Biomass and Enzyme Activity of Two Soil Transects at King George Island, Maritime Antarctica

Authors: D. Tscherko, M. Bölter, L. Beyer, J. Chen, J. Elster, et. al.

Source: Arctic, Antarctic, and Alpine Research, 35(1) : 34-47

Published By: Institute of Arctic and Alpine Research (INSTAAR), University of Colorado

Biomass and Enzyme Activity of Two Soil Transects at King George Island, Maritime Antarctica

D. Tscherko,*
M. Böltet,†
L. Beyert,†
J. Chen,‡
J. Elster,§
E. Kandelert,*
D. Kuhn,** and H.-P. Blumee**

*Institute of Soil Science, University Hohenheim, Emil-Wolf-Fraß-Straße 27, D-70599 Stuttgart, Germany.
tscherko@uni-hohenheim.de
†Institute of Polar Ecology, University of Kiel, Wischhofstraße 1–3, D-24148 Kiel, Germany.
‡Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, P.R. China.
§Institute of Botany, Czech Academy of Science, CZ-37982 Trebon, Czech Republic.
**Institute of Soil Science, University of Kiel, Olshausenstraße 40, D-24098 Kiel, Germany.

Abstract

Soil microbial properties were investigated to assess the potential of organic matter dynamics in mineral and ornithogenic soils in a cold climate. Microbial biomass, respiration, N-mineralization, and enzyme activities were measured along two catenary transects crossing penguin rookeries and seabird colonies. Ornithogenic excrements, total organic carbon (TOC), and phosphorus accumulation were major factors controlling microbial properties in Antarctic soils. Multivariate approaches (cluster and discriminant analysis) clearly distinguished the ornithogenic soils from the mineral soils based on their microbial characteristics. Microbial biomass, respiration, and N-mineralization were gradually inhibited by increasing P-inputs by penguins. The metabolic quotient (qCO₂) was negatively correlated to P-content, whereas all other microbial properties (microbial biomass, respiration, N-mineralization, enzyme activities) followed the patterns of TOC. Urease, xylanase, phosphatase, and arylsulfatase activities were significantly favored by penguin and seabird excrements in the ornithogenic soils compared to the mineral soils. Microbial biomass-to-enzyme activity ratios were substantially higher at sites influenced by penguin guano than by other seabird excrements. We show that enzymes are active in antarctic soils, and that high levels of biomass-based specific activity in the ornithogenic soils, compared to those of mineral soils, result from continuous input of large quantities of enzyme-rich penguin guano.

Introduction

Microorganisms play a key role in cycling nutrients in soils of the isolated antarctic ecosystem, where organic matter derives primarily from soil algae and slow-growing cryptogamic plants (Tibbles and Harris, 1996). Locally, penguins and other seabirds transfer large quantities of organic and inorganic material from the ocean to terrestrial antarctic ecosystems (Orchard and Corderoy, 1983; Beyer et al., 1999a), and accumulated guano deposits in the coastal rookeries are an important source of organic matter. Long periods of snow cover, low temperatures, and related low water availability represent major factors controlling microbial life in these environments.

Various investigations have focused on the environmental factors related to microbial growth, numbers, biomass, and respiration (e.g., Wynn-Williams, 1982; Böltet, 1992, 1993, 1995; Böltet et al., 1997), hydrolytic activity (Böltet, 1992), nitrogen fixation (Christie, 1987; Böltet et al., 1995), and extracellular enzyme production of isolated fungi (Ray et al., 1989; Fenice et al., 1997) in continental and maritime Antarctica. However, there is relatively little information on whether the microbial mineralization of organic compounds differs between mineral and ornithogenic soils. The latter have many features which distinguish them from other soils: bacterial production and respiration (Tibbles and Harris, 1996), bacterial numbers and viability (Ramsay and Stannard, 1986), total microbial biomass (Roser et al., 1993), and total microbial CO₂ evolution (Orchard and Corderoy, 1983) differ significantly. Roser et al. (1993) have shown that microbial biomass and microbial viability in ornithogenic soils vary with their location in continental Antarctica, maritime Antarctica, and subantarctic regions. Furthermore, enzyme activity involved in soil organic matter mineralization can be used to indicate the decomposition potential of ornithogenic soils. Only few reports are available on enzymes in mineral (e.g., Böltet, 1992; Fenice et al., 1997) and ornithogenic soils (Pietr et al., 1983; Speir and Ross, 1984; Böltet, 1992).

The objective of this study is to quantify the influence of penguin guano and seabird excrements on microbial properties of maritime antarctic soils along two catenas crossing stony moraines of different ages. The approach involves measuring microbial biomass (C and N), bacterial numbers and biomass, respiration, N-mineralization, and soil enzyme activities to assess the functional diversity of soil microorganisms in antarctic environments.

Material and Methods

STUDY AREA

King George Island is located in the climatic zone of maritime Antarctica. The annual mean temperature is −1.7°C (1977–1996), but from December to April the range of the monthly mean is from 0.9 to 2.3°C, with maximum daily temperatures of 16.7°C in January and minimum daily temperatures of −32.3°C in July (Rakusa-Suszczewski et al., 1993; Kejna, 1999). Yearly
precipitation is 510 mm with a nearly homogeneous distribution over the year. In March there is an extreme minimum due to the decreasing temperature at the onset of the antarctic winter. The recent vegetation in the ice-free oasis of King George Island is characterized by mosses, some liver mosses, lichens, and algae (Olech, 1993; Zarzycki, 1993) as well as by the higher plants Deschampsia antarctica and Colobanthus quitensis. Huge areas of landscape are nonvegetated, and the occurrence of vegetation shows a high variation and an extreme patchiness.

