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ABSTRACT: Amphibian populations are threatened globally, and one of the hypotheses for these declines is climate change. Species distribution
models are frequently used to predict changes in suitable habitat as a result of changing climates; however, these projections can be heavily
influenced by choice of modeling approach. To evaluate global predictions for amphibians, we conducted a literature review of studies that utilize
correlative species distribution models to project changes in climate suitability under various climate change scenarios. We paid particular
attention to the use of model selection in choosing among candidate species distribution models (SDMs) so as to control for overparameterization
of SDMs. In addition, we conducted a case study with three species of Slender Salamanders (Batrachoseps) to further investigate the impact of
differences in modeling decisions on projected amphibian climate suitability. We found 83 studies (including the present case study) in which
projections of future climate suitability were made for amphibian species. Of those studies, 36 included estimates of percent change in climate
suitability and thus were included in our meta-analysis. These studies included projections for over 1000 species or species complexes, with the
majority being Anurans (86%), and encompassed five continents with the most representation in South America, Europe, and North America.
Across these studies, average projected change in climate suitability ranged from �70% to 167%, and these projected changes varied with
dispersal assumptions representative concentration pathway (RCP) used, the projection year, and taxonomic order. Only three of the 36 studies
reported the use of Akaike information criterion (AIC)-based model selection to choose a best-fit SDM. However, our case study demonstrated
that predicted change in climate suitability varied whether the best-fit or default SDM was used for projections. Further, this result varied among
species (DAIC ¼ 0), suggesting that the impact of overparameterization differs across species. Our results illustrate that there is a pressing need to
project climate suitability across more species and more geographic regions. In addition, we may need to revisit projections for previously
investigated species to evaluate additional climate scenarios and whether overparameterization may have influenced projections. Our ability to
accurately model future changes in climate suitability will be essential for successful conservation and management plans for amphibians.

Key words: Amphibian declines; Climate change; Ecological niche model; Overparameterization; Regularization multiplier; Species
distribution model

THE AMPHIBIAN decline crisis is a complex issue (Houlahan
et al. 2000) caused by a wide range of factors (Collins and
Storfer 2003). Among these complex factors, climate change
has been proposed as a major contributor to current
(Smalling et al. 2019) and future declines in species (Carey
and Alexander 2003). Amphibians may be particularly
sensitive to the impacts of climate change relative to other
terrestrial vertebrates because of their biological dependen-
cy on temperature and moisture for reproduction and
survival as well as their limited dispersal capabilities
(Donnelly and Crump 1998). To estimate the potential
impact of climate change on amphibian declines, species
distribution modeling (also known as ecological niche
modeling; Elith and Leathwick 2009) has been used to
project amphibian habitat suitability under future climate
scenarios (Teixeira and Arntzen 2002; Parra-Olea et al.
2005). Numerous studies have predicted extensive losses of
suitable habitat for a wide range of amphibian species under
various climate projections (Milanovich et al. 2010; Barrett et
al. 2014; Zank et al. 2014). However, a comprehensive
evaluation of these studies has yet to be done and would
provide a more global understanding of the regions of the
world and species that may be most at risk to losses in
suitable habitat. Furthermore, since the first use of species
distribution modeling for projecting impacts of climate
change on habitat suitability, the modeling process has
advanced, with recent studies applying new recommenda-
tions (e.g., Warren and Seifert 2011; Phillips et al. 2017).

These refinements to modeling approaches likely have
significant impacts on the amount of suitable habitat
projected for some species. Thus, it is crucial that we
investigate how such modeling approaches influence projec-
tions to refine our predictions of the extent to which suitable
habitat will be lost due to climate change.

Species distribution models (SDMs), which utilize geore-
ferenced environmental data to predict the distributions of
species, were first used to investigate environmental
predictors of species occurrences and model habitat
suitability (Elith and Leathwick 2009), but this approach
was quickly adapted for conservation purposes (Rodrı́guez et
al. 2007). To this end, SDMs can inform our understanding
of baseline species distributions (Blank and Blaustein 2012),
identify sites for habitat restoration or conservation (Gio-
vannini et al. 2014), predict the spread of invasive species
(Ficetola et al. 2010) or emergent pathogens (Yap et al. 2015;
Richgels et al. 2016; Katz and Zellmer 2018), and predict
future changes in habitat suitability as a result of global
climate change (Parra-Olea et al. 2005). The development
and growth of species distribution modeling in ecology (Elith
and Leathwick 2009) occurred concurrently with increased
attention on amphibian declines (Wake 1991); thus, it is no
surprise that some of the earliest applications of this
approach were for studying the effects of climate change
on threatened or endangered amphibians (Teixeira and
Arntzen 2002). Similar to other taxa (Peterson et al. 2002),
distributional shifts are anticipated in response to climate
change, with distributions predicted to shrink and shift into
higher elevations and poleward (Dobson et al. 1989;3 CORRESPONDENCE: email, zellmer@oxy.edu
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Johnston and Schmitz 1997). As expected, some of the first
projections of future climate suitability for amphibians
predicted extensive losses for Golden-striped Salamanders,
Chioglossa lusitanica (Teixeira and Arntzen 2002), and two
Plethodon species (Parra-Olea et al. 2005) under climate
change scenarios.

