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Abstract

In the last 20 yr, the production of nanoparticles has increased, although their effects on organisms and the environment are not well understood. 
This research evaluated the transfer of cerium oxide (nano-CeO2) nanoparticles in a terrestrial trophic chain formed by the producer Nicandra physa-
loides (L.) Gaertn. (Solanaceae) and a primary consumer, green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), a generalist insect pest. 
Nicandra physaloides plants were treated by foliar spraying with nano-CeO2 (25 nm) aqueous suspensions (1, 10, 100, and 1,000 mg Ce L-1) and fed to 
the green peach aphid (M. persicae). The survival and fecundity of insects were evaluated. Microprobe X-ray fluorescence spectroscopy was used to 
verify the presence of Ce in plants and insects. It was possible to verify Ce in the oral cavity and digestive system of aphids fed on leaves previously 
treated with nano-CeO2 (1,000 mg CeL-1). Despite the transfer of Ce in this terrestrial trophic chain, the nanoparticles did not reduce survival and 
fecundity of aphids.

Key Words: nanotechnology; Solanaceae; insect; trophic transfer; X-ray fluorescence spectroscopy

Resumo

Nas últimas décadas, a produção de nanopartículas tem aumentado; entretanto, seus efeitos em organismos e no meio ambiente ainda não são bem 
compreendidos. A transferência de nanopartículas de óxido de cério (Nano-CeO2) em uma cadeia trófica terrestre, formada pelo produtor Nicandra 
physaloides (L.) Gaertn. (Solanaceae) e pelo consumidor primário, inseto-praga generalista, Myzus persicae (Sulz.) (Hemiptera, Aphididae), foi ava-
liada nesse trabalho. Plantas de N. physaloides foram submetidas a tratamento via pulverização foliar com suspensão aquosa de nano-CeO2, 25 nm 
(1, 10, 100, e 1.000 mg Ce L-1) e empregadas para alimentação do pulgão verde (M. persicae). Empregando-se microanálise por espectroscopia de 
fluorescência de raios-X foi possível constatar a presença de Ce nas plantas e insetos. Assim, o Ce foi observado na cavidade oral e sistema digestivo 
dos pulgões que se alimentaram das folhas previamente tratadas com nano-CeO2 (1.000 mg CeL-1). Apesar da transferência de Ce nessa cadeia trófica, 
não foi constatada redução na sobrevivência e fecundidade dos afídeos.

Palavras Chave: nanotecnologia; Solanaceae; inseto; transferência trófica; espectroscopia por fluorescência de raios-X

In the last 20 years, there has been great development and use 
of nanotechnology in the electronics, automotive, energy, medi-
cine, and agricultural sectors (Paschoalino et al. 2010; Vance et al. 
2015). Several academic studies suggest that nanoCuO, nanoZnO, 
nanoCeO2, and nano TiO2 can be used in fertilization by seed treat-
ment (Duran et al. 2017), or broadcast on foliage and soil (Raliya et 
al. 2018). Additionally, they also may be applied as pesticides (Khot 
et al. 2012).

Several efforts have been made to assess the fate of nanomaterials 
during and after the life cycle of the products. One of the difficulties 
in assessing the impacts of released nanoparticles regards its transfor-
mation along the lifecycle. During production, the materials are kept 
in a controlled environment, but once incorporated they can undergo 
reactions such as abrasion, combustion, etching, and photochemical 
change. Therefore, the pristine nanomaterials can yield different ones 
(Mitrano et al. 2015).

Although the models may diverge in points such as the con-
centration and chemical nature of released nanomaterials, they 
agree that the nanoparticles eventually might be found in the en-
vironment (Dwivedi et al. 2015; Ju-Nam & Lead 2016; Campolo et 
al. 2017). This means that they can be airborne, reach water in-
streams, or be adsorbed to soil colloids, and therefore interact with 
plants and animals.

Studies using pristine nanomaterials, such as the one presented in 
this paper, are important from a mechanistic point of view, and they 
represent the first step towards more complex investigations.

Once in the environment, nanomaterials can be absorbed, accu-
mulated, or transformed by living organisms such as bacteria, plants, 
and animals (Maurer-Jones et al. 2013). Because new physical-chem-
ical properties occur at nanoscale (Talapin & Shevchenko 2016; Xu et 
al. 2018), the way in which nanomaterials affect these living organisms 
might be considerably different than their bulk counterparts. There-
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fore, specific studies aimed at investigating the effects of nanomateri-
als on living organisms are necessary to ensure their sustainable usage.