The investigation site is located near the permanently occupied Polish Station H. Arctowski at King George Island (58°20′E, 62°10′S), located at the shore of Admiralty Bay (Fig. 1). The parent material of soil is mainly neoglacial moraine rubble (centuries old and younger) and fluvioglacial sands influenced by eolian deposits and volcanic ash (Blume et al., 2002). Relic penguin rookeries are scattered widely within the ice-free areas (Tatur and Myrcha, 1984; Myrcha and Tatur, 1991), and active colonies are located next to the coastline. Most soils are affected by permafrost between 50 and 200 cm depth (Kuhn, 1997).

TRANSECTS

Sampling transects are described in Table 1. Soil samples were taken along two catenary soil transects perpendicular to the nearby Ecology Glacier (Kuhn, 1997: Fig. 1). They were established for botanical studies (Olech, 2002). Transect A is 10 to 20 m inland from the shore, whereas transect B is located several hundred meters farther inland. The direction of transect A is south-north, starting with site A0, about 2 m away from the glacier, and ending at site A15, 306 m north of the glacier. The direction of transect B is south-southeast to north-northwest, starting with site B1, 16 m from the glacier, and ending at site B12, 237 m from the glacier. The vegetation has been characterized along both transects (Olech, 2002). The sampling sites are located in valleys or depressions between the moraines as well as on slopes, tops or fronts of moraines. On transect A, the first visible vegetation—the grass Deschampsia antarctica and the moss Polytrichum piliferum along with certain other mosses—occurred nearly 100 m away from the glacier, although the surface coverage was still extremely low (Table 1). The lichen Usnea antarctica is found 200 m from the glacier, whereas the alga Prasiola crispa is restricted to sites A13–A15, which are characterized by a visible penguin impact (Table 1: remarks). Mosses are absent at these sites. With higher vegetation cover at distances >200 m from the glacier, D. antarctica becomes the dominant plant. Transect B is characterized by a similar pattern of plant occurrence with respect to the distance from the glacier (Table 1). The vegetation cover, however, is greater beginning 130 to 140 m from the glacier, and D. antarctica is no longer the dominant plant. Here, mosses and, at the last point (B12), U. antarctica have a much greater abundance. Seabird excrements are visible on moraines most distant from the glacier (B9–B12).

Soils are classified according to the International Society of Soil Science (ISSS-FAO, 1998, Table 1). Some of the sites on both transects are enriched with volcanic glass. Hence, they are classified as vitric Andosols (A7, A8, B3, B4, B6, B10) or vitric subunits of Cryosols (A6, A9, B1). Only some soils show active cryoturbation phenomena and are thus classified as Cryosols (A1, A2, A6, A9, B1, B2), whereas the others are gelic subunits of varying soil types.

SOIL SAMPLING

For reasons of environmental protection and in accordance with the Antarctic Treaty, sampling had to be restricted (UNOG, 2000). The sampling design followed the vegetational gradient along both catenary transects (A0–A15, B1–B12). A spade was used to take the soil samples from different horizons. One bulk sample of the topsoil (0–20 cm) and a subsoil sample (30–55 cm, depending on depth of soil) were taken from each site along the transects (Table 1) and stored in plastic bags at −20°C. For determinations of bacterial biomass and bacterial counts, a sub-sample was taken from the 0–5-cm surface layer of each site along both transects. The samples for enzymatic studies were
SOIL PHYSICAL AND CHEMICAL ANALYSES

Most chemical and physical properties were determined by methods given by Schlichting et al. (1995). In brief, soil texture was determined by the sieving and sedimentation method after \(H_2O \) treatment and \((NaPO_3)_2\) dispersion. Total organic carbon (TOC) and nitrogen (N) were measured by dry combustion at 1200°C and thermal conductivity detection. Kjeldahl digestion and subsequent colorimetric detection of \(NH_4^+ \) were used to determine total nitrogen (N\(_t\)). Exchangeable bases \((BEC = Ca^{2+} + Mg^{2+} + K^+ + Na^+)\) were extracted by \(BaCl_2 \) at pH 8.2 and available phosphates \((P_{\text{soil}})\) by citrate solution. The pH was measured in \(CaCl_2 \) solution (soil-solution ratio 1:2.5), electrical conductivity \((EC)\) in the saturation extract. Soil moisture \((\% \text{ww})\) was measured gravimetrically after drying at 105°C for 3 d. Those for physicochemical analyses air dried at room temperature before being sieved (≤ 2 mm fraction) and analyzed. The total number of soil samples was 58 for microbial and chemical measurements and an additional 29 for bacterial counts and bacterial biomass.

SOIL PHYSICAL AND CHEMICAL ANALYSES

Most chemical and physical properties were determined by methods given by Schlichting et al. (1995). In brief, soil texture was determined by the sieving and sedimentation method after \(H_2O \) treatment and \((NaPO_3)_2\) dispersion. Total organic carbon (TOC) and nitrogen (N) were measured by dry combustion at 1200°C and thermal conductivity detection. Kjeldahl digestion and subsequent colorimetric detection of \(NH_4^+ \) were used to determine total nitrogen (N\(_t\)). Exchangeable bases \((BEC = Ca^{2+} + Mg^{2+} + K^+ + Na^+)\) were extracted by \(BaCl_2 \) at pH 8.2 and available phosphates \((P_{\text{soil}})\) by citrate solution. The pH was measured in \(CaCl_2 \) solution (soil-solution ratio 1:2.5), electrical conductivity \((EC)\) in the saturation extract. Soil moisture \((\% \text{ww})\) was measured gravimetrically after drying at 105°C for 24 h.