Yet, while numerous studies have projected losses in
suitable habitat for amphibians, the extent of those losses
remains unclear. Many choices in the modeling process
affect the extent of projected suitable habitat (Thuiller 2004;
Pearson et al. 2006; Buisson et al. 2010), such as which
climate simulation (e.g., climate model intercomparison
project [CMIP]), climate baseline, general circulation model
(GCM), and representative concentration pathway (RCP)
are used and which assumptions are made about dispersal
(Real et al. 2010; Roubicek et al. 2010; Baker et al. 2016;
Wright et al. 2016; Jarnevich and Young 2019; Thuiller et al.
2019). Even more primary, the modeling choices made in
generating current-day SDMs can also influence projected
changes in habitat suitability. The method or algorithm used
to create SDMs (Beaumont et al. 2016; Sales et al. 2017;
Thuiller et al. 2019), the thresholds chosen for habitat
suitability (Liu et al. 2016), and the settings within different
modeling frameworks, such as model tuning parameters
(Warren and Seifert 2011) and identification of background
localities (Rodda et al. 2011), can all lead to variations in
current estimated habitat suitability which can then translate
to differences in projected changes in habitat suitability
under various climate change scenarios. As a result of the
plethora of modeling decisions that influence projected
habitat suitability, there remains much uncertainty about
projections (Thuiller et al. 2019), making it difficult to make
comparisons across different studies and, more importantly,
affecting our ability to assess conservation risk (Wright et al.
2015).

In addition, the ease of use of some SDM tools has led to
their use as black box tools, with little attention paid toward
how different settings might influence the models created.
Often, only the default settings are used in constructing
SDMs (Merow et al. 2013; Morales et al. 2017; Katz and
Zellmer 2018). Even when multiple approaches or settings
are tested, the method by which the best-fit model is chosen
among different candidate models can also lead to quanti-
fiable differences in the amount of predicted suitable habitat
(Warren and Seifert 2011). Specifically, it is important to
control for overparameterization when comparing alternative
candidate models (Warren and Seifert 2011). While
differences between alternative models might only be slight
when mapping current distributions, these differences may
be amplified when spatially or temporally transferring the
model (Warren et al. 2014). For instance, when predicting
future habitat suitability, overparameterized models may
result in less-suitable habitat because the over-fit model may
make it harder to find analog environmental conditions
across space or time. In fact, simulations suggest that
overparameterized models perform worse in predicting
future habitat suitability than do models that are less
parameterized (Warren and Seifert 2011). More-complex
parameterizations also led to greater predicted losses of
suitable habitat for 34 European tree species (Brun et al.
2020) and 90 California species of concern (Warren et al.
2014). How the use of model selection to prevent over-

parameterization affects projected changes in future habitat
suitability remains undertested relative to other modeling
choices and yet may be central for interpreting differences in
projections across studies.

Beyond potential effects of various modeling choices on
projected outcomes, it is also important to consider the
different classes of models and what each can tell us about
future habitat suitability in the first place. Species distribu-
tion models can be constructed with correlative or mecha-
nistic approaches, or a combination of the two. While these
approaches work well under stationary conditions (Elith and
Leathwick 2009), there are many scenarios in which
conditions may change, such as with nonanalog climates
(Dormann 2007; Fitzpatrick and Hargrove 2009), unmod-
eled gradients influencing species distributions, or species
adaptations to climate change. Some have argued that
alternative approaches to predicting habitat suitability, such
as using mechanistic models which explicitly incorporate
distribution-limiting processes, may provide better predic-
tive power when dealing with changing climatic conditions
(Kearney et al. 2010). However, mechanistic models have
their limitations as well, requiring more-detailed ecological
information (Dormann et al. 2012). Regardless, direct
comparisons between correlative and mechanistic approach-
es have found congruent predictions (Kearney et al. 2010).
Further, assessment of predictions made by correlative
models using historical data indicates that this approach can
generate reliable habitat suitability predictions under climate
change (Morán-Ordóñez et al. 2017). While, ideally, multiple
approaches should be used to validate predictions (Kearney
et al. 2010; Diniz-Filho et al. 2019), fewer studies have
utilized the mechanistic approach (Dormann et al. 2012).
We thus focus in this study on evaluating correlative
approaches for projecting habitat suitability under climate
change.

Given the potential impact that each of these modeling
choices could have on projecting changes in future habitat
suitability of amphibians, it is timely to review the
predictions that have been made using correlative models
for future amphibian habitat suitability. Thus, we conducted
a global assessment of predicted changes in climate
suitability for amphibians and evaluated whether there are
identifiable differences among studies that utilize alternative
approaches to modeling species distributions. In addition,
we investigated how model settings influence projected
changes in suitable habitat for amphibians using one of the
most widely used SDM tools, Maxent, which uses the
machine learning approach maximum entropy (Phillips et al.
2017). While there are multiple settings that can be
controlled within Maxent, we pay particular attention to
the regularization multiplier (RM) which is used to control
the extent to which additional parameters are added to the
model (Phillips et al. 2006). To this end, we first conducted a
literature review of studies that include SDM projections for
amphibian species under global climate change scenarios.
We then conducted a case study with three amphibian
species to investigate the potential impacts of overparamete-
rization on predicting habitat suitability declines. We created
species distribution models for three species of Slender
Salamanders (Batrachoseps) using the default Maxent
settings and the best-fit alternative settings for 26 different
future climate scenarios, consisting of 13 GCMs and two

109ZELLMER ET AL.—FUTURE CLIMATE SUITABILITY PROJECTIONS FOR AMPHIBIANS

Downloaded From: https://bioone.org/journals/Herpetologica on 26 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



extreme RCPs (2.6, 8.5). We then calculated the proportion
of habitat suitability predicted for each combination of GCM
and RCP for both the default and best-fit models for all three
species to quantify the difference in amount of predicted
habitat. Finally, we discuss the outlook for the use of SDMs
in studying amphibian declines as well as future consider-
ations and research needs.

