>SINV/Amdro</td>
<td>O&O</td>
<td>1.054</td>
<td><0.0001</td>
</tr>
<tr>
<td>8</td>
<td>SINV</td>
<td>Amdro</td>
<td>1.001</td>
<td>0.0012</td>
</tr>
<tr>
<td>8</td>
<td>SINV</td>
<td>SINV/O&O</td>
<td>0.917</td>
<td>0.0002</td>
</tr>
<tr>
<td>8</td>
<td>SINV</td>
<td>O&O</td>
<td>0.755</td>
<td><0.0001</td>
</tr>
<tr>
<td>8</td>
<td>SINV/Amdro</td>
<td>Amdro</td>
<td>0.928</td>
<td>0.0055</td>
</tr>
<tr>
<td>8</td>
<td>SINV/Amdro</td>
<td>SINV/O&O</td>
<td>0.843</td>
<td>0.0010</td>
</tr>
<tr>
<td>8</td>
<td>SINV/Amdro</td>
<td>O&O</td>
<td>0.665</td>
<td><0.0001</td>
</tr>
<tr>
<td>8</td>
<td>Amdro</td>
<td>O&O</td>
<td>0.801</td>
<td><0.0001</td>
</tr>
<tr>
<td>8</td>
<td>SINV/O&O</td>
<td>O&O</td>
<td>0.703</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
eficacia del virus de Solenopsis invicta (SINV-1), (un virus ARN monocatenario de sentido positivo de la familia de Dicistroviridae (Género: Aparavi-
rus) que sólo infecta el género Solenopsis) como un agente eficaz de control biológico contra in-
estaciones de S. invicta en combinación con in-
secticidas de uso común. Sorprendentemente, las hormigas tratadas con el virus experimentaron significativamente mayores tasas de sobreviven-
cia que las no infectadas, pero tratadas quimi-
camente. El SINV-1 podría proveer un beneficio no identificado para ayudar a la sobrevivencia de hormigas individuales, sin embargo, en este punto, sin comprender claramente la interacción virus-hormiga, el uso de SINV-1 como agente de control biológico requiere mayor investigación.

Palabras Clave: antagonista, control biológi-
co, Fipronil, Hidrametinona, interacción virus-
hormiga

REFERENCES CITED

BACEY, J. 2000. Environmental fate of hydramethylnon. California Environmental Protection Agency, De-
ca.gov/docs/emppubs/envfate.htm.

CALLCOTT, A. M. A., PORTER, S. D., WEEKS, R. D. Jr.,
GRAHAM, L. C. F., JOHNSON, S. J., and GILBERT, L.
E. 2011. Fire ant decapitating fly cooperative release
programs (1994-2008): Two Pseudacteon species, P.
tricuspis and P. curvatus, rapidly expand across
imported fire ant populations in the southeastern

Molecular identification of hemolymph-associated
symbiotic bacteria in red imported fire ant larvae.

HEDGES, L. M., BROWNIE, J. C., O’NEILL, S. L., and
JOHNSON, K. N. 2008. Wolbachia and virus protect-

HOLLINGSHAUS, G. J. 1987. Inhibition of mitochondrial
electron transport by hydramethylnon: A new amid-
27: 61-70.

HUSSAIN, M., and ASOARI, S. 2008. Inhibition of apo-
tosis by Heliothis virescens ascovirus (HvAV-3e):
characterization of orf28 with structural similar-
ity to inhibitor of apoptosis proteins. Apoptosis 13:
1417-1426.

LACEY, L. A., FRUTOS, R., KAYA, H. K., and VAIL, P.
2001. Insect pathogens as biological control agents:

Prevalence and impact of the microsporidium The-
lohania solenopsae (Microsporidia) on wild popula-
tions of red imported fire ants, Solenopsis invicta, in

Oi, D. H., PORTER, S. B., VALLES, S. M., BRIANO, J. A.,
and CALCATEIRA, L. A. 2009. Pseudacteon decap-
titating flies (Diptera: Phoridae): Are they potential
vectors of the fire ant pathogens Kneallhazia (=The-
lohania) solenopsae (Microsporidia: Thelohaniiidae)
and Vairimorpha invictae (Microsporidia: Burenil-

PING, W., XIJIE, G., and JIACHUN, Z. 2011. Advances in
the mechanism of antiviral RNA silencing in insects.

PORTER, S. D., GRAHAM, L. C. F., JOHNSON, S. J., THEAD,
L. G., and BRIANO, J. A. 2011. The large decapitat-
ing fly Pseudacteon litoralis (Diptera: Phoridae):
Successfully established on fire ant populations in

RAYMOND-DEPECH, V., MATSUDA, K., SATTELLE, B. M.,
molecular targets of neuroactive insecticides. Inver-

ROOSSINCK, M. J. 2011. The good viruses: viral mutual-

STASIAK, K., RENAUlT, S., FEDERICI, B. A., and BIGOT,
Y. 2005. Characteristics of pathogenic and mutual-
istic relationships of ascoviruses in field populations

TUFTS, D. M., and BEXTINE, B. 2009. Identification of
bacterial species in the hemolymph of queen Sole-
nonopsis invicta (Hymenoptera: Formicidae). Environ.

Discovery and effects of the Solenopsis invicta virus
[SINV-1 (TX5)] on red imported fire ant populations.

TUFTS, D. M., SPENCER, K., HUNTER, W. B., and BEX-
TINE, B. 2011. Delivery system using sodium algi-
nate virus loaded pellets to red imported fire ants
(Solenopsis invicta, Hymenoptera: Formicidae).

VALLES, S. M. 2011. Positive-strand RNA viruses infect-
ing the Red Imported Fire Ant, Solenopsis invicta.
http://dx.doi.org/10.1155/2012/821591.

VALLES, S. M., and BEXTINE, B. 2011. Examination of
host genome for the presence of integrated frag-
ments of Solenopsis invicta virus 1. J. Invertebr.

VALLES, S. M., and STRONG, C. A. 2005. Solenopsis in-
victa virus-1A (SINV-1A): Distinct species or geno-

VALLES, S. M., STRONG, C. A., DANG, P. M., HUNTER,
W. B., PEREIRA, R. M., OI, D. H., SHAPIRO, A. M.,
and WILLIAMS, D. F. 2004. A picorna-like virus from
the red imported fire ant, Solenopsis invicta: initial
discovery, genome sequence, and characterization.

Observation on infection process of Beauveria bassi-
anana on cuticle of the red imported fire ant, Solen-
opsis invicta Buren (Hymenoptera: Formicidae), using
scanning electron microscope. Acta Entomol. Sinica
DOI: CNKI:SUN:KCTD.0.2009-01-010.'