TABLE 1

Detailed site description of the antarctic soil profiles sampled at transects A and B on King George Island

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Depth (cm)</th>
<th>Vegetation</th>
<th>Cover (%)</th>
<th>Soil Units (ISSS-FAO 1998)</th>
<th>Dist (m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>gl edge</td>
<td>32</td>
<td>nil</td>
<td>0</td>
<td>Eutri-gelic Fluvisol</td>
<td>2</td>
<td>fluvio-glacial</td>
</tr>
<tr>
<td>A1</td>
<td>m. foot</td>
<td>32</td>
<td>nil</td>
<td>0</td>
<td>Calcar-turbic Cryosols</td>
<td>32</td>
<td>moraine</td>
</tr>
<tr>
<td>A2</td>
<td>m. top</td>
<td>30</td>
<td>nil</td>
<td>0</td>
<td>Calcar-turbic Cryosols</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>m. slope</td>
<td>35</td>
<td>nil</td>
<td>0</td>
<td>Eutri-turbic Cryosols</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>m. top</td>
<td>40</td>
<td>(D.)</td>
<td>0.5</td>
<td>Hypsali-gelic Regosol</td>
<td>93</td>
<td>wind-protected</td>
</tr>
<tr>
<td>A5</td>
<td>m. valley</td>
<td>40</td>
<td>(D.), mosses</td>
<td>1</td>
<td>Vitri-gelic Fluvisol</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>m. top</td>
<td>45</td>
<td>(D.), mosses</td>
<td>1</td>
<td>Vitri-turbic-Cryosol</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>m. foot</td>
<td>47</td>
<td>(D.), mosses</td>
<td>1</td>
<td>Geli-vitric Andosol</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>m. top</td>
<td>50</td>
<td>(D.), mosses</td>
<td>5</td>
<td>Geli-vitric Andosol</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>m. slope</td>
<td>60</td>
<td>(D.), mosses</td>
<td>7</td>
<td>Vitri-turbic Cryosol</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>m. top</td>
<td>50</td>
<td>(D.), mosses</td>
<td>4</td>
<td>Eutri-gelic Regosol</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>m. top</td>
<td>55</td>
<td>(D.), mosses, (Usnea)</td>
<td>4</td>
<td>Eutri-gelic Regosol</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>depression</td>
<td>35</td>
<td>(D.)</td>
<td>55</td>
<td>Dystri-gelic Regosol</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>m. top</td>
<td>40</td>
<td>(D.)</td>
<td>90</td>
<td>Skeleti-gelic</td>
<td>233</td>
<td>20 cm²</td>
</tr>
<tr>
<td>A14</td>
<td>m. top</td>
<td>35</td>
<td>(D.), Prasiola crispa</td>
<td>100</td>
<td>Sali-gelic Umbrisol</td>
<td>245</td>
<td>center²</td>
</tr>
<tr>
<td>A15</td>
<td>m. slope</td>
<td>55</td>
<td>(D.)</td>
<td>60</td>
<td>Humi-gelic</td>
<td>306</td>
<td>200 cm²</td>
</tr>
<tr>
<td>B1</td>
<td>m. foot</td>
<td>35</td>
<td>nil</td>
<td>0</td>
<td>Vitri-turbic Cryosol</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>m. slope</td>
<td>35</td>
<td>nil</td>
<td>0</td>
<td>Calcar-turbic Cryosol</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>m. top</td>
<td>ND</td>
<td>(D.)</td>
<td>0.1</td>
<td>Geli-vitric Andosol</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>depression</td>
<td>40</td>
<td>(D.)</td>
<td>0.5</td>
<td>Geli-vitric Andosol</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>m. foot</td>
<td>50</td>
<td>(D.)</td>
<td>0.5</td>
<td>Eutri-gelic Regosol</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>depression</td>
<td>40</td>
<td>(D.), mosses</td>
<td>3</td>
<td>Geli-vitric Andosol</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>m. slope</td>
<td>40</td>
<td>(D.), mosses, (Usnea)</td>
<td>30</td>
<td>Skeleti-gelic Regosol</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>B8</td>
<td>depression</td>
<td>40</td>
<td>(D.)</td>
<td>15</td>
<td>Skeleti-gelic Regosol</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>m. foot</td>
<td>35</td>
<td>(D.)</td>
<td>10</td>
<td>Eutri-gelic Regosol</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>m. slope</td>
<td>40</td>
<td>(D.)</td>
<td>5</td>
<td>Geli-vitric Andosol</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>m. slope</td>
<td>50</td>
<td>(D.)</td>
<td>5</td>
<td>Skeleti-gelic Umbrisol</td>
<td>231⁺</td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td>top</td>
<td>50</td>
<td>(D.), mosses, (Usnea)</td>
<td>5</td>
<td>Skeleti-gelic Umbrisol</td>
<td>237⁺</td>
<td></td>
</tr>
</tbody>
</table>

*Abbreviations: gl: glacier, m.: moraine, mosses: diverse moss species, \(D. \) ant: Deschampsia antarctica, Poly.: Polytrichum piliferum, \(Usnea \): Usnea antarctica.

*Depth of digging (soil profile).

*Soil surface coverage by recent vegetation.

*Distance from glacier edge.

*Distance from abandoned seabird nests.

*Ignoring the high P content due to seabird impact.

*Center of an abandoned seabird nest.

allowed to thaw at +4°C for 3 d; those for physicochemical analyses air dried at room temperature before being sieved (≤ 2 mm fraction) and analyzed. The total number of soil samples was 58 for microbial and chemical measurements and an additional 29 for bacterial counts and bacterial biomass.

MICROBIOLOGICAL ANALYSES

Total bacterial numbers (TBN), total bacterial biomass (\(C_{\text{bac}} \)), and related parameters were determined by epifluorescence microscopy (acridine orange staining of suspensions on polycarbonate membranes, pore size 0.2 μm; Bölté, 1992.