MATERIALS AND METHODS

Literature Review

We conducted a Web of Science search for all articles on
amphibians that predicted future distributions of species
under climate change scenarios (September 2019). We used
the search terms: TS ¼ ([‘‘niche model*’’ OR ‘‘distribution
model*’’ OR ‘‘Maxent’’ OR ‘‘envelope model*’’] AND
[amphib* OR caudat* OR anura* OR caecilia* OR frog*
OR newt* OR salamand* OR gymnophion* OR toad*] AND
[‘‘climate change’’ OR ‘‘climate scenario*’’ OR ‘‘ensemble
forecast*’’]). From these articles, we first identified the
studies that used species distribution modeling to project
changes in amphibian climate suitability. Here and through-
out the paper, we define habitat suitability only in terms of
climatic variables (e.g., temperature, precipitation). While
many other variables, both biotic and abiotic, restrict the
distributions of species, one of the primary concerns with
climate change is availability of climatically suitable habitat.
Further, bioclimatic variables are most frequently used in
future projections due to their wide availability relative to
other spatially explicit abiotic or biotic variable data layers.
We thus restrict our analyses to bioclimatic variables only,
which represent the realized climate space of organisms
(Rodda et al. 2011).

For each of these articles, we recorded the species, genus,
order, geographic range of the study, current climate models
used, future climate models used (GCM), emissions
scenarios considered (including either RCPs or the scenarios
from the Special Report on Emissions Scenarios (SRES)),
SDM approach used, threshold used for binary classification
of suitable habitat, whether dispersal limitation was used (no
dispersal, limited, unlimited), projection year, model selec-
tion approach used to compare candidate current SDMs, the
RM if Maxent was used, and finally the predicted percent
change in suitable habitat. Because some studies reported
results for individual GCMs and others reported results for
averages across GCMs, we used the average predicted
change in suitable habitat for all GCMs considered for a
single species within each study. Similarly, because some
studies used RCP scenarios and others used SRES, we
classified all RCP and SRES values into three general
categories—pessimistic, moderate, and optimistic—based on
similar temperature anomaly predictions (see Table S1 in the
Supplemental Materials available online). For studies that
reported only average values across multiple RCP or
multiple SRES, we used the averaged RCP value. We
grouped projection year into 20-yr categories: 2030, 2050,
2070, and 2090. For studies that used Maxent, we
categorized studies into those that used the default RM ¼
1 (default), those that used an increased RM . 1 without
model selection (nondefault), and those that used Akaike
information criterion (AIC) to select the best-fit RM (best-

fit). We quantified summary statistics for the dataset to
evaluate the frequency of all variables across studies.

To investigate which variables contributed to predicted
changes in suitable climate, we conducted a meta-analysis via
linear models using the metafor R package (Viechtbauer
2010). We first calculated effect sizes for each study by
calculating the raw mean percentage change of future versus
current suitable climate and standard deviation, with each
species as a replicate. Thus, we only included studies with
three or more species. We included as fixed variables:
dispersal limitation, SDM approach, projection year, RCP,
and taxonomic order. We were not able to include an RM
category within the model because there were too few
studies that utilized a best-fit RM value. Despite the known
effect of both threshold approach and GCM on projections
(Buisson et al. 2010; Liu et al. 2016), these variables were not
included in our literature review because there were many
variations of each, with insufficient repetition across studies
to fully evaluate their effects. Similarly, we were unable to
include which climate baselines were used (Roubicek et al.
2010; Baker et al. 2016; Jarnevich and Young 2019) because
the climate baseline is relevant to the time period of
observations used, which is infrequently reported in
manuscripts. We compared 15 candidate models, including
models with all combinations of the predictor variables and a
null model. Because our sample size was limited, we did not
consider any interactions among predictor variables. The
candidate models were compared using AIC. The model
with the lowest AIC score was considered the best-fit model.
Models with DAIC , 2 were considered to have equal
support whereas models with DAIC � 2 were not considered
to have support.

Case Study

For our case study, we looked at projected changes in
habitat suitability using default or best-fit SDMs for three
species of Slender Salamanders. These species provided an
interesting opportunity for evaluating the differential im-
pacts of climate change, as they are similar in many
biological traits and their ranges all met and slightly
overlapped within a narrow area in southern California.
However, despite their biological similarities and adjacent
ranges, they inhabited distinct environments, with the
southern-most species, B. major, primarily occupying sage
scrub and oak woodlands in lowland coastal interior regions;
the northern-most species, B. nigriventris, primarily occu-
pying oak woodlands in moist mountain and foothills canyons
near the coast; and B. gabrieli, with a very narrow
distribution occupying talus slopes at the highest elevations
in-between the other two species. While overlapping
distributions could be problematic for modeling if inter-
breeding occurs, there are no known cases of hybridization
among these species (Jockusch and Wake 2002; Jockusch et
al. 2015). In addition to their distinct environmental needs,
these species represent a spectrum of conservation needs,
with B. major and B. nigriventris being of least conservation
concern and B. gabrieli being data deficient with the
potential for becoming a species of special concern
(Thomson et al. 2016; Hansen 2017). Their unique but
overlapping ranges, biology, and conservation status provid-
ed replicate systems for studying how modeling approaches
influence suitable habitat projections.
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Species locality data consisted of museum records (see
Table S2 in the Supplemental Materials available online)
downloaded from Global Biodiversity Information Facility
(GBIF; available at http://www.GBIF.org) using the rgbif R
package (Chamberlain et al. 2019). Because B. gabrieli
observations are much more rare, we supplemented the
dataset with observations from the RASCals project on
iNaturalist (Reptiles & Amphibians of Southern California,
available at http://www.inaturalist.org/projects/rascals), N.A.
HERP (North American Herpetological Education and
Research Project, available at http://www.naherp.com), and
our own observations. Only records with ,1 km coordinate
uncertainty were retained for the analysis. Localities were
visualized to confirm that all observations are within the
known range of each species. The majority of observations
were recorded between 1950–2000. While some of the B.
gabrieli observations were more recent, they were within the
area of the species known range (Wake 1996). For each
species, we spatially thinned the localities, removing any
points within 5 km of one another for B. major and B.
nigriventris and 1 km for B. gabrieli (due to limited range
and observations). After thinning the dataset, there were 82
B. major, 36 B. nigriventris, and 23 B. gabrieli localities.