Together with nano ZnO, CuO, and Ag, CeO2 is one the most-in-
vestigated nanomaterials. Due to its low redox potential and scratch 
resistance, it is used largely in catalysis (Montini et al. 2016) and as an 
abrasive (Dan et al. 2014). The application of metal oxide nanoparticles 
in agriculture is still at the research level. The results show that de-
pending on the dose and nanoparticle physical-chemical features, the 
effects can be beneficial. Studies report increased seed germination 
rate (Duran et al. 2017), seedling development (Duran et al. 2018), bio-
mass production (Raliya & Tarafdar 2013), and grain yield (Kottegoda 
et al. 2017).

On the other hand, previous investigations have shown that CeO2 
can be toxic to plants (Priester et al. 2012). Because nano-CeO2 can be 
absorbed by roots and transported to plant shoots (Gomez-Garay et al. 
2014) and grains (Hernandez-Viezcas et al. 2013), they potentially can 
be transferred to animals through herbivory.

Although the interaction between nano-CeO2 and plants has been 
investigated, there is little information on effects of nano-CeO2 on in-
sects. Hawthorne et al. (2014) found Ce transfer from zucchini, Cucur-
bita pepo L. (Cucurbitaceae), plants to house crickets, Acheta domesti-
cus L. (Orthoptera: Gryllidae), and further transfer from these crickets 
to spiders (Lycosidae). Majumdar et al. (2016) recently showed that 
Ce accumulated in the leaves of Phaseolus vulgaris L. (Fabaceae) can 
be transferred to Mexican bean beetle, Epilachna varivestis Mulsant 
(Coleoptera: Coccinellidae). Both studies indicated that most of the 
Ce ingested by the insects was excreted (about 98% of Ce consumed 
by the beetle); however, nearly 5-fold biomagnification was observed 
when the Mexican bean beetles were preyed upon by spined soldier 
bugs, Podisus maculiventris (Say) (Heteroptera: Pentatomidae).

The questions remain: (i) can CeO2 nanoparticles be transferred 
from plants to piercing-sucking insects? and (ii) is there any toxic or 
behavioral effect to insects that feed on plants exposed to nano-CeO2?

We used green peach aphid, Myzus persicae (Sulz.) (Hemiptera: 
Aphididae), as a model system in this work because of ease of rearing 
and handling. Additionally, it is a polyphagous species that infests hun-
dreds of species from 40 plant families (Blackman & Eastop 2007), is 
an effective vector of phytopathogens, and has worldwide distribution 
(Blackman & Eastop 2000; Malais & Ravensberg 2003). In addition, this 
sucking insect feeds on the sap of the plants, which makes it a possible 
target for exposure to contaminated plants, and an indicator of the 
transfer of nanoparticles.

Nicandra physaloides (L.) Pers. (Solanaceae) was selected as a 
model plant because it is widely distributed, fast growing, produces 
sufficient aerial biomass to feed primary consumers, and is fed upon 
by green peach aphid. The primary objective of this study was to in-
vestigate the possible transfer of nano-CeO2 across 2 trophic levels in 
a terrestrial food chain, using N. physaloides plants as a producer, and 
green peach aphid, M. persicae, as a representative piercing-sucking 
herbivore.

Materials and Methods

NANOPARTICLE CHARACTERISTICS AND SUSPENSION PREPARA-
TION

The nano-CeO2 was purchased from MK Nano (Toronto, Ontario, 
Canada) in powder form. The supplier indicated that particles are 25 
nm wide and 99.9% pure. The particles were dispersed in deionized 
water with a probe sonic dismembrator (Model 705, Fisher Scientific, 
Pittsburgh, Pennsylvania, USA) at 95 watts, 50 Joules amplitude for 2 

cycles of 3 min each, and interval of 30 s each cycle, yielding a stock 
dispersion at 1,000 mg Ce L-1. Transmission electron microscopy images 
for CeO2 were acquired to determined particle size and shape. A CeO2 
aqueous dispersion was prepared in deionized water at 1,000 mg Ce 
L-1. The images were recorded using a JEM-1011 transmission electron 
microscope (Carl Zeiss AG, Oberkochen, Germany) operating at 60 Kv 
with the scales of the electromicrographs printed directly.