36 / Arctic, Antarctic, and Alpine Research
Results

CHEMICAL AND PHYSICAL CHARACTERISTICS OF THE ANTARCTIC SOIL

Most investigated soils are enriched with gravel and stones, reflecting the special conditions of the parent material (moraines). The dominant soil texture is sandy loam (Table 2) with clay contents up to 20%. Abrupt textural changes between top- and subsoil within one profile occur at A4 and A9 due to the mixing of differently textured sedimentary deposits during glacial transports (Blume et al., 1997; Kuhn, 1997).

The soils (A0–A11, B1–B6) on young moraines (10 to 30 yr) have nearly no vegetation cover, carbonate contents of up to 2.9 g kg⁻¹, and are almost free of organic matter (TOC < 2 mg kg⁻¹, Table 2). By contrast, soils (A12–A15, B7–B12) on older moraines (hundreds of years old) are strongly acidified (pH < 5) and enriched with organic matter. These soils show carbonate loss, acidification, and base desaturation together with organic matter accumulation, processes which occur very quickly on soils with high nutrient reserves (due to basaltic origin) and rapidly growing vegetation cover.

Nitrogen compounds are only found in trace amounts (0.10–2.86 g kg⁻¹) in ornithogenically influenced soils (A13–A15, B9, B11–B12). For soils with N concentrations close to detection limits, the C/N ratios are not calculated (A0±A12, B1–B8, B10). Along with an increasing occurrence of vegetation and/or the impact of bird excrement, the TOC and N contents in the topsoils also greatly increase. At transect A, narrow C/N ratios (4.8–6.7) confirm the penguin impact at site A13–A15. This is in line with data from other areas in Antarctica (see reviews: Campbell and Claridge, 1987; Beyer et al., 1999a), which show such ornithogenic soils to be characterized by C/N ratios of 5 or lower.

The base exchange capacities (BEC), which characterize the released and bound nutrients (Ca, Mg, K, Na), are lowest at the far ends of both transects, which show lowest pH levels (Table 2). However, the constant decline of pH values with increasing distance from the glacier is not reflected by the BEC, probably due to increasing TOC levels, textural and mineral differences of the soil matrix, and the parent materials (Kuhn, 1997).

ORNITHOGENIC SOILS IN ANTARCTICA

In antarctic environments penguins and seabirds play an important role in soil development. Tops of the old moraines are covered by penguin guano (A13–A15) and seabird excrement (B9–B12). The influence of penguins and seabirds has resulted in a strong enrichment of phosphate. Guano and bird excrement enrich soils with organic nutrients (e.g., proteins, urea), which can be mineralized and transformed into nitric and sulfuric acids. This causes extremely low pH at bird nests and sites downslope of the nests (A15). The acidification results in elevated levels of oxalate-extractable iron from basaltic rocks, showing high contents of easily weatherable pyroxenes (Blume et al., 2002). Some soils are characterized by medium to high electrical conductivity due to the influence of guano excrement (A13–A15) (Table 2).

CLASSIFICATION OF ORNITHOGENIC SOILS ACCORDING TO MICROBIAL PROPERTIES

The dendrogram of the cluster analysis, based on microbial biomass and enzyme activity data, displays an unequivocal re-
<table>
<thead>
<tr>
<th>Code</th>
<th>Distance m</th>
<th>Texture</th>
<th>TOC g kg⁻¹</th>
<th>Pₘₖ mg kg⁻¹</th>
<th>pH</th>
<th>EC mS</th>
<th>BEC cmol c kg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0/1</td>
<td>2</td>
<td>M.S.L</td>
<td>1.37</td>
<td>178</td>
<td>6.7</td>
<td>2.4</td>
<td>14.0</td>
</tr>
<tr>
<td>A0/2</td>
<td>2</td>
<td>M.L</td>
<td>1.16</td>
<td>443</td>
<td>6.7</td>
<td>4.9</td>
<td>15.8</td>
</tr>
<tr>
<td>A1/1</td>
<td>32</td>
<td>A.S.L</td>
<td>0.77</td>
<td>339</td>
<td>6.7</td>
<td>0.4</td>
<td>12.3</td>
</tr>
<tr>
<td>A1/2</td>
<td>32</td>
<td>M.S.L</td>
<td>0.68</td>
<td>475</td>
<td>6.7</td>
<td>0.3</td>
<td>13.8</td>
</tr>
<tr>
<td>A2/1</td>
<td>37</td>
<td>M.S.L</td>
<td>0.92</td>
<td>386</td>
<td>6.8</td>
<td>0.4</td>
<td>12.3</td>
</tr>
<tr>
<td>A2/2</td>
<td>37</td>
<td>M.L</td>
<td>0.64</td>
<td>585</td>
<td>6.8</td>
<td>0.3</td>
<td>14.1</td>
</tr>
<tr>
<td>A3/1</td>
<td>55</td>
<td>M.L</td>
<td>1.01</td>
<td>488</td>
<td>6.3</td>
<td>0.2</td>
<td>16.2</td>
</tr>
<tr>
<td>A3/2</td>
<td>55</td>
<td>M.L</td>
<td>0.97</td>
<td>382</td>
<td>6.6</td>
<td>1.3</td>
<td>12.8</td>
</tr>
</tbody>
</table>

DISCRIMINANT ANALYSIS

Discriminant function analysis reveals a similarly distinct pattern. Along discriminant axis 1 there is a highly significant discrimination between ornithogonic and mineral soils irrespective of transect and soil depth (Fig. 3). Discriminant function 1 (DF 1) explains 76% of the total variance of the data set and is dominated by N-mineralization (Table 3). Because of the high eigenvalue of DF 1, N-mineralization is the most important variable in discriminating ornithogonic from mineral soils, followed by Nₘₖ and urease activity. DF 2, which is dominated by the metabolic quotient, explains 12% of the variance and is mainly responsible for the discrimination between transect A and transect B of the ornithogonic soils. Within the mineral soils there is neither a significant differentiation between transects nor between soil depths (topsoil, subsoil). DF 3 explains only 7% of the variation, and the highest correlation coefficient between the microbial variable and the canonical discriminant function is found for phosphatase activity. DF 4–7 cover the remaining 5% of the total variance of the data set and are not important for the discrimination of the data (P > 0.05).