Environmental data were downloaded from WorldClim
v1.4 (available at http://www.worldclim.org) at a resolution of
30 arc seconds and included 19 bioclimatic variables
averaged from 1960–1990 (Hijmans et al. 2005). This version
was selected because it best overlaps the years of most
observations of each species from the museum record used
in this study. We tested for correlations among the 19
bioclimatic variables at the observed localities for each
species and removed highly correlated variables (r . j0.7j;
Dormann et al. 2013; Petitpierre et al. 2017). For each
species, we constructed 20 different candidate SDMs
varying the RM from 1–20 at an interval of 1. The SDMs
were created using Maxent v3.4 (Phillips et al. 2017) through
the dismo R package (Hijmans et al. 2017) and implemented
with the ENMeval package (Muscarella et al. 2014) to
compare candidate SDMs. Maxent has been shown to
perform well even with small sample sizes (n . 30), but for
models built with fewer than 30 localities caution should be
taken in interpreting the models (Wisz et al. 2008). We used
the block partitioning method to create training and test
datasets to build and validate each model. This method splits
the dataset into four spatial blocks delineated by the latitude
and longitude lines that divide localities and background
locations as evenly as possible (Muscarella et al. 2014). For
each candidate model, the training dataset consisted of three
spatial blocks with the fourth remaining block reserved for
test data, and this process was replicated across each block.
To prevent overparameterization, we selected the best-fit
model using corrected AIC (AICc; Warren and Seifert
2011). For each species, we compared the best-fit model
(DAICc ¼ 0) to the default Maxent model (RM ¼ 1). We also
assessed the area under the receiver operating characteristic
curve (AUC) for both the training and test data, a method
frequently used to evaluate model fit that does not account
for number of model parameters. Comparing the difference
in the AUC values between the training and test data can
indicate how well the model performs for an independent set
of data that were not used to build the model. However, only
AICc was used to select the best-fit model for each species.

For both the best-fit and default models, we projected the
SDM onto 13 different future climate (see Table S3 in the
Supplemental Materials available online) scenarios for the
year 2050 (average of 2041–2060) for two different RCPs
(2.6, 8.5) for a total of 26 future projections for each species
for both models. Future climate projections were down-
loaded from WorldClim (http://www.worldclim.org) and are
downscaled CMIP5. For all projections we utilized the
cloglog transformation, which is the new default output from
Maxent v3.4 (Phillips et al. 2017). To calculate binary habitat
suitability, we used the maximum training sensitivity plus
specificity cloglog threshold (maxSS), which performs best
for selecting a threshold with presence-only SDMs (Liu et al.
2016). We considered three different scenarios for dispersal:
unlimited, limited, and no dispersal. For unlimited dispersal,
habitat suitability was calculated across the entire extent of
the study area; thus any cell could potentially become
suitable in the future regardless of how distant it was from
currently occupied cells. For dispersal limitation, we
assumed a maximum total dispersal of 10 km over the
projection period, as dispersal is thought to be highly limited
for Plethodontid salamanders (Smith and Green 2005). For
models with dispersal limitation, habitat suitability was
calculated only within a 10-km buffer from the current
predicted distribution for each species. For no dispersal,
habitat suitability was calculated only within the extent of the
current predicted distribution for each species. The percent
change in habitat suitability was calculated as 100*([future
suitability � current suitability] / current suitability; see
Tables S1 and S4 in the Supplemental Materials available
online).

To assess whether the percent change in habitat
suitability was explained by whether the models were the
best-fit versus default Maxent models, we created three
candidate linear mixed-models with the lme4 R package
(Bates et al. 2015). Percent change in habitat suitability was
the response variable, and for the predictor variables we
included the SDM type (best-fit vs default), species, and the
interaction between SDM type and species. We compared
this to two other candidate models: a model with only SDM
type and species and a model with only species. Dispersal
limitation, RCP (2.6 versus 8.5), and GCM were included as
random variables in all three models. Model fit was evaluated
with AICc using the R package AICcmodavg (Mazerolle
2019).

RESULTS

Literature Review

The literature search returned 201 citations, 82 of which
included studies relevant to projecting future distributions of
amphibian populations within their native ranges. Of these
citations, 35 provided estimates of percent change in suitable
habitat for at least one amphibian species. Combined with
the case study we present below, there were 36 studies in
our meta-analysis. The studies varied widely both in species
and regions of the world represented. These studies involved
1092 species (or species complexes) with an average of 53
per study, covering 177 genera and representing 85.6%
Anura, 13.6% Caudata, and 0.8% Gymnophiona (Table S1).
Some studies investigated other taxa as well (e.g., mammals,
reptiles; Ureta et al. 2018), although we do not report those
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results here. Collectively, the studies produced predicted
distributions in 85 countries across 5 continents including
Europe, Asia, North America, South America, and Africa
(Fig. 1). Brazil was represented in the most studies (n ¼ 9)
followed by Spain, the United States, and Uruguay (n ¼ 6
each), Portugal (n ¼ 5), and Paraguay and Bolivia (n ¼ 4
each). The majority of countries were represented in three
or fewer studies.

In addition to the wide range of species and geographic
regions covered, the studies also varied in methodological
approaches. Multiple SDM approaches were used, including
Maxent (n ¼ 17), genetic algorithm for rule-set prediction
(GARP; n ¼ 1), generalized linear models (GLMs; n ¼ 17),
generalized boosted models (GBMs; n ¼ 1), Bioclim (n ¼ 1),
and ensembles of multiple approaches (n ¼ 14), with some
studies comparing results across multiple methods (Salas et
al. 2017). Further, studies varied in the climate models that
were used, including different versions of current climate
projections (CMIP3, CMIP5) as well as a wide variety of
GCMs and RCP or SRES scenarios, ranging from worst case
to best case scenarios (Table S1). Of the 36 studies, 3 studies
used AIC model selection in choosing a best-fit SDM among
candidate models.

