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Abstract

Terminus fluctuations of five glaciers and the correspondence of these fluctuations to

temperature and precipitation patterns were assessed at Oregon’s Mount Hood over the

period 1901–2001. Historical photographs, descriptions, and climate data, combined with

contemporary GPS measurements and GIS analysis, revealed that each glacier experienced

overall retreat, ranging from �62 m at the Newton Clark Glacier to �1102 m at the Ladd

Glacier. Within this overall trend, Mount Hood’s glaciers experienced two periods each

of retreat and advance. Glaciers retreated between 1901 and 1946 in response to rising

temperatures and declining precipitation. A mid-century cool, wet period led to glacier

advances. Glaciers retreated from the late 1970s to the mid-1990s as a result of rising

temperatures and generally declining precipitation. High precipitation in the late 1990s

caused slight advances in 2000 and 2001. The general correspondence of Mount Hood’s

glacier terminus fluctuations with glaciers in Washington and Oregon suggests that

regional, decadal-scale weather and climate events, driven by the Pacific Decadal

Oscillation, play a key role in shaping atmosphere-cryosphere interactions in Pacific

Northwest mountains. Deviations from the general glacier fluctuation pattern may arise

from local differences in glacier aspect, altitude, size, and steepness as well as volcanic

and geothermal activity, topography, and debris cover.

Introduction

Glaciers thicken and advance when accumulation (e.g., snowfall

and avalanches) exceeds ablation (e.g., snowmelt and calving);

conversely, glaciers thin and retreat under negative mass balance

conditions. The termini of small alpine glaciers are especially sensitive

indicators of climate change (Menzies, 2002). Ablation season

temperature changes of as little as 0.58C or accumulation season

precipitation changes of 10% may be sufficient to alter glacier mass

balance (Tangborn, 1980) and ultimately shift termini. Measurable

alpine glacier size changes may occur in as few as 1–5 years (Burbank,

1982) to a more decadal scale (Johannesson, 1989; Pelto and Hedlund,

2001; Kovanen, 2003) following climate forcing (Burbank, 1982).

Glacier termini measurements have long been used to assess glacier

response to climate (Nesje and Dahl, 2000). While lacking the

accuracy of mass balance determinations, termini measurements

provide a spatially and temporally comparable and economical way

to assess glacier-climate relationships (Harper, 1993). Alpine glacier

termini may thus be important tools for determining the direction,

frequency, and magnitude of past climate change.

North America’s Pacific Northwest glaciers have generally

receded during the past century, a period characterized by a region-

wide temperature rise of ;0.88C and precipitation increase of ap-

proximately 7 cm (JISAO/SMA Climate Impacts Group, 1999). Most

such glacier change has been attributed to climate fluctuations; how-

ever, glacier aspect, altitude, size, and steepness as well as volcanic and

geothermal activity, accumulation area, topography, and debris cover

can complicate a direct response to climate forcing.

Glaciers on Oregon’s Mount Hood (Fig. 1) have been studied

since the late 19th century when Hague (1871) recorded the character

and extent of the White River, Sandy, and Reid glaciers. Reid (1905,

1906) described the Coe, Eliot, Ladd, Newton Clark, and White River

glacier termini in 1901. His termini photographs are a remarkable

baseline for 20th century glacier studies at Mount Hood. Gannett

(1903) and Sylvester (1908a) further described Mount Hood’s early

20th century glaciers. The Mazamas, a Portland, Oregon-based moun-

taineering organization, began measurements from fixed points to the

termini of the Eliot, Ladd, and Coe glaciers in the 1920s (Mazamas

Research Committee, 1925, 1927, 1928), and the White River and

Newton Clark glaciers in the 1930s (Phillips, 1935). Termini measure-

ments continued until 1946 (Phillips, 1946). The Mazamas Research

Committee (MRC) also contracted for oblique aerial photographs of

Mount Hood’s glaciers in 1935, 1938, 1946 and 1956 (Mazamas

Research Committee, 1935, 1938, 1946, 1956). Ice volume mapping

(Driedger and Kennard, 1986), cross-section and mass balance mea-

surements (Mason, 1954, 1955, 1957; Handewith, 1959; Dodge, 1964,

1971, 1987), superglacial debris analysis (Lundstrom, 1992, 1993), and

moraine mapping and dating (Lawrence, 1948; Lillquist, 1988) have

shed further light on Mount Hood’s post-Pleistocene glaciers.

