Hirsutella sp. (Hypocreales: Ophiocordycipitaceae) Affecting the Invasive Social Wasp Vespula vulgaris (Hymenoptera: Vespidae) in Southern Chile

Authors: Cristian Montalva, Eladio Rojas, Eduardo Valenzuela, and Richard A. Humber
Source: Florida Entomologist, 100(3) : 663-666
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.100.0327
Hirsutella sp. (Hypocreales: Ophiocordycipitaceae) affecting the invasive social wasp *Vespula vulgaris* (Hymenoptera: Vespidae) in southern Chile

Cristian Montalva1,*, Eladio Rojas2, Eduardo Valenzuela1, and Richard A. Humber3

The genus *Vespula* (Hymenoptera: Vespidae) includes wasp species that have painful stings that cause irritating nuisances with impacts on human health and on a range of outdoor activities. These wasps are economically significant pests of such primary industries as beekeeping, forestry, and horticulture (Dymock et al. 1994; Beggs 2000, 2001; Gardner-Gee & Beggs 2012). The stings of the common wasp, *Vespula vulgaris* (L.) (Hymenoptera: Vespidae), are well documented to induce allergic reactions and, occasionally, fatal anaphylaxis (King et al. 1996; King & Spangfort 2000; Fitch et al. 2001; Tankersley & Ledford 2015). This wasp, which is native to Eurasia, has become a notorious pest in Argentina and New Zealand, where it can attain high population densities and cause major ecological consequences such as increased predation pressure on native insect communities (Yamane et al. 1980; Beggs 2001; Baz et al. 2010; Lester et al. 2014).

Vespula vulgaris was first detected in Chile during the summer of 2011, in the mountains of the Araucanía region (Barrera-Medina & Vidal 2013). It is now distributed from the Araucanía region through the southernmost Magallanes region. As a result of a continuous monitoring of Servicio Agrícola y Ganadero (SAG) in Los Lagos region (41.4717°S, 72.9367°W) for early detection of quarantine bark beetles in Chile, a single cadaver of a naturally fungal infected worker adult of *V. vulgaris* was collected during May 2015 (autumn in Chile). This insect was recovered in a funnel trap placed in the southern Chilean city of Puerto Montt (41.45394°S, 72.867700°W).

In the past, several natural enemies that could be useful control agents of this invasive *Vespula* species have been reported (Rose et al. 1999; Singh et al. 2010; Evison et al. 2012). Nonetheless, little is known of the biodiversity of entomopathogenic fungi on wasps in Chile apart from this report of a naturally occurring entomopathogenic fungus affecting *V. vulgaris* in southern Chile.

The identification of the fungus was done using a light microscope (Nikon® Eclipse E600; Nikon Corporation, Tokyo, Japan) and slide mounts in lactophenol-cotton blue were prepared as suggested by Humber (2012). Fifty measurements for each taxonomically significant fungal structure were made using images taken with a digital camera (Nikon® DS-Fi1; Nikon, Tokyo, Japan) and measured with Motic® Images Plus 2.0 software (Motic China Group Co., Ltd, Shenzhen, China). Attempts to cultivate the fungus involved transferring conidia to potato-dextrose-agar medium (PDA; Difco®, Becton, Dickinson and Company, Sparks, Maryland) in 60 × 15 mm Petri dishes. Dishes were sealed with parafilm and incubated at 24 ± 1 °C and natural photophase. The development of fungi and of any contaminants was monitored daily for 15 d. However, none of the 15 attempts to cultivate this fungus on PDA were successful. This result suggested that the specimen might have suffered from some environmentally unfavorable conditions before its collection.