Projections of amphibian future habitat suitability also
varied in the extent to which dispersal was considered. The
studies were classified into three broad categories that
represented a continuum of ways of incorporating dispersal.
(1) No dispersal: Future projected habitat suitability only
considered within the current suitable habitat. Some even go
beyond this and clip the current suitable habitat by the
known distribution of a species. As a result, these studies
only report percent loss of suitable habitat. Studies that do
not consider dispersal ask the question ‘‘How much of the
original habitat will remain under climate change?’’ (2)

Limited dispersal: Future projected habitat suitability only
considered within a buffer around current suitable habitat to
where species could disperse. These studies usually use a
cutoff based on expert opinion on possible dispersal
distances for species or consider connectivity of suitable
habitat (Schivo et al. 2019). Alternatively, some studies used
a simulation to model whether the species could actually
move to newly available habitat (e.g., Subba et al. 2018). (3)
Unlimited dispersal: Percent of suitable habitat calculated
across the whole study system (entire extent of the raster).
With this approach, percent change in habitat suitability will
be highly dependent on the total extent of the raster,
particularly if a species is predicted to have increased habitat
suitability. The greatest extents considered within this review
were studies that calculated suitable habitat across entire
continents (Europe, Pearman et al. 2010; Markovic et al.
2014; South America, Vasconcelos and Do Nascimento
2016). Along with dispersal, some studies also evaluated
habitat suitability within protected areas (D’Amen et al.
2011; Ortega-Andrade et al. 2013; Popescu et al. 2013;
Kafash et al. 2018).

To quantify predicted change in suitable habitat across
studies, we conducted a meta-analysis of all studies that
projected suitable habitat for at least three species (n ¼ 24
studies). Mean percent change in habitat suitability of the
studies ranged from�70.5% to 166.7%. Of the 15 candidate
models describing the different approaches used across
studies, and their association with change in projected
suitable habitat, the model that included all predictor
variables had the lowest AIC score (Table 1; Fig. 2). None
of the other candidate models were supported (DAIC value
. 11.8). Gymnophiona were predicted to have the greatest
loss of suitable habitat followed by Caudata and then Anura
(Table 1; Fig. 2). On average, studies that considered no

FIG. 1.—Map of countries for which suitable climate has been projected under future climate scenarios for at least one amphibian species. Colors
represent the number of studies in which a given country was included. A color version of this figure is available online.

112 Herpetologica 76(2), 2020

Downloaded From: https://bioone.org/journals/Herpetologica on 26 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



dispersal did predict losses in suitable habitat whereas
studies that considered unlimited dispersal predicted
increases in suitable habitat (Table 1; Fig. 2). Both RCP
and projection year were negatively associated with predict-
ed change in suitable habitat (Table 1; Fig. 2).

Case Study

For all three species, the best-fit SDM had an RM greater
than 1 and, as expected, included fewer parameters than did
the default SDM (RM ¼ 1; Table 2). The default SDMs
were not supported (DAICc . 9) for any of the species. Both
the best-fit and default models showed good to moderate fit
to the training data (AUC . 0.81) and test data (AUC .
0.71) for all three species.

The best-fit model of predicted change in climate
suitability was the model that included SDM type (best-fit
versus default) and the interaction between SDM and
Species (Table 3). Under no dispersal, the default SDM
predicted greater losses in suitable habitat compared to the
best-fit SDM (Fig. 3). In comparison, with limited or
unlimited dispersal, the impact of SDM on predicted change
in suitable habitat varied among species (Table 4; Fig. 3).
Averaged across all climate scenarios, predicted habitat
suitability for B. major changed less when the best-fit
Maxent SDM was used (�9%, 54%) compared to the default
SDM (�13%, 93%), ranging from slight losses in suitable
habitat under no dispersal to moderate increases under
unlimited dispersal (Fig. 3). Predicted changes in habitat
suitability for B. gabrieli were similarly less extreme with the
best-fit SDM (�16%, 176%) relative to the default SDM
(�27%, 175%) in some dispersal scenarios, but under the
unlimited dispersal scenario showed little difference among
best-fit and default models (Fig. 3). In contrast, predicted
habitat for B. nigriventris showed more-extensive predicted
decreases with the default SDM in all three dispersal
scenarios (�38%, 6%) and less of a predicted decrease or

even an increase under the best-fit SDM (�15%, 63%). For
all three species under the no-dispersal scenario, the default
SDM frequently predicted extensive losses while the best-fit
SDM predicted only slight losses or no change (Fig. 3).

DISCUSSION

Predicting amphibian declines requires the integration of
multiple tools, and species distribution modeling is one way
to predict changes in suitable habitat for amphibian species.
However, decisions in the modeling process can have
significant implications for projections (Thuiller et al.
2019), and thus it is crucial to investigate how different
modeling techniques affect predictions for better interpre-
tation and understanding of the models generated. Through
our literature review, we found extensive variation in
modeling approaches used and subsequently extensive
variation in predicted outcomes for amphibian bioclimatic
suitability under climate change (Fig. 2). Studies predicting
future bioclimatic suitability varied in the climate models
and scenarios, model algorithms, year of projection, model
selection approach, and consideration of dispersal among
many other factors. Individual species predictions ranged
from losses of 100% to gains well over 100%. While some of
these differences appear to be due to species differences
(Table 1; Fig. 3), variation in predicted suitability also was
explained by RCP/SRES, dispersal limitation, and the
projection year.