Discriminant functions are used to classify the soils into 8 groups (ornithogonic topsoil, ornithogonic subsoil, mineral topsoil, and mineral subsoil of transect A and B, respectively). On the basis of 9 microbiological variables (microbial biomass C and N, respiration, N-mineralization, metabolic quotient, 4 enzyme activities), 100% of the ornithogonic topsoils and only 29% of the ornithogonic subsoils are correctly classified according to ornithogonic impact and transect location. Seventy-one percent of the ornithogonic subsoils are grouped into the mineral soils, and 70–75% of the mineral soils are discriminated according to transect location (A, B) and soil depth (topsoil, subsoil). On that basis soils influenced by penguin guano and seabird excreta are termed ornithogonic soils, while undisturbed sites are termed mineral soils.

ANALYSIS OF VARIANCE

The influence of penguin guano and seabird excreta on each microbial parameter is tested by univariate analysis of var-

Abbreviations: Texture: gravel (vol%)-C common 5–15; M many 15–40; A abundant 40–80; fine soil (<2 mm)—S sand (F fine, M medium, C coarse), SL sandy loam, L loam, LCS loamy clay sand, SCL sandy clay loam, SIL silt loam (FAO, 1990), TOC total organic carbon, EC electrical conductivity, BEC base exchange capacity, /1: 0–20 cm, /2: 30–55 cm).

TABLE 2

Selected soil properties at transects A and B.

38 / ARCTIC, ANTARCTIC, AND ALPINE RESEARCH
FIGURE 2. Compositional relationship among antarctic soils differing in extent of ornithogenic impact and soil depth. Dendrogram classifies the 56 sites according to their ornithogenic impact. A = transect A, B = transect B, top = topsoil, sub = subsoil, penguin = ornithogenic topsoil transect A, seabird = ornithogenic topsoil transect B.
MICROBIOLOGICAL PARAMETERS

Relationship between soil chemical and microbial data sets and soil pH, P_{cit}, and TOC distribution (Table 4), albeit explained variance is below 11%. P_{cit} is correlated only with q_{CO}, while soil pH shows no relationship to microbial variables. The results only for N_{mic}, q_{CO}, N-mineralization, and phosphatase activity in the ornithogenic soils. Differences between transects are only found for N_{mic}, N-mineralization and phosphatase activity in the ornithogenic soils. Covariance analysis reveals that the ornithogenic impact as a main factor contributes 99% to explained variance, whereas the importance of the covariates TOC, P_{cit}, and pH is small. A significant influence of the covariates is detected only for N_{mic}, q_{CO}, N-mineralization, and phosphatase activity (Table 4), albeit explained variance is below 11%.

RELATIONSHIP BETWEEN SOIL CHEMICAL AND MICROBIOLOGICAL PARAMETERS

Partial correlation analysis tests the relationship between microbial data sets and soil pH, P_{cit}, and TOC distribution (Table 5). A distinct pattern emerges: all microbial parameters, except q_{CO}, are significantly correlated with TOC, if P_{cit} and pH are controlling factors. P_{cit} is correlated only with q_{CO}, while soil pH shows no relationship to microbial variables. The results show that the microbial parameters are related to TOC, if the influence of P_{cit} and pH is considered. Otherwise, no linear relationship between chemical and microbial variables can be detected, although a quadratic model fits the data (data not shown).

SPECIFIC ENZYME ACTIVITY

Specific enzyme activity (biomass-based enzyme activity) is calculated to determine the ratio between enzyme activity and microbial biomass changes according to ornithogenic impact. Specific urease activity and specific xylanase activity are up to 2 orders of magnitude higher at the center of penguin rookeries or bird nest colonies compared to mineral soils, indicating significant ornithogenic impact by excrements (Fig. 6). Specific phosphatase activity shows a similar pattern, although the differences between the two soils are not significant due to the heterogeneity of the data. A significant difference is only detected between top- and subsoils. Specific arylsulfatase activity does not show any pattern, neither between ornithogenic and mineral nor between top- and subsoil (Fig. 6).

Discussion

MICROBIAL BIOMASS INDICATORS

Measured C_{mic} values are in the range of data for soils from continental Antarctica (Roser et al., 1993), but about 10-fold higher compared to mineral and ornithogenic soils. Groups are defined according to transect location (transect A, B), ornithogenic impact (ornithogenic, mineral soil), and soil depth (top-, subsoil). Penguin = ornithogenic topsoil transect A, $A =$ mineral topsoil transect A, $a =$ mineral subsoil transect A, seabird = ornithogenic topsoil transect B, $B =$ mineral topsoil transect B, $b =$ mineral subsoil transect B, $b^* =$ ornithogenic subsoil transect B.

Table 3

Results of discriminant analyses of the microbial variables (C_{mic}, N_{mic}, respiration, q_{CO}, N-mineralization, alkaline phosphatase, arylsulfatase, urease, and xylanase activity) from soils of transect A and B with two levels of ornithogenic impact.

<table>
<thead>
<tr>
<th>Discriminant Function Analyses</th>
<th>DF 1</th>
<th>DF 2</th>
<th>DF 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks' lambda</td>
<td>0.12</td>
<td>0.13</td>
<td>0.31</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>9.26</td>
<td>1.50</td>
<td>0.79</td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>63</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>Cumulative variance %</td>
<td>76</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>Canonical correlation coefficient</td>
<td>0.95</td>
<td>0.76</td>
<td>0.66</td>
</tr>
</tbody>
</table>

- a Significance in the model $P < 0.05$.
- b Denotes pooled within-group correlation between the discriminating variables and the canonical discriminant functions.