The dead, mycosed *V. vulgaris* adult presented a small number of relatively short, thick white mycelium and unbranched synnemata, 1,520 ± 340 µm long (overall range: 336–4,460 µm), emerging from the cuticle of the infected host (Fig. 1A, B). The synnemata were seen to be simple (although occasionally sparsely branched), dark colored, slender, leathery to brittle in texture, and bearing a discontinuous layer of conidigenous cells with elongated and narrowed necks projecting from the synnema surface. The conidigenous cells were monophalicid, septate, scattered to moderately crowded, arose laterally from the synnema, with cylindrical to ellipsoidal bases, 25.2 ± 1.6 µm length × 1.5 ± 0.1 µm width (overall range: 16.4–44.1 µm length × 1.2–2.0 µm width) (Fig. 1C, D). The conidia were hyaline, smooth, one-celled and lemon-shaped, 8.5 ± 0.3 µm length × 3.7 ± 0.1 µm width (overall range: 7.1–10.6 µm length × 2.1–5.2 µm width), produced singly, only rarely seen in groups, and occasionally coated by an apparent mucoid sheath (Fig. 1E).

The trap containing the infected wasp was collected by Verónica Cruces (SAG-Puerto Montt), and the infected wasp was deposited in Jun 2016 in the Mycological Collection of the National Museum of Natural History of Chile, Parque Quinta Normal s/n, Santiago, Chile, as accession SGO 166649. The conidigenous cells of this and other *Hirsutella* species are best described as phialidic, and form one to a few conidia tending strongly to be asymmetrical and often resembling the individual sections of an orange (Minter et al. 1983; Hodge 1998). The great majority of *Hirsutella* species are pathogens of insects; a few are pathogens of mites or spiders, and still fewer are pathogens of nematodes (Shimazu & Glockling 1997; Hodge KA, Plant Pathology and Plant-Microbe Biology Section, Cornell University, personal communication). The slime-embedded spores of many *Hirsutella* species are thought to be adapted for dispersal by contact with a passing invertebrate or in water drops (Evans 1989).

1Universidad Austral de Chile, Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Casilla 567, Valdivia, 5090000, Chile; E-mail: montalva.cristian@gmail.com (C. M.), evalenzu@uach.cl (E. V.)
2Servicio Agrícola y Ganadero, Laboratorio Regional, Ruta Puerto Octay U-55-V, Calle de Servicio, Osorno, 5290000, Chile; E-mail: eladio.rojas@sag.gob.cl (E. R.)
3United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA; E-mail: richard.humber@ars.usda.gov (R. A. H.)

*Corresponding author; E-mail: montalva.cristian@gmail.com (C. M.)

2017 — Florida Entomologist — Volume 100, No. 3
The only Hirsutella species ever reported from the superfamily Vespoidea is *H. saussurei* (Cooke) Speare (Hypocreales: Ophiocordycipitaceae). This species has been reported from the USA, Honduras, Panama, England, Papua New Guinea, Borneo, and Taiwan (Hodge 1998; Rose et al. 1999). *Hirsutella saussurei* was originally described as *Isaria saussurei* by Cooke (1892) from a *Polistes* sp. (Hymenoptera: Eumenidae) and transferred to *Hirsutella* by Speare (1920). Speare described the color of *H. saussurei* synnemata as brownish. That the synnemata of the Chilean *Hirsutella* species are whitish and smaller in size than noted by Speare (1920) suggests a reasonable possibility that these synnemata were only partially developed when the insect was collected but might have been both larger and darker if the specimen had remained in the field for a longer time.

The synnemata of the Chilean fungus differ from those of typical collections of *H. saussurei* (e.g., Speare 1920; Samson et al. 1988) by their comparatively smaller number, shorter length, comparatively greater thickness, and absence of lateral branchings of the synnemata. Speare (1920) described the conidiogenous cells of *H. saussurei* as simple, sessile, with an inflated short basal portion tapering abruptly to a very long neck (35–70 µm), but the conidiogenous cells of the Chilean *Hirsutella* had a total length of 16.4 to 44.1 µm including the neck. As noted previously, all of these differences between the Chilean collection and other reported examples of *H. saussurei* may indicate that the fungus reported here may be a relatively immature collection of this species. Based on these results, we report the first incidence of an entomopathogenic fungus, *Hirsutella* sp. in this case, as a potential natural enemy of *V. vulgaris* in Chile. The *Hirsutella* found in the study might differ from *H. saussurei*, but more infected wasps from Chile need to be examined to determine whether the variant morphology of the fungus characterized here does, indeed, represent a developmentally early state of sporulation by *H. saussurei*.