Dispersal

One of the primary predictors of percent change in
climate suitability was the way in which dispersal was
considered. For studies that considered no dispersal outside
the current range, projected losses in suitability were the
greatest, as expected (Table 1; Fig. 2). On average across all
studies, there is a predicted change of�43% 6 2% (meanþ

TABLE 1.—Meta-analysis linear model results for variation in predicted change in habitat suitability across 36 studies in the literature review. Only the
best-fit model results are shown (See Supplemental Table S2 for all other models). Citation was included as a random variable while Dispersal Limitation,
Representative Concentration Pathway (RCP), Year, and Order were included as fixed variables. Results include the lower (CI.L) and upper (CI.U) 95%
confidence intervals. SE ¼ standard error; AIC ¼ Akaike information criterion.

Term Estimate SE Z P CI.L CI.U AIC DAIC

Intercept 380.94 80.91 4.71 0.000 222.35 539.53 1286 0
Dispersal limit – no dispersal �26.78 2.43 �11.00 0.000 �31.55 �22.01
Dispersal limit – unlimited 3.08 3.42 0.90 0.367 –3.62 9.78
RCP/SRES – moderate –3.22 2.67 �1.21 0.227 �8.46 2.01
RCP/SRES – pessimistic �6.82 1.98 �3.45 0.001 �10.70 �2.95
Year �0.19 0.04 �4.88 0.000 �0.27 �0.11
Order – Caudata �8.84 1.94 �4.56 0.000 �12.64 �5.04
Order – Gymnophiona �15.98 13.24 �1.21 0.228 �41.93 9.97

TABLE 2.—Maxent species distribution model evaluation metrics for the three case study species (Batrachoseps). For each species, the best-fit model as
selected by corrected Akaike information criterion (AICc) and the default Maxent model (regularization multiplier [RM] ¼ 1) are shown. Results include
area under the curve (AUC) for the training data and test data, variation in AUC for the test data, AICc score, DAICc relative to the best-fit model for each
species, the Akaike weight (w) and number of parameters (k).

Species RM AUCtrain AUCtest AUCtest.var AICc DAICc w k

B. gabrieli 1 0.98 0.97 0.00 469.5 79.75 0.00 16
3 0.97 0.96 0.00 389.8 0.00 0.59 6

B. major 1 0.85 0.75 0.04 1629.5 38.27 0.00 25
2 0.84 0.75 0.05 1591.3 0.00 0.84 10

B. nigriventris 1 0.84 0.76 0.05 726.9 9.04 0.00 12
3 0.81 0.71 0.07 717.9 0.00 0.42 6

113ZELLMER ET AL.—FUTURE CLIMATE SUITABILITY PROJECTIONS FOR AMPHIBIANS

Downloaded From: https://bioone.org/journals/Herpetologica on 26 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



FIG. 2.—Mean predicted change in suitable climate for amphibian species by citation and model parameters from the meta-analysis. Points represent
means and bars represent 95% confidence intervals. Mean predicted change in suitable climate was calculated for each amphibian order within each study
for each of the model settings, including Representative Concentration Pathway, Year, and Dispersal Limitation. Triangles indicate estimates from the case
study, and circles indicate all other studies. A color version of this figure is available online.
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standard error of the mean [SEM]) of bioclimatically suitable
habitat within the current known or predicted ranges of
amphibians. In contrast, studies that assumed unlimited
dispersal across the entire extent of their study area
frequently projected gains in suitability (Table 1; Fig. 2).
Under an assumption of dispersal, there is a predicted

change of �27% 6 5% (mean þ SEM) of suitable habitat
with limited dispersal and 18% 6 11% (mean þ SEM) with
unlimited dispersal. These results suggest that dispersal
capabilities will be crucial for amphibians to be resilient to
the changes in suitable habitat as a result of climate change
(Carvalho et al. 2010).

How dispersal was modeled varied extensively across
studies, with many authors indicating a lack of data to fully
support any particular assumptions about dispersal. Al-

TABLE 3.—Comparison of candidate models of predictors of percent
change in climate suitability for three species of Batrachoseps salamanders.
Percent change in climate suitability was quantified for each species using
either the best-fit or default species distribution model projected onto 26
future climate scenarios (13 general circulation models [GCMs] and 2
[RCPs]) under three dispersal scenarios. The GCM, RCP, and dispersal
were included as covariates in all candidate models. Results include log-
likelihood (LL), corrected Akaike information criterion (AICc) score,
DAICc, the Akaike weight (w), and number of parameters (k).

Terms LL AICc DAICc w k

SDM þ Species þ SDM*Species �2727 5473 0.0 0.80 9
Species �2732 5477 3.5 0.14 6
SDM þ Species �2732 5478 5.2 0.06 7

TABLE 4.—Confidence intervals for fixed effects in the best-fit model of
percent change in suitable climate for Batrachoseps salamanders. Lower
(CI.L) and upper (CI.U) 95% confidence intervals were calculated for the
model with the lowest AICc score.

Term 95% CI.L 95% CI.U

Species – B. major �56.47 �9.85
Species – B. nigriventris �57.91 �11.30
SDM – default �17.05 29.57
B.major*Default.SDM �20.76 45.16
B.nigriventris*Default.SDM �77.55 �11.63