DYNAMIC LIGHT SCATTERING

The particle size in the aqueous dispersion was determined by 
dynamic light scattering. The measurements were performed using a 
Zetasizer Nano (Malvern Instruments, Malvern, Worcestershire, Unit-
ed Kingdom). In addition to the stock dispersion, we also measured 
dispersions at 100, 10, and 1 mg Ce L-1.

PLANTS

Nicandra physaloides seeds were obtained from Universidade 
Federal de Lavras, Lavras, Minas Gerais State, Brazil. They were sown 
in 3 L pots containing a mixture of field collected soil (3 parts red Lato-
sol soil plus 1 part cattle manure). The plants were maintained in a 
greenhouse and watered daily. They were used in the bioassays after 
35 d, when the plants were about 50 cm in height.

INSECTS

Green peach aphids, M. persicae, were obtained from a colony at 
the Entomology Department of Universidade Federal de Lavras, Lavras, 
Minas Gerais State, Brazil. The insects were reared on leaves of sweet 
pepper, Capsicum annuum L. (Solanaceae), placed under a layer of 1% 
agar-water in Petri dishes (15 cm diam), and kept at 22 ± 1 °C, 70 ± 
10% RH, and 12:12 h (L:D) photoperiod. The sweet pepper leaves were 
changed 3 times per wk. To obtain insects of the same age, 5 adult 
females were transferred to each Petri dish, where they remained for 
48 h. Females were removed, and first and second instars (48-h-old) of 
the same generation were used in the bioassays.

TROPHIC TRANSFER BIOASSAY

The foliage of Nicandra physaloides plants was sprayed with the 
treatments using hand sprayers. Nano-CeO2 aqueous suspensions (1, 
10, 100, and 1,000 mg Ce L-1) were prepared by sonication as described 
above. We used distilled water in the dilutions of the suspensions, and 
in the negative control to simulate an exposure via irrigation water. 
The volume of spray applied per plant was approximately 5 mL, suf-
ficient volume not to cause discharge (run-off). Five plants were used 
per treatment.

Four h after the plants were sprayed, first and second instar aphids 
were transferred to the plants. The insects were confined in acrylic 
cages (27 mm diam × 10 mm height) fixed on young upper leaves. Ten 
nymphs were transferred to each plant, 5 on each of 2 leaves.

The bioassay was maintained in a growth chamber (Fitotron - Elet-
rolab®, Piracicaba, São Paulo, Brazil) with 14:10 h (L:D) photoperiod, 
24 ± 2 °C day and night temperature, and 60 ± 10% RH. The pots were 
watered daily, and aphid survival was evaluated daily. The total number 
of nymphs per female was counted from d 3 to 10 after the beginning 
of the bioassays. The number of nymphs was determined by dividing 
the number of nymphs in each cage by the number of females that 
survived in the respective cage.

All nymphs were removed from the cages daily and transferred to 
Petri dishes (15 cm diam) containing the leaves of N. physaloides taken 
from the same plant that fed the adult females. The leaves were placed 
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under a layer of 1% agar-water. After 3 to 4 d, the nymphs of this gene
ration reached adulthood.

The aphids from each replicate that remained until the end of the 
test were stored in microcentrifuge tubes and frozen. The leaves of N. 
physaloides plants were pressed and dried until they were scanned by 
microprobe X-ray fluorescence spectroscopy.

CERIUM DETECTION

The spatial distribution of Ce was determined using micro-probe 
X-ray fluorescence spectroscopy (μ-XRF, EDAX equipment, Orbis PC, 
Mahwah, New Jersey, USA). Leaf samples and aphids were put on a 
sample holder consisting of a cuvette covered with 7.5 μm polyamide 
film. X-rays were generated by a rhodium anode operating at 30 kV and 
700 μA. All maps were recorded using a 32 × 25 matrix of pixels. For 
the aphids, the beam size was focused on the sample yielding a spot 
size of 30 μm and 250 μm thick. An aluminum primary filter was used 
to improve the signal to noise ratio. The dwell time for grouped aphids 
was 10 s and for a single individual 6 s.

