Effect of Storage of Pheromone Lures for Amyelois transitella: Field Performance and Compound Ratios

Authors: Charles S. Burks, and Cristofer Wilk
Source: Florida Entomologist, 100(4): 820-822
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.100.0411
Effect of storage of pheromone lures for Amyelois transitella: field performance and compound ratios

Charles S. Burks* and Cristofer Wilk*

The navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is an important pest of California tree nut crops (almond, pistachio, and walnut) worth > US $6 billion per year in unprocessed form (Burks and Higbee 2015). The sex pheromone of this species is important for control by mating disruption (Higbee and Burks 2008), and potentially important as a monitoring tool (Burks and Higbee 2015). The fact that a sex pheromone lure was not available for this pest until long after such lures had been developed for most other important moth pests of tree crops was probably due, in part, to the unusual complexity of the sex pheromone of this species (Leal et al. 2005).

An important component of the sex pheromone, (Z,Z)-11,13-hexadecadienal (Z11,Z13-16:Ald) was discovered over 35 years ago (Cofelt et al. 1979). Subsequent studies identified additional attractive components (Leal et al. 2005; Kanno et al. 2010; Kuenen et al. 2010). In addition to the previously mentioned aldehyde, other components in an attractive blend include (Z,Z)-11,13-Hexadecadienol (Z11,Z13-16:OH), (Z,E)-11,13-Hexadecadienol (Z11,E13-16:OH), and (Z,Z,Z,Z)-3,6,9,12,15-Tricosapentaene (C23 Pentaene). These 4 components at-

The field experiment was conducted in a 28 ha block of almond, Prunus dulcis Mill. (D.A. Web) (Rosaceae) located at 39.6556°N, 121.8377°W. Traps were placed in the orchard on 1 Mar 2015, and data were collected until 25 Jun 2015. Data were collected weekly, and lures and liners were changed every 4 wk (i.e., 26 Mar, 23 Apr, and 21 May), so 4 sets of lures were examined for each of the 5 lure types and 4 physical replicates. The 4-wk lure interval was conservatively short of the manufacturers’ recommended change intervals of > 5 wk. Trees were 7.6 m high and planted offset in north-south rows, 5.1 m wide, with 6.1 m between trees within rows. Treatments were randomly assigned to 20 positions for the length of the study; 2 per row in an off-set pattern, such that traps were 130 m apart within rows and the nearest neighboring trap was 75–90 m away. Association of lure type and age with the cumulative number of males captured for each 4-week period was analyzed by a series of 1-way ANOVAs, 1 per each of the four 4-week periods between lure changes. No transformation was used because the Kolmogorov-Smirnov test revealed no significant departure from a Gaussian distribution, and because the observed frequency distribution was generally symmetrical around the mean (SAS Inst. 2015). The Tukey procedure was used to adjust for multiple comparisons. In addition, regression of cumulative trap count on lure age was examined for NOW Biolure for each of these 4 periods.

Volatile compounds from the lures were collected on a 95 cm length of a DB-1 gas chromatography capillary column (0.53 mm ID, 1.5 μm film thickness; Agilent Technologies, Inc., Santa Clara, California, USA) by methods of Kuenen and Hicks (2015). Volatile collections were made about 2 mm from the lure membrane with an air flow of 15 ml per m at room temperature (24–25 °C). The lures were placed at the bottom of a 400 ml Pyrex flask capped with aluminum foil from which the DB-1 column was inserted down through a small hole in the foil cap. Volatile collections from the Biolure were made for 3 h and the pheromone was subsequently eluted from the column with 35 μl of hexane into glass vials to which 10 ng of the internal standard were added. The eluate was diluted to approximately half of the original volume, and 1 μl was analyzed on GC-MS. Five lures each were examined from 2015 and 2013, and 3 lures were examined for 2014. The analyses were performed in Jun 2015. Z11-tetradecenyl acetate (Z11-14:Ac) (Bedoukian Research Inc., Danbury, Connecticut, USA) was used as an internal standard. A stock solution of the internal standard was prepared gravimetrically in HPLC grade hexane (Fisher Scientific, Pittsburgh, Pennsylvania) at a concentration of 100 and 10 ng/μl. All compounds and solvents were > 95% pure by GC-MS. Analyses were performed on a Hewlett Packard model 6890 gas chromatograph equipped with a cool on-column injector and a 5975C MSD detector in El mode (Agilent Technologies, Santa

*Corresponding author; E-mail: charles.burks@ars.usda.gov

1USDA-ARS, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, California 93648-9757, USA; E-mail: charles.burks@ars.usda.gov
2Scientific Methods Inc., P.O. Box 599, Durham, California 95938-0599, USA; E-mail: cris@smethods.com