FIG. 3.—Percent change in climate suitability predicted for each species in the case study. For each species, predicted percent change in climate
suitability is shown for the year 2050 under 13 general circulation models and two representative concentration pathways (2.6, 8.5) climate scenarios for both
the default Maxent species distribution models (SDMs; regularization multiplier ¼ 1; open red boxes) and the best-fit SDM (Akaike information criterion;
DAICc ¼ 0; shaded blue boxes) for three levels of dispersal: no dispersal, limited, or unlimited. Boxplots show median, interquartile range, and minimum and
maximum values. A color version of this figure is available online.
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though many studies evaluated the full range of possibilities,
allowing for an analysis of the sensitivity of their estimates to
assumptions about dispersal, some studies investigated only
one potential dispersal scenario, which frequently was the
no-dispersal scenario. While historically many amphibians
were thought to be dispersal limited (Smith and Green
2005), there is mounting evidence that many species are
capable of long-distance dispersal (da Fonte et al. 2019;
Cayuela et al. In press). Even for species with highly limited
dispersal, such as Batrachoseps and their close relatives
(Smith and Green 2005), phylogeographic analyses suggest
that extensive dispersal may have occurred during periods of
historical global warming (Vieites et al. 2007). Thus, while
some species may be at high risk of habitat loss due to
climate change, others may experience increased habitat
availability if they are able to disperse to newly available
habitats. However, even if some species have extensive
dispersal capabilities, habitat loss, fragmentation, and
degradation due to additional human-mediated landscape
modifications may restrict connectivity to climatically suit-
able habitats. Preservation of dispersal corridors will
therefore be essential to assuring that species have access
to climatically suitable habitat (e.g., Gonçalves et al. 2016;
Subba et al. 2018). Regardless of the assumptions about the
extent of dispersal, approaches that incorporate dispersal
simulations (e.g., Subba et al. 2018) seem most promising for
developing more-realistic projections for future habitat
availability.

Model Selection

Because only three (one of which was this study) out of
the 36 studies in our literature review used AIC to compare
candidate SDMs (Wright et al. 2016; Kafash et al. 2018), we
were unable to test the impact of this particular modeling
decision on predicted change in suitability with our literature
review. While many studies addressed model complexity by
removing correlated variables, using a reduced set of
predictor variables, conducting model averaging, or by using
an increased RM (Struecker and Milanovich 2017; Subba et
al. 2018), none of these approaches explicitly compare
models with different numbers of parameters. As a result,
such approaches could even lead to underparameterization.
Although model selection has firmly become standard
practice in most areas of ecology (Johnson and Omland
2004), this approach has seen limited application in SDMs
despite evidence that methods such as AIC result in
selection of models that improve our ability to correctly
infer habitat suitability and make predictions across time and
space (Warren and Seifert 2011; Katz and Zellmer 2018). Of
the two studies that reported the best-fit RM values, both
had RM values greater than the default value for each
species. All three studies reported on average moderate
declines (no more than �28%) and sometimes extensive
increases (up to 129%) in projected suitable habitat. The lack
of AIC-based methods in the literature perhaps results from
the vast number of methods and approaches available for
creating SDMs, leading to confusion and disagreement
about best practices as well as the simplicity and ease of
running Maxent as a black box tool (Morales et al. 2017).

We did, however, find support for our hypothesis in our
case study, the results of which demonstrated that projected
changes in suitable habitat vary depending on whether

model selection is used to choose among a set of candidate
SDMs. When comparing alternative SDMs, it is apparent
that the impact of the RM on the projected suitable habitat
varies across different species (Table 4; Fig. 3). For B.
nigriventris, the best-fit model predicted smaller losses in
suitable habitat whereas for B. gabrieli, the best-fit model
predicted smaller gains in suitable habitat relative to the
default SDMs (Fig. 2). In contrast, for B. major there was
little difference in the predicted change in suitable habitat
between the best-fit and default SDMs. For all three species,
the best-fit SDMs had far fewer parameters than did the
default SDMs (Table 2) and predicted a broader range of
current habitat suitability. These results bolster previous
research which suggests that modeling choices can result in
extensive uncertainty over future habitat suitability projec-
tions across multiple taxa (Thuiller et al. 2019). Thus,
researchers need to use caution in building SDMs with best
practices (Morales et al. 2017), particularly before projecting
models across time or space. Interestingly, in almost all
cases, there was less variation in projected change in suitable
habitat between different climate scenarios when the best-fit
SDM was used as opposed to the default SDM. These results
suggest that utilizing best practices for modeling may help to
reduce our uncertainty in model projections.

It is unclear the extent to which previous models of future
habitat suitability have been impacted by over- or under-
parameterization. Because the impact of the RM and
overparameterization may vary by species, it may be
necessary to revisit a number of these study systems and
re-evaluate the extent to which species habitats are
threatened due to future climate change. Although we are
able to make estimates for global losses in predicted climate
suitability through our meta-analysis, we caution that these
estimates may be affected by overparameterization of models
for some of the species. Joint estimates of projected changes
in habitat suitability using stacked-SDMs may be of
particular concern. If individual species models are over-
parameterized, then this bias may be amplified when
combining across species, leading to underpredictions in
community habitat suitability.

Beyond the impacts on predicting future habitat suitabil-
ity, there are many other situations where overparameterized
SDMs may be potentially underestimating habitat availabil-
ity, limiting our ability to estimate effects on amphibian
declines. For example, studies using current SDMs to
determine conservation status may underestimate the
amount of habitat currently suitable for species at risk.
Studies designed to identify areas for habitat conservation or
restoration, either currently or under future climate
scenarios, could be affected as well. The effect of over-
parameterized models may also be particularly strong when
transferring across space, such as when predicting potential
ranges for invasive species. This issue may also arise when
estimating the potential spread of emerging infectious
diseases, such as Batrachochytrium dendrobatidis or Ba-
trachochytrium salamandrivorans, a central question of
concern for amphibian decline research.

Conversely, we must also consider the potential that by
using a model selection approach such as AIC, it is possible
that models may be too general and therefore will lead to
overestimates of species habitat suitability. Which model
selection approach is used may depend on the question at
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hand. In some cases, it may be preferable to have a more
general and less parameterized model when very conserva-
tive results are preferred or when understanding how
variables contribute to species distributions is most impor-
tant. When conducting spatial or temporal projections it is
especially important that models are not overparameterized.
Alternatively, other studies may simply need very specific
models for prediction of species presence within the known
range of a species and be less concerned about how the
model works, in which case a more highly parameterized
model may be beneficial (Warren and Seifert 2011). Future
research should carefully consider these potential effects and
conduct comparative studies to assess the relative contribu-
tions of over- and underparameterization and the scenarios
under which more or less parameterized models would be
preferred.