Table 4

Results of analyses of variance (Student-Newman-Keuls-test) using the ornithogenic impact as main factor and P_{cit}, TOC, and pH as covariates. Given are F-values and significance of difference between mineral and ornithogenic soils and of covariates.

<table>
<thead>
<tr>
<th>Analysis of variance</th>
<th>Main Factor: Ornithogenic Impact</th>
<th>Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_{cit}</td>
<td>TOC</td>
</tr>
<tr>
<td>C_{mic}</td>
<td>5.74***</td>
<td>1.72</td>
</tr>
<tr>
<td>N_{mic}</td>
<td>10.42**</td>
<td><0.01</td>
</tr>
<tr>
<td>C_{mic}</td>
<td>10.16***</td>
<td>0.02</td>
</tr>
<tr>
<td>TBN</td>
<td>6.60**</td>
<td>1.70</td>
</tr>
<tr>
<td>Respiration</td>
<td>2.63*</td>
<td>1.84</td>
</tr>
<tr>
<td>q_{CO}</td>
<td>6.53***</td>
<td>7.00*</td>
</tr>
<tr>
<td>N-mineralization</td>
<td>10.86***</td>
<td>2.24</td>
</tr>
<tr>
<td>Urease</td>
<td>7.64***</td>
<td>1.05</td>
</tr>
<tr>
<td>Phosphatase</td>
<td>9.30***</td>
<td>0.23</td>
</tr>
<tr>
<td>Xylanase</td>
<td>4.38***</td>
<td>2.25</td>
</tr>
<tr>
<td>Arylsulfatase</td>
<td>5.28***</td>
<td>1.50</td>
</tr>
</tbody>
</table>

* Level of significance $P \leq 0.05$ ($^{***} P < 0.001$, $^{*} P < 0.01$, $^{*} P \leq 0.05$).
FIGURE 4. Total microbial biomass (C_{mic}, N_{mic}), bacterial biomass (C_{bac}), and bacterial numbers (TBN) at different distances from the glacier along (a) transect A, and (b) transect B. Arrow indicates the distance at which ornithogenic soils begin.
FIGURE 5. Microbial respiration, metabolic quotient, and N-mineralization at different distances from the glacier along (a) transect A and (b) transect B. Arrow indicates the distance at which ornithogenic soils begin.
FIGURE 6. Specific enzyme activities (urease/C\textsubscript{mic}, phosphatase/C\textsubscript{mic}, arylsulfatase/C\textsubscript{mic}, xylanase/C\textsubscript{mic}) at different distances from the glacier along (a) transect A and (b) transect B. Arrow indicates the distance at which ornithogenic soils begin.
lower than levels normally observed in temperate soils (cf., Tabatabai and Bremer, 1969; von Mersi et al., 1992). However, other observations of TBN and Cmic in maritime (Tearle, 1987; Böltzer, 1995; Böltzer et al., 1997) and continental Antarctica (Ramsay and Stannard, 1986; Böltzer, 1992, 1993) show quantities about 2 orders of magnitude larger (10^9–10^{10} \text{g}^{-1}) than those found in the study area. Our results show that the quantity of microbial biomass (Cmic, Nmic, Cbac, TBN) in Antarctic soil is primarily controlled by ornithogenic impact. Penguin guano and seabird excretions boost microbial biomass up to 2 orders of magnitude. Co-factors such as TOC, pH, and P_{citr} were less significant, only Nmic and Cbac being significantly influenced by soil pH. This could indicate a shift in the microbial community from a more bacterial- to a more fungal-dominated community with decreasing pH along the transects. The observed pattern of Cmic is consistent with that in Roser et al. (1993), who record Cmic (SIR) values between 54 \mu g C_{mic} g^{-1} (control sites) and 6700 \mu g C_{mic} g^{-1} (active penguin site) in continental Antarctica. Also, the TBN and Cbac results are similar to those reported in previous studies of continental Antarctica (Roser et al., 1993; Tibbles and Harris, 1996), which shows that ornithogenic soils possess more Cmic, Cbac, and TBN than sites distant from penguin colonies. The 2 to 3 orders of magnitude higher microbial biomass (C_{mic}, N_{mic}, C_{bac}, and TBN) in the ornithogenic soils of both transects can be explained by the positive influence of TOC (from vegetation cover and bird excretions). Accordingly, these parameters are closely correlated, if the influence of \text{P}_{citr} and pH is considered (Table 5) through the beneficial effect of high TOC versus the inhibitory effect of high \text{P}_{citr} and low pH levels does not allow microbial biomass to increase constantly. It seems likely that along transect \text{A} C_{mic}, N_{mic}, C_{bac}, and TBN are negatively affected by \text{P}_{citr} levels of >9000 mg kg^{-1} (A15), compared to sites where \text{P}_{citr} contents are below 3000 mg kg^{-1} (A13, A14). Within the ornithogenic soils of transect \text{B}, \text{P}_{citr} concentrations of >700 mg kg^{-1} (B9, B11, B12) reduce C_{mic}, N_{mic}, C_{bac}, and TBN. These results contradict those of Ramsay and Stannard (1986), who report higher TBN levels in active versus abandoned guano colony sites at Cape Bird, Ross Island. Similar observations on microbial biomass have been reported at Windmill Islands in continental Antarctica (Roser et al., 1993). The authors of both studies, however, do not explicitly relate their results to the \text{P}_{citr} content of the soil. The present study suggests that ornithogenic excrements favor microbial biomass by input of substrate and nutrients, until accumulating \text{P}_{citr} becomes inhibitory on microbial growth.