For the leaf maps, the aluminum filter was not used; they were 
recorded with dwell times of 2 s and 3 s for large (1 mm beam) and 
small (30 μm beam) areas, respectively. The calculation of instrumen-
tal threshold for maps, which is equivalent to the limit of detection, 
is presented elsewhere (Rodrigues et al. 2018). In this study, only the 
count rates values above 10 σ of the mean background were consid-
ered signals.

STATISTICAL ANALYSIS

The survival data of the insects were submitted to survival analysis 
with the Weibull model, with the Survival package (Therneau 2018) 
in software R® (R Development Core Team 2018). In addition, the 
Kolmogorov-Smirnov adhesion test was performed, in order to verify 
the fit of the data to the model. The data referring to the number of 
nymphs were analyzed by non-parametric Kruskal-Wallis analysis by 
the Pgirmess package (Giraudoux 2018) in the software R® (R Develop-
ment Core Team 2018).

Results

BIOLOGICAL EFFECTS IN APHIDS

Nano-CeO2 did not reduce the survival of M. persicae in our experi-
ments. The mean survival ranged between 93.9 and 98.0% (χ2 = 1.18; 
df = 4; P = 0.88) (Table 1) for all nano-CeO2 concentrations, and in the 
negative control. The adherence test of Kolmogorov-Smirnov indicated 
that data fit to the model (D = 0.083; P = 0.3752). This finding shows 

that the application of different concentrations of nano-CeO2 in the N. 
physaloides plants did not cause mortality to the aphid.

The treatments did not affect the fecundity of aphids; no difference 
in the total number of nymphs produced by each female was observed 
(χ2 = 5.6292; df = 4; P = 0.2286). The mean number of nymphs ranged 
from 26 to 43 between the third and tenth d of evaluation (Fig. 1).

CHARACTERIZATION OF THE SUSPENSIONS AND CHEMICAL 
MAPPING OF APHIDS AND PLANTS

Dynamic light scattering was used to evaluate the hydrodynamic 
radius of the suspended nanoparticles (Table 2). Regardless of the 
putative individual particle size of 25 nm, in aqueous dispersion the 
nanoparticles were aggregated. The diam of aggregates varied from 
110 ± 34 nm up to 266 ± 56 nm. The aggregation occurs due to Van 
der Walls attractive forces, and this behavior was verified previously 
by other researchers (Pusey 2002). Due to the low solubility of CeO2 
nanoparticles, the aggregate size is an important parameter because 
it eventually defines the porous tissue barriers through which aggre-
gates can pass, and therefore which organs of the aphid can be reached 
(Brunner et al. 2006).

The transmission electron microscopy images shown in Fig. 2 indi-
cate that the CeO2 nanoparticles are spherical in shape. The histogram 
shows the frequency distribution of CeO2 nanoparticle size. The aver-
age of size is 23 ± 7 nm, which confirms the manufacturer’s information 
(MK Nano, Toronto, Ontario, Canada; 25 nm).

Figure 3 overlays a picture of a N. physaloides leaf and the cor-
responding chemical image, uncovering the spatial distribution of Ce 
in samples that received foliar application of nano-CeO2 (1,000 mg Ce 
L-1). Figure 3(a) shows a large area map (about 414 mm2) which cor-
responds to about 40% of the leaf area. Figure 3(b) depicts a map of 
a smaller area (1.68 mm2), but because the number of pixels were the 
same, it yielded higher lateral resolution when zooming in to a hot-
spot of Ce on the leaf. The count scale shown in the figures is directly 
proportional to the Ce concentration; nonetheless, they cannot be di-
rectly compared because the data shown in Figure 3(a) was recorded 
with an X-ray spot of 1 mm, whereas that in Figure 3(b) was taken at 
30 μm. Figure 3(a) shows that despite the Ce dispersion obtained by 
application by a sprayer, the spatial distribution of Ce at the leaf was 
not homogeneous. On the contrary, it seems that during drying the Ce 
tended to accumulate in certain regions. A similar effect called “coffee 
stain” is observed frequently while trying to obtain homogeneous thin 
films of nanoparticles by drop casting (Majumder et al. 2012), because 
evaporation velocity is higher at the borders of the droplets (line of 
contact with the surface) than at the center. Because no surfactants 
were employed to disperse the particles, the surface tension may have 
aggregated the droplets, leading to the hot-spots shown in Figure 3(a).