Case Study

The extreme differences in projected change in habitat
suitability among the three species of Slender Salamanders
in our case study warrant further discussion. On the one
hand, these differences could arise from shifting climates
becoming more advantageous to some species and less
advantageous to others. Alternatively, the differences could
reflect variation in quality of the models for each of the
species. In fact, B. gabrieli, for which we unexpectedly
predicted extensive expansion of habitat in the future, had
the smallest sample size for locality data used to build the
models. These results point to issues that can arise in
modeling when using small sample sizes (Wisz et al. 2008)
for species with limited ranges and narrow environmental
tolerances (Saupe et al. 2012). Further, it is important to
remember that these projections only indicate suitable
bioclimatic habitat. For species with distinct microhabitat
requirements, such as the talus slope associations for B.
gabrieli, projections based solely on bioclimatic variables
may vastly overestimate the availability of habitat. While
some environmental constraints may be easy to build into
predictive models, there are far fewer projections of changes
in nonclimate-based environmental variables, limiting our
ability to model the potential effects of other environmental
changes. This limitation may be particularly important for
species like B. major, which have projected bioclimatic
suitability that overlaps regions that have been heavily
urbanized or are likely to be converted to urban areas.
Future studies need to focus on increased sampling for data
deficient species, such as B. gabrieli, and on incorporating
predicted changes in other environmental variables into
suitable habitat projections.

Limitations

It is important to note that our sample size for the
literature review was limited in terms of the number of
studies that reported predicted changes in habitat suitability
for individual species. The majority of studies (n ¼ 47) did
not report percent change in suitable habitat for individual
species and thus could not be included in our meta-analysis
(e.g., Iosif et al. 2014). Similarly, many studies evaluated
community-wide projected habitat changes but did not
report percent change in suitable habitat for individual
species (Hof et al. 2011; Ochoa-Ochoa et al. 2012; Lemes
and Loyola 2013; Loyola et al. 2013). Twelve of the studies in

our literature review only investigated one or two species
(e.g., Toranza and Maneyro 2013). Although the studies we
included in our meta-analysis assessed multiple species (n ¼
3–451), there were only 24 studies with at least three species,
which made comparisons across studies difficult. Thus,
comparisons of modeling approaches within studies may be
subject to other confounding differences across studies. Due
to wide variation among studies, lack of reporting, or small
sample size, other variables not considered here include
climate baseline, sampling bias, GCM, thresholding method,
and amount of species range evaluated, among others. While
we were not able to evaluate the effects of these modeling
decisions, we account for the additional variation by
including citation as a random variable in our meta-analysis.
For any species of interest, a careful assessment of each of
these modeling decisions needs to be considered before
interpreting predicted changes in suitable habitat. Pairing
predictions with field validation methods is one strategy for
evaluating predictions (Courtois et al. 2016). Finally, most
studies focus on changes in bioclimatic variables, but other
environmental habitat changes can exacerbate the effects of
a shifting climate (Rosenstock et al. 2015; Soares de Oliveira
et al. 2016; Cobos and Bosch 2018). Regardless of these
limitations, the small sample of studies observed here echoes
previous concerns that amphibians are understudied relative
to other taxa as to the potential impacts of climate change
(Nabout et al. 2012).

Further, there is unequal representation of studies
investigating predicted changes in suitable habitat across
the three main lineages of amphibians. Although Anurans
were the most widely studied with the greatest number of
species for which there are projected changes in suitable
habitat (followed by Caudates and finally Caecilians),
Anurans and Caecilians were proportionally understudied
relative to the total number of species within each of these
taxonomic groups globally (see http://www.amphibiaweb.
org). Few studies consider not just changes in predicted
habitat for individual species but also changes in evolution-
ary history and ecosystem function (Loyola et al. 2014; de
Pous et al. 2016; Lourenço-de-Moraes et al. 2019). In
addition, the global representation of these studies is also
lacking and does not fully represent patterns of taxonomic
diversity around the world. Of the 36 studies included in our
quantitative analyses, only one study was conducted within
Africa (Ayebare et al. 2018), three within Asia (Duan et al.
2016; Subba et al. 2018; Ashrafzadeh et al. 2019), nine within
North America, 10 within Europe, and 13 within South
America. Most species were evaluated in only one study, and
only a few studies replicated analyses for similar suites of
species across the same geographic regions. Habitat
suitability projections are needed for more species and
across more geographic locations to better identify species
and regions most at risk to the effects of climate change.

CONCLUSIONS

We investigated the potential impact of climate change on
projected bioclimatic habitat suitability of amphibians, taking
into account variation in approaches to correlative species
distribution modeling. Our literature review highlights the
wide variety of approaches used and assumptions made in
projections of amphibian distributions. There is extensive
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variation in estimates of future climate suitability for
amphibians. Our case study illustrates that some of this
variation may be due to overparameterization of models.
Based on these results, we are still unable to make clear
predictions about changes in suitable habitat due to climate
change for amphibian populations across the globe. Addi-
tional taxonomic and geographic coverage along with use of
best practices in modeling are necessary for better estimates.
Because previous predictions may be affected by over-
parameterization and because there is a general lack of
studies predicting changes in suitable habitat for amphibians,
we recommend revisiting projections for species already
studied as well as creating novel projections for understudied
species. Further investigation of alternative methods for
species distribution modeling using rigorous, simulation-
based approaches (Warren et al. 2020) will be necessary for
evaluating the role that climate change may play in
amphibian declines and to successfully plan for conservation
of diverse amphibian lineages.
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