820 2017 — Florida Entomologist — Volume 100, No. 4

Downloaded From: https://bioone.org/journals/Florida-Entomologist on 04 Oct 2019
Terms of Use: https://bioone.org/terms-of-use
Clara, California, USA), using a 30 M, 0.32 mm ID, 0.25 µm film thickness Stabilwax®-DA analytical column (Restek Corp, Bellefonte, Pennsylvania, USA). Carrier gas (UHP He) was held at a constant flow (1.5 ml per min). Analyses of pheromone components were determined with select ion monitoring scanning the 7 most abundant ions for each component as follows in order of most abundance: Z11,213-16:Ald and isomers (m/z 67.1, 82.1, 95.1, 55.1, 41.1, 109.1, 123.1); Z11,213-16:OH and isomers (m/z 67.1, 82.1, 95.1, 55.1, 41.1, 109.1, 121.1); C23, pentaene (m/z 79.1, 91.1, 67.1, 41.1, 105.1, 55.1, 119.1). The ions (m/z 82.1, 68.1, 55.1, 43.1, 96.1, 109.1, 194.2) were monitored for the internal standard Z11-14:Ac. Integration of peaks was used to estimate the amount of the compounds recovered. Changes in the amount and ratio of pheromone components were examined using Pearson correlation analysis. Based on findings from this correlation analysis, ANOVA was used to compare the ratio of C23, pentaene:Z11,213-16:Ald in emissions between NOW Biolure acquired in different years. The limit of detection for C23, pentaene by this method is ≤ 0.01 ng, and the amount observed in all collections in this analysis exceeded this limit by at least 70-fold.

There were significant differences among lure categories in the number of males captured during the first 3 lure periods between lure changes, but not for the final set of lures examined (Fig. 1). The most consistent trend in these first 3 sets of lures examined is a positive linear relationship between the time of NOW Biolure in end-user storage and the number of males captured, as indicated by significant r values (r² and P values were 0.44, 0.0178; 0.75, 0.0002; and 0.63, 0.0021, respectively). Differences between mean males captured by the 2015 lures were not significant (Fig. 1). However, the performance of the Trécé L2H lure relative to the 2013 NOW Biolure declined in the 3rd interval (Fig. 1c) compared to the first 2 (Fig. 1a, b). Most of the males captured in traps between 21 May and 25 Jun were captured in the final week of this period. The degree-day accumulation and the seasonal abundance pattern suggests that those males emerged from eggs laid in 2015, whereas males trapped with the first 3 sets of lures were from the generation overwintering from 2014. That may be relevant to differences in patterns of response to lures evident between the first 3 sets of lures (Figs. 1a-c) and the 4th (Fig. 1d).

Analysis of the GC-MS data revealed no significant correlation (P > 0.05) between lure age and the overall emission rate, or the ratio of most specific components. The single exception was a significant correlation (r² = 0.77, P < 0.0001) between time in end-user storage and C23, pentaene as a proportion of overall emission. Emission of the C23, pentaene as a percentage of Z11,213-16:Ald differed significantly between NOW Biolure acquired in 2013, 2014, and 2015 (F,1,10 = 23.03, P = 0.0002) (Fig. 2). These data imply increasing field efficacy of lures with an increase of the ratio of C23, pentaene:Z11,213-16:Ald over the range of 1 to 3%. In contrast, a wind tunnel study found increased efficacy with the addition of 1.5% C23, pentaene to Z11,213-16:Ald, but no further improvement with an increase to 5% C23, pentaene (Kanno et al. 2010). However, that study did not examine the effect of different proportions of C23, pentaene as part of a 4-component blend, nor did it examine effects in the field. The increase in the emission ratio of C23, pentaene:Z11,213-16:Ald may be due to differential effects of storage at ~20 °C to stability of components. Effects of this storage on physical characteristics of release membranes could also be a factor. This study examined lures held in a domestic freezer, which undergoes freeze-thaw cycles as part of a defrost feature intended for consumer convenience. We knew the time of the lures in end-user storage, but not the date of manufacture. It should also be noted that, prior to sale, lures are presumably held in commercial-grade cold storage facilities in which fluctuations in temperature are carefully avoided.

Fig. 1. Cumulative total of males (mean and SE, n = 4) captured by Suterra NOW Biolure acquired in 2013, 2014, or 2015, or by Trécé NOW-L2L or NOW-L2H during 4-week periods between lure change. Sets of lures were tested during Mar through Jun of 2015 as follows: (a) 1 Mar to 26 Mar; (b) 26 Mar to 23 Apr; (c) 23 Apr to 21 May; and (d) 21 May to 25 Jun. Means with different superscripts are significantly different (ANOVA, experiment-wise P < 0.05).
We thank Matt Hicks for performing the GC analysis, and the editor and anonymous reviewers for helpful suggestions. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.

Summary

Experiments during the flight of the overwintering generation of navel orangeworm revealed that Suterra NOW Biolure pheromone lures held in storage at –20 °C increased significantly in field effectiveness with time in storage over a period of 0 to 2 years. This increase in field effectiveness coincided with an increase in emission of (Z,Z,Z,Z,Z)-3,6,9,12,15-tricosapentaene as a proportion of (Z,Z)-11,13-hexadecadienal. These observations indicate that users should not presume equal effectiveness when lures are held over from the previous year, and suggest that manufacturers could improve lure effectiveness by increasing the proportion of (Z,Z,Z,Z,Z)-3,6,9,12,15-tricosapentaene in the lure emission.

References Cited

Kuenen LPS, Hicks MN. 2015. Gas chromatography column as an ambient-temperature volatile trap. Entomologia Experimentalis et Applicata 154: 35–44.