Table 1. Lethal mean time (TL50)*, survival (%), and values of α** and β***for Weibull distribution of Myzus persicae that were fed with Nicandra physaloides plants 
sprayed with different concentrations of nano-CeO2.

Concentration (mg L-1) TL50* % survivalns α** β***

0 > 240 h 93.95 2230.48 1.24
1 > 240 h 95.97 3118.25 1.24
10 > 240 h 95.96 3112.98 1.24
100 > 240 h 98.00 5521.81 1.24
1,000 > 240 h 95.02 2620.09 1.24

* = Lethal mean time (TL50).
** = parameter of scale.
*** = parameter of shape.
ns = not significant at the significance level of 5% for the Weibull distribution, where S(t) = exp(-(time/δ)α), δ = shape parameter; α =scale parameter.
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The limits of detection for Ce used in Figure 3(a) was 804 mg Ce 
kg-1 of fresh tissue. If any traces of Ce below this concentration were 
spread on the leaf, it would not be possible to detect them. Figure 
3(b) shows that near a large Ce hot-spot, we can observe smaller and 
less concentrated droplets of Ce. The red spots in this chemical image 
also show the border effect caused by non-homogeneous drying. In 
this case, the limit of detection was 158 mg Ce kg-1 of fresh tissue. This 
improvement of the limit of detection resulted from the higher acquisi-
tion time and lower spectral (or instrumental) background provided by 
the polycapillary optics.

Ce was detected only in aphids that were fed with N. physaloides 
leaves sprayed with nano-CeO2 (1,000 mg Ce L-1). Figure 4(a) shows 4 
aphids and corresponding chemical images showing the spatial distri-
bution of Ce. It is possible to observe the Ce X-ray fluorescence signal 
coming from the regions corresponding to the oral cavity and digestive 
system of aphids. The detection threshold in terms of counts per s was 
42 counts per s for the map shown in Figure 4(a). There was only 1 
point in which Ce was above this value, and the corresponding spec-
trum shown in Figure 4(b) confirms the presence of Ce.

Figure 4(c, d) present similar results, and confirm that Ce was 
transferred to the aphids. In this case, the detection threshold was 53 
counts per s. The difference in threshold between the maps shown in 
Figure 4(a) and 4(c) resulted from the different dwell time employed 
in each map.

The low number of counts indicates that there was little Ce in the 
aphids. In the other concentrations tested (1, 10, and 100 mg Ce L-1), it 
was not possible to detect Ce in either plants or insects.

Discussion

We confirmed the hypothesis that nano-CeO2 sprayed on the 
leaves of N. physaloides can be transferred to M. persicae. The 
presence of the Ce X-ray fluorescence spectroscopy signal in the 
abdomen of M. persicae and its absence in the legs suggested that 
nano-CeO2 may have been absorbed by the insect rather than being 
retained on its body surface. This is the first report of the trophic 

transfer of nano-CeO2 to a piercing-sucking insect, namely M. per-
sicae.

Even though chemical images show the presence of Ce on the 
leaves, we cannot state whether the nano-CeO2 was present on the 
surface or within the leaves. Several studies investigated the fo-
liar uptake of nanoparticles, and neither the mechanisms behind 
the phenomenon nor size exclusion limits are clear yet (Larue et al. 
2012; Raliya et al. 2016; Xiong et al. 2017).

Because M. persicae is a piercing-sucking insect that feeds on 
the phloem sap, at first glance one might assume that the source of 
nano-CeO2 was within the leaf. However, we cannot reject the pos-
sibility that the insect absorbed the nano-CeO2 that was on the leaf 
surface during successive feeding probes (Etxeberria et al. 2016). 
Prior to establishing a fixed feeding site, the aphid may make suc-
cessive probing insertions of its stylets into the phloem vessels, 
a process marked by walking and selection of other probing sites 
(Tjallingii & Prado 2001). Thus, before the selection of the plant 
itself occurs, the aphids carry out many short probes at various 
points in the plant. During this process, it is possible that the stylets 
may have contacted the surface of the plant several times, which 
may have allowed the ingestion of the nano-CeO2 deposited on the 
surface of the leaves of N. physaloides.