The biodiversity of South American entomopathogenic fungi has still received surprisingly little attention. Aruta et al. (1974) and Aruta & Carrillo (1989) summarized the biodiversity of entomopathogenic fungi in Chile, and Sosa-Gomez et al. (2010) provided an extensive summary of these from Argentina and Brazil. Globally, the fungal ento-

Fig. 1. *Vespula vulgaris* adult infected with *Hirsutella* sp. found in southern Chile. A. Mycotized wasp cadaver; B–C. synnema arising from the abdomen of the wasp; D. conidiogenous cells with cylindrical bases and an elongated, narrowed neck; E. conidiogenous cells and conidia. Horizontal scale bars represent 20 µm in C, D, and E.
mopathogens of *Vespula* species include *Aspergillus flavus* Link (Euro-
tiales: Trichocomaceae), *Beauveria bassiana* (Bals.-Criv.) Vuill. (Hyypo-
creales: Cordycipitaceae), and *Beauveria brongniartii* (Sacc.) Petch (Cordycipitaceae) as well as a single *Hirsutella* species recorded to at-
tack *Vespula germanica* (F.) (Hymenoptera: Vespidae). Only *B. bassiana*
has been reported to infect *V. vulgaris* (Glare et al. 1993, 1996). This
finding represents the first report of any wasp-pathogenic *Hirsutella*
species from Chile.

We found only a single wasp infected with this *Hirsutella* sp., and
we were unable to culture it. Future studies involving more infected
individuals will be needed to obtain essential genomic sequence data
to confirm our morphologically based identification. However, it must
also be noted that no concerted genomic survey of a wide range of spe-
cies of *Hirsutella* has yet been undertaken, so genome-based identifi-
cations for most of these species remain unattainable at this time. Fur-
ther, the new rules of nomenclature that took effect in 2012 have led
to the synonymization of most *Hirsutella* species to species in the very
species-rich genus *Ophiocordyceps* (Hypocreales: Ophiocordycipitace-
ea). In this new classification, *H. saussurei* is now treated as a synonym

The findings reported here contribute to our knowledge of the nat-
ural fungal enemies of *V. vulgaris* in Chile. Our aim is to use this fungus as a biological control agent; therefore, future collections and success-
ful in vitro isolations of this species will be required. Further studies are needed to clarify the identification this fungus, to isolate conidia,
and to produce infectious formulations before this pathogen could be
applied in the field to limit the populations of this serious invasive pest.

The authors thank Servicio Agrícola y Ganadero for providing the
specimen of *V. vulgaris*, and the Laboratorio Regional Osorno for sup-
porting this study in their facilities. The authors also thank Christian Luz for the critical review of the manuscript. This study was supported by FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico, Chile) project 1141066.

Summary

In Chile, the invasive and noxious pest *Vespula vulgaris* (L) (Hy-
menoptera: Vespidae) was first reported in 2011 in the Araucanía re-
<region and is currently distributed between Araucanía and Magallanes
regions. In Mar 2015 (autumn), during an ongoing monitoring of funnel
traps by the Servicio Agrícola y Ganadero, a fungus-infected individual
was collected. The fungus was identified morphologically as a species of *Hirsutella* (Hypocreales: Ophiocordycipitaceae). This is the first re-
port of any *Hirsutella* species on *V. vulgaris* in Chile. No in vitro cultures
were successfully established from the infected insect.