RESPIRATION AND METABOLIC QUOTIENT (q\text{CO}_2)

While respiration is generally in the low range, q\text{CO}_2 is as much as 10-fold higher than normally reported for temperate soils (Insam and Haselwandter, 1989; Insam and Öhlinger, 1995). Guano and seabird excrements significantly affected the respiratory activity by substrate input, raising respiration up to 5-fold. The favoring effect can be related to the increase of TOC (Table 5), which is mineralized by microorganisms. These observations are in line with Orchard and Corderoy (1983), who report the highest microbial activity in fresh guano samples compared to abandoned rookery sites at Ross Island, continental Antarctica. As the q\text{CO}_2 is an indirect measure of a microbial community’s energetic efficiency, the reported levels indicate a low metabolic efficiency of microorganisms in using organic substrates. The high q\text{CO}_2 at low TOC levels in the Antarctic soils indicates a rapid turnover of organic compounds (Böltzer, 1992). Differences in q\text{CO}_2 between mineral and ornithogenic sites can be explained by bird impact, TOC and \text{P}_{citr} (Table 4). The q\text{CO}_2 of the ornithogenic soils is lower, suggesting more favorable conditions for incorporating nutrients into the cell and/or a higher proportion of dormant microbial biomass (Ohtonen et al., 1999). The q\text{CO}_2 is negatively related to \text{P}_{citr} (Table 5), indicating a higher energetic efficiency with increasing \text{P}_{citr} values. Our results show that turnover rates of organic matter are high, but efficiency of the microbial turnover is low.

N-MINERALIZATION

The low rates of N-mineralization in the mineral versus temperate soils (Öhlinger, 1993; Kandel et al., 1999a) indicate a severe deficiency of degradable organic N-compounds, evident in the low TOC levels (<2 mg g^{-1}). Accordingly, a significant correlation between TOC and N-mineralization is detected (Table 5). Within the ornithogenic sites, organic matter input (high in TOC, N, and P) by penguins and seabirds favors N-mineralization up to 25-fold rates, which correspond to levels in temperate soils (Öhlinger, 1993; Kandel et al., 1999a). Highest N-mineralization rates are found at ornithogenic sites (A14, B10) high in TOC (>7 mg kg^{-1}) but relatively low in \text{P}_{citr} (<700 mg kg^{-1}). However, levels of >9000 mg \text{P}_{citr} kg^{-1} (transsect A) and >1000 mg \text{P}_{citr} kg^{-1} (transsect B) apparently inhibit N-mineralization independently of TOC. N-mineralization turned out to be the main factor for discrimination between ornithogenic and mineral soils (Fig. 3). One explanation is that actual mineralization rates are directly influenced by recent input of organic material.

SOIL ENZYMES

Along both transects, a striking feature is the high enzyme activity near recent penguin rookeries (A13–A15) and seabird colonies (B9–B12). For the specific enzyme activities, however, this pattern is only pronounced for penguin sites along transect A, which have thick guano layers, while in samples from transect B, these activities show weak ornithogenic impact (B9–B12), indicating less input of facelly derived enzymes by seabirds.

Urease activity rates are at least 1 order of magnitude lower compared to temperate soils (Kandel et al., 1994; Kandel et al., 1999a).
As phosphatases are involved in cycling of organic P-compounds, activity rates are substantially affected by ornithogenic excrements. Alkaline phosphatase exhibits 2 orders of magnitude greater activity in the ornithogenic versus mineral soils. The different activities are explained mainly by ornithogenic impact (e.g., organic P input), and secondly by the soil pH (Table 4). These results are corroborated by Pietr et al. (1983) and Speir and Ross (1984), who report organic P inputs near and on penguin sites. Similar patterns are reported for soils in continental Antarctica (Speir and Ross, 1984). Beyond ornithogenic impact, TOC influences phosphatase activity (Table 5). The mineralization of soil organic phosphorus is therefore intimately associated with the mineralization of organic matter as a whole. Specific phosphatase activity also responds to ornithogenic impact. Highest specific activities are measured in the center of the rookery, followed by the sites 20 cm and 200 cm away. No impact of bird excrement on phosphatase is detected at transect B (Fig. 6). In contrast to urease and xylanase activity, which are relatively high, alkaline phosphatase activity is generally in the low range compared to temperate soils. As phosphatases are inducible enzymes that are produced largely under conditions of low phosphorus availability and strongly inhibited by inorganic phosphates (Speir and Ross, 1978), high P_{org} concentration may have limited phosphatase activity in the ornithogenic soils.

Arylsulfatase activity in the antarctic soil is at least 2 orders of magnitude lower than in temperate soils (Fig. 6). This activity is promoted by penguin guano and seabird excrements, showing 2-fold higher values at ornithogenic versus mineral sites. As arylsulfatase is crucial in mineralizing organic matter, it can be related to TOC concentrations (Table 5) (Speir and Ross, 1978). Arylsulfatase activity is detectable in most of the samples, but reflects TOC contents of the soil. At penguin sites, urease is probably derived from microbes and penguin guano, whereas the activity of urease per unit microbial biomass is not promoted by seabird excrements.

As phosphatases are involved in cycling of organic P-compounds, activity rates are substantially affected by ornithogenic excrements. Alkaline phosphatase exhibits 2 orders of magnitude greater activity in the ornithogenic versus mineral soils. The different activities are explained mainly by ornithogenic impact (e.g., organic P input), and secondly by the soil pH (Table 4). These results are corroborated by Pietr et al. (1983) and Speir and Ross (1984), who report organic P inputs near and on penguin sites. Similar patterns are reported for soils in continental Antarctica (Speir and Ross, 1984). Beyond ornithogenic impact, TOC influences phosphatase activity (Table 5). The mineralization of soil organic phosphorus is therefore intimately associated with the mineralization of organic matter as a whole. Specific phosphatase activity also responds to ornithogenic impact. Highest specific activities are measured in the center of the rookery, followed by the sites 20 cm and 200 cm away. No impact of bird excrement on phosphatase is detected at transect B (Fig. 6). In contrast to urease and xylanase activity, which are relatively high, alkaline phosphatase activity is generally in the low range compared to temperate soils. As phosphatases are inducible enzymes that are produced largely under conditions of low phosphorus availability and strongly inhibited by inorganic phosphates (Speir and Ross, 1978), high P_{org} concentration may have limited phosphatase activity in the ornithogenic soils.