Even though Ce was found only at the region of the alimentary 
trait, one cannot reject the possibility of nano-CeO2 clusters below 
the instrumental limit of detection that may accumulate in other 
parts of the body of M. persicae. In this case, nano-CeO2 either 
could be dissolved in the alimentary canal, or entire particles could 
cross the gut wall. Due to the gut pH, from 5.5 to 8.5 depending on 
the site (Cristofoletti et al. 2003), it is rather unlikely to dissolve at 
gut pH. For cerium oxide to dissolve, low pH and high temperatures 
normally are required (Virot et al. 2012; Um & Hirato 2013).

A second possible Ce pathway is based on previous studies in-
volving the transport of particles through the gut wall to the hemo-
coel, which commonly occurs with viruses (Brault et al. 2007; Tam-
borindeguy et al. 2010). Although most of the aphid-transmitted 
plant viruses are 20 to 25 nm wide (Sicard et al. 2015; Boissinot et 
al. 2017), which is about one-tenth the diam of nano-CeO2 clusters, 
this transport is performed by transcytosis (endocytosis/exocytosis) 
(Seddas et al. 2004), and involves specific receptors. In this respect, 
nano-CeO2 could cause histological changes in the tissues of M. per-
sicae, similar to what was reported in a study performed with the 
worm Eisenia fetida (Savigny) (Annelida: Lumbricidae) (Lahive et al. 
2014), resulting in absorption and transport.

Another mechanism by which nanoparticles may affect insects in-
volves their interaction with symbiont microorganisms (Goggin 2007), 
which play a key role in aphid fitness, because they provide nutrients 
that occur in low amounts in the plant phloem. These microorganisms 
are commonly found in the hemocoel, in specialized cells called bacte-
riocytes or mycetocytes, or even in the gut lumen (Michalik et al. 2014; 
Luna-Ramirez et al. 2017). Thus, one can consider the possibility that 
microorganisms can transform nano-CeO2 (Barton et al. 2015), or that 
the nanomaterial is toxic to these microorganisms, resulting in changes 
in the behavior of insects (Machado-Assefh & Alvarez 2018).

Although no toxic effects of nano-CeO2 were observed in M. per-
sicae, it is possible that the trophic transfer of nanoparticles causes 
damage to organisms of higher trophic levels through biomagnifica-
tion. This was not evaluated in the present study, but this topic will 
be addressed in further investigations. Another issue of concern is 
the potential effects of nano-CeO2 on the offspring of M. persicae, 
especially if exposed repeatedly over generations.

Gold nanoparticles previously have accumulated in the leaves of 
tobacco, Nicotiana tabacum L. (Solanaceae) (Judy et al. 2011), and 

Fig. 1. Total number of Myzus persicae nymphs produced by females exposed 
to Nicandra physaloides leaves submitted to treatments of foliar spraying of 
nano-CeO2 at different concentrations.

Table 2. Dynamic light scattering determined hydrodynamic diam of suspended 
CeO2 nanoparticles. Although the particles size is 25 nm, when dispersed in wa-
ter they formed aggregates.

Concentration of CeO2 (mg L-1) Aggregate diam (nm ± SE)

1 220 ± 67
10 110 ± 40
100 110 ± 34
1,000 266 ± 56
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tomato, Solanum lycopersicum L. (Solanaceae) (Judy et al. 2012), 
and have been shown to accumulate in the hornworm Manduca 
sexta L. (Lepidoptera: Sphingidae). Similar to the findings reported 
in this study with M. persicae, the authors concluded that M. sexta 
was not affected by the ingestion of plant tissues contaminated 
with nano-Au.

These results demonstrate the importance of research on 
nanomaterials in biological systems, because the indirect effects 
frequently are manifested in subsequent generations, resulting in 
disrupted development or mortality. The translocation of nanopar-
ticles in plants, and the transfer and accumulation in organisms of 
the trophic chain, warrant further investigation.

Fig. 2. (a) Transmission electron micrographs of the CeO2 nanoparticles, and (b) histogram revealing the particle size distribution.

Fig. 3. X-ray fluorescence chemical images unraveling the Ce spatial distribution at Nicandra physaloides leaf, (a) low magnification (10×) map covering nearly a 
quarter of the leaf surface, and (b) high magnification (70×) map showing a hot-spot of Ce at the leaf.
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