Key Words: invasive species; natural enemy; entomopathogenic fungus

Sumario

En Chile la plaga invasora y nociva *Vespula vulgaris* (L.) (Hymenop-
tera: Vespidae) se reportó por primera vez el año 2011 en la Región
de la Araucanía y actualmente se distribuye entre las regiones de la
Araucanía y Magallanes. En marzo del 2015 (otoño) durante un mo-
nitoreo que estaba en curso con trampas de embudo por el Servicio
Agrícola y Ganadero, un individuo micotizado fue colectado. El hongo
se identificó morfológicamente como una especie de *Hirsutella* (Hypo-
creales: Ophiocordycipitaceae). Este es el primer reporte de cualquier

References Cited

Aruta C, Carrillo R. 1989. Identificación de hongos del orden Entomophtha-
orhiza en Chile. II. Agro Sur 17: 10–18.
Aruta C, Carrillo R, González S. 1974. Determinación para Chile de hongos
Barrera R, Vidal C. 2013. Primer reporte de *Vesula vulgaris* (Linnaeus, 1758)
(Hymenoptera: Vespidae) en Chile. Boletín de la Sociedad Entomológica
Araucanies (S. E. A.) 52: 277–278.
Baz A, Cifrián B, Martin-Vega D. 2010. Distribution of the german wasp (*Ves-
ula germanica*) and the common wasp (*Vespula vulgaris*) (Hymenoptera:
Vespidae) in natural habitats in Central Spain as shown by carrion-baited
Beggs JR. 2000. Impact and control of introduced *Vespula* wasps in New Zea-
land, pp. 404–409 In Austin A, Dowton M [eds.], Hymenoptera: Evolution,
Biodiversity and Biological Control. CSIRO Publishing, Clayton South, Vic-
toria, Australia.
Beggs JR. 2001. The ecological consequences of social wasps (*Vesula spp.*)
invasion an ecosystem that has an abundant carbohydrate resource. Bio-
Cook MC. 1892. Vegetable Wasps and Plant Worms. Society for Promoting
Christian Knowledge, London, United Kingdom.
in urban Auckland from December to April in 1991/2 and 1992/3. New
205–238 In Widling N, Collins NM, Hammond PM, Webber JF [eds.], In-
PloS One 7: e30641.
protease allergen. Journal of Allergy and Clinical Immunology 107: S221.
Gardner-Gee R, Beggs JR. 2012. Invasive wasps, not birds, dominate in a tem-
Glare TR, O’Callaghan M, Wligay PJ. 1993. Checklist of naturally occurring en-
tomopathogenic microbes and nematodes in New Zealand. New Zealand
Journal of Zoology 20: 95–120.
Glare TR, Harris RJ, Donovan BJ. 1996. *Aspergillus flavus* as a pathogen of
Vesula spp., in New Zealand. New Zealand Journal of Zoology 23:
339–344.
Hodge KT. 1998. Revisionary studies in *Hirsutella* (Anamorphic Hypocreales:
Humber RA. 2012. Identification of entomopathogenic fungi, pp. 151–187 In
Lacey LA [ed.], Manual of Techniques in Invertebrate Pathology. Academic
Press, London, United Kingdom.
King TP, Spangfort MD. 2000. Structure and biology of stinging insect venom
allergens. International Archives of Allergy and Immunology 123: 99–106.
King TP, Lu G, Gonzalez M, Qian N, Soldatova L. 1996. Yellow jacket venom
allergens. International Archives of Allergy and Immunology 123: 99–106.
Lester PI, Gruber MAM, Brenton-Rule EC, Archer M, Corley JC, Dvorak L, Masci-
ciomi M, Van Oystaeyen A. 2014. Determining the origin of invasions
and demonstrating a lack of enemy release from microsporidian patho-
gen in common wasps (*Vesula vulgaris*). Diversity and Distributions 20:
964–974.
Minter DW, Brady BL, Hall RA. 1983. Five hyphomycetes isolated from eri-
Rose EAF, Harris RJ, Glare TR. 1999. Possible pathogens of social wasps (Hyme-
noptera: Vespidae) and their potential as biological control agents. New
Springer Verlag, New York, New York.
spore types isolated from the larva of a cerambycid beetle. Mycological
Research 101: 1371–1376.

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 20 Jul 2019
Terms of Use: https://bioone.org/terms-of-use