First Record of Liriomyza huidobrensis (Diptera: Agromyzidae) Disseminating Alternaria solani (Pleosporaceae) in Potato Crops in Brazil

Authors: Walyson Silva Soares, Rosa Angelica Plata-Rueda, Maria Elisa de Sena Fernandes, Flávio Lemes Fernandes, Flávia Maria Alves, et. al.

Source: Florida Entomologist, 102(1) : 234-235

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.102.0139
First record of *Liriomyza huidobrensis* (Diptera: Agromyzidae) disseminating *Alternaria solani* (Pleosporaceae) in potato crops in Brazil

Walison Silva Soares¹, Rosa Angelica Plata-Rueda², Maria Elisa de Sena Fernandes³, Flávio Lemes Fernandes²,*, Flávia Maria Alves³, and Ítalo Willian da Silva²

Liriomyza leafminers can adversely affect agronomic crops by transmitting a number of disease pathogens, including fungi, bacteria, and viruses. Often this results from the physical damage to leaves following insertion of an ovipositor by females during the act of egg laying. For example, Durairaj et al. (2010) reported that *L. trifolii* (Burgess) (Diptera: Agromyzidae) females perforate leaves of *Solanum lycopersicum* L. (Solanaceae), predisposing the plant to infection by *Alternaria* (Pleosporales: Pleosporaceae) fungi. Similarly, Deadman et al. (2002) reported that leaf perforation during *L. trifolii* oviposition favored leaf necrosis caused by *Alternaria alternata* (Fr.) Keissl in *S. tuberosum* L. (Solanaceae). *Alternaria* spp. can reduce photosynthetic leaf area and subsequent tuber production in infected potato plants (Simmons 2000).

The economic impacts of *Liriomyza* are high. For example, *Liriomyza* spp. in Kenya have caused losses of US$54 and US$64.5 million in *Pisum sativum* L. and *Beta vulgaris* L. (Fabaceae), respectively (Pratt et al. 2017). These species also are agronomic pests of other vegetable crops such as *Beta vulgaris* L. and *Spinacia oleracea* L. (Amaranthaceae) (Minkenberg 1988). Mujica and Kroschel (2013) reported that the leafminer *L. huidobrensis* (Blanchard) (Diptera: Agromyzidae) was responsible for leaf damage that subsequently reduced yields of *S. tuberosum* by up to 51% in the Cañete Valley (central coast of Peru). Here, we provide the first report on the association of *L. huidobrensis* as a facilitating agent of *Alternaria* lecanii var. *trifolii* (Amaranthaceae) (Minkenberg 1988). Mujica and Kroschel (2013) reported that *L. huidobrensis* females perforate leaves of *Solanum lycopersicum* resulting in localized infection by *Alternaria solani* with the Z test (Seffrin et al. 2018). This index measures whether a distribution is irregular, even, or clustered. Indices closest to 1 indicate high spatial dependence (clustered values); those closest to zero are characterized as spatial independence, while indices closest to −1 indicate high level of dispersion.

We found a positive and significant correlation (*r = 0.84; n = 500, P < 0.001*) between the number of *L. huidobrensis* mines and *A. solani* lesions, with the dissemination of this pathogen in potato plants being influenced by the degree of spatial distribution of *L. huidobrensis* (*I = +0.225; P = 0.001*) and *A. solani* (*I = +0.428; P = 0.001*). Moreover, the presence of *A. solani* concentric halos in potato leaves associated with *L. huidobrensis* oviposition sites, coincided with growth of this fungus. Our results were similar to those of Durairaj et al. (2010) who reported that *L. trifolii* oviposition sites favored *A. alternata* infection in tomatoes. Indeed, Deadman et al. (2002) observed that as *L. trifolii* oviposition perforations in *S. tuberosum* leaf tissue increased, *A. alternata* lesions increased (Deadman et al. 2002).

Summary

A significant association between *Liriomyza huidobrensis* leafminers and *Alternaria solani* fungus is reported here for the first time in a commercial potato (*Solanum tuberosum*) field in Brazil. We found that there was a high correlation (0.84) between the number of *L. huidobrensis* mines and *A. solani* lesions on infected plants.

Key Words: cluster; miner; oviposition; Solanaceae; spatial distribution; symptoms

Sumário

Uma associação significante entre a mosca minadora *Liriomyza huidobrensis* e o fungo *Alternaria solani* é reportado aqui pela primeira vez em campo de batata comercial (*Solanum tuberosum*) no Brasil. Nós verificamos alta correlação especial (0,84) entre o número de minas de *L. huidobrensis* e as lesões de *A. solani* em plantas infectadas.

Palavras Chaves: agregação; minador; oviposição; Solanaceae; distribuição espacial; sintomas
References Cited