Arylsulfatase activity in the antarctic soil is at least 2 orders of magnitude lower than in temperate soils (Fig. 6). This activity is promoted by penguin guano and seabird excrements, showing 2-fold higher values at ornithogenic versus mineral sites. As arylsulfatase is crucial in mineralizing organic matter, it can be related to TOC concentrations (Table 5) (Speir and Ross, 1978). Arylsulfatase activity is detectable in most of the samples, but values are remarkably low. As inorganic phosphorus inhibits sulfatases (Dixon and Webb, 1979), the high P_{org} concentrations probably reduced arylsulfatase activity here. Additionally, inorganic S-compounds from excrement may inhibit arylsulfatase activity (Speir and Ross, 1984). Specific arylsulfatase activity shows no response to penguin and seabird impact, indicating no stimulation of arylsulfatase activity by fecal material (Fig. 6).

Xylanases play a role in the biological cycling of carbon and thus respond to organic C addition into the soil (Kiss et al., 1978). At a threshold of 5 mg TOC g$^{-1}$, soil xylanase activity approaches levels usually reported for temperate soils (Zeichmeister-Boltenstern et al., 1991; Kandeler and Eder, 1993). Penguin and seabirds had a substantial effect on xylanase activity. The rates are about 25-fold higher in ornithogenic versus mineral soils, reflecting organic C input by fecal material. A corresponding relationship exists between xylanase activity and TOC (Table 5). The high specific xylanase activity in the center of the penguin rookery at transect A can also be attributed to the input of organic C compounds by excrements. At transect B, specific xylanase activity responds to the TOC distribution (Fig. 6). As xylanase production is widely reported for fungi (Fenice et al., 1997), the low activity levels in the mineral soils may reflect the minor contribution of fungi to the microbial community. In contrast, Rustemeier (2001) reports 2- to 3-fold higher activity rates at comparable sites in the Alps. Bacteria, algae, and cyanobacteria are the most abundant organisms in antarctic soils (Böltler, 1992; Roser et al., 1993). Thus, the low numbers of fungi might be caused by the inhibitory effect of antifungal agents produced by bacteria (Czekanowska and Zabawski, 1988; Pietr, 1995).

Our data suggest that penguin guano and bird excrement enhance the amount of enzymes in the soil. Activities of the mineral soil are 1 (urease, xylanase) and 2 orders of magnitude (phosphatase, arylsulfatase) lower than those normally found in topsoils of temperate regions (Kandeler et al., 1996; Ajwa et al., 1999; Klose et al., 1999; Senwo and Tabatabai, 1999). The input of organic material by vegetation and birds raises enzyme activities (urease, phosphatase and xylanase) to levels of those in temperate soils (Kandeler and Eder, 1993; Beyer et al., 1999b; Kandeler et al., 1999b). The very high biomass-based specific enzyme activities of urease and phosphatase indicate that ornithogenic soils from presently occupied penguin rookeries exhibit high levels of enzyme activities; this is probably not only soil microbiobally derived, but also from enzymes in faecal material. Pietr et al. (1983) and Speir and Ross (1994) have reported similar patterns for protease and acid phosphatase, strengthening the hypothesis that mineralization of organic compounds in the soil is supported by activities of enzymes derived from penguin intestines.

Conclusions and Perspectives for Future Research

This study is the first to report soil microbial biomass and enzyme activities in combination with soil ecological parameters in the terrestrial ecosystem of maritime Antarctica. Because of the fairly weak pedogenesis with respect to humus accumulation and nutrient release from chemical weathering, the level of most microbiological indicators is extremely low, except in the ornithogenic soils. The multivariate approach of discriminant analysis, based on nine microbiological variables, is a powerful tool in identifying the ornithogenic impact on antarctic soils. The present study also suggests that P levels above 1000 mg kg$^{-1}$ inhibit microbial growth in maritime Antarctica. In temperate climates the qCO$_2$ has been used as an indicator of soil disturbance or stress impact. Little, however, is known about its suitability in cold climate regions. We conclude that the impact of penguin guano varies with soil microbial properties. Microbial biomass, respiration, and N-mineralization are stimulated by organic matter input along transect B, whereas high P-inputs at transect A restricted microbial growth. We show that enzymes are present in antarctic soils, and that high levels of biomass-based specific enzyme activity in the ornithogenic versus mineral soils result from continuous input of large quantities of enzyme-rich guano excreta. The potential stabilization processes of these enzymes and their interactions with environmental factors (e.g., water, TOC, acidity, phosphorus) should be determined in order to gain a better understanding of enzyme-related processes in ornithogenic soils.

Acknowledgments

We thank E. Kohlmann, D. Busch, and H. Peisser for technical assistance in the laboratory analyses. The help of M. Sta-
chowitsch in editing the text and S. Rudolph in editing the figures is cordially acknowledged. Funding for this research has been provided by the Austrian Federal Ministry of Agriculture and Forestry. The field research was funded by the Grant Agency of the Czech Republic (Grant No. 05/94/0156). We are grateful to P. Prosek; J. Komarek for organizing the Czech field campaign 1995–1996; and S. Rakusa-Suszczewski and members of the 26th Polish Antarctic Expedition, who helped with logistics and advice.

References Cited

Kuhn, D., 1997: Genese, Ökologie und Soziologie einer Bodengesellschaft in einem Periglazialgebiet der King-George-In-

Ms submitted December 2000
Revised ms submitted January 2002