This paper addresses two questions: (1) how did Coe, Eliot, Ladd,

Newton Clark, and White River glacier termini fluctuate between 1901

and 2001; and (2) how did these fluctuations correspond to Mount

Hood’s temperature and precipitation patterns?

Study Area

Mount Hood, at 3426 m, is the highest summit in Oregon and the

fourth highest mountain in the Cascade Range. Quaternary andesite

and dacite lavas and interbedded pyroclastic debris compose this

stratovolcano (Wise, 1969; White, 1980). Collapsing lava domes

formed pyroclastic flows on Mount Hood’s south flanks, ash plumes

that drifted downwind, and lahars that extended far down valleys

radiating from the mountain (Crandell, 1980; Cameron and Pringle,

1986, 1987). Crater Rock (Fig. 1) has been the focus of historic

geothermal and minor eruptive activity (Sylvester, 1908a; Phillips and

Collins, 1935).

Mount Hood’s mid-latitude location atop the north-trending

Cascade Range, approximately 160 km inland of the Pacific Ocean

and the Coast Range, plays a strong role in its climate patterns.

Temperatures are generally lower and precipitation is typically higher
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at the mountain than in adjacent lowlands. Eastward-moving mid-

latitude cyclones bring more precipitation to west-facing slopes than

east-facing slopes. Pacific Northwest (PNW) summers are generally dry

because of the influence of the North Pacific High, while winters are

generally wet because of the influence of the Aleutian Low (Walters

and Meier, 1989). Deviations from ‘‘normal’’ climatic conditions result

from changing intensities in the pressure systems (Miller et al., 2004)

associated with the coupled atmosphere/ocean system (e.g., Arctic

Oscillation—Thompson and Wallace, 1998; El Nino/Southern Oscil-

lation (ENSO)—Walters and Meier, 1989; Pacific Decadal Oscillation

(PDO)—Mantua et al., 1997; and Pacific North America pattern—

Wallace and Gutzler, 1981). During 1971–2000, Government Camp

(1213 m elevation) (Fig. 1) averaged 68C temperature and 225 cm

precipitation annually with January averages of �18C and 33 cm and

August averages of 148C and 4 cm. Annual snowfall over this same

period averaged 643 cm (Oregon Climate Service, 2004).

Eleven glaciers cloak Mount Hood (Fig. 1; Table 1). Late

Pleistocene glaciers terminated at approximately 800 m on the West

and Middle Forks Hood River (Glisan, Ladd, and Coe), 1200 m on East

Fork Hood River (Eliot and Newton Clark), 1050 m on Polallie Creek,

1150 m on White River (White River), 1100 m on Salmon River, and

730 m on Sandy River (Zig Zag, Reid, and Sandy) (William Scott,

written communication, 11 August 2004). During the early 1980s, Eliot

Glacier (Fig. 1) was the thickest and most voluminous but Newton

Clark Glacier covered the greatest area (Driedger and Kennard, 1986)

(Table 1). With a total glacier surface area of 13.5 km2 and a volume of

0.4 km3, Mount Hood ranked fifth in glacier cover in the Cascade

Range (Driedger and Kennard, 1986; Kennard and Driedger, 1987;

Carolyn Driedger, written communication, 16 December 2003).

Methods

GLACIER DATA

We assessed historical changes in Mount Hood’s glacier termini

with repeat ground and aerial photographs, historical written

FIGURE 1. Mount Hood, Ore-
gon. Glacier outlines generalized
from Mount Hood National For-
est, U.S. Department of Agricul-
ture–Forest Service airphotos
(Project ID: 616060D), Septem-
ber 1989.
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descriptions, historical field surveys, and global positioning system

(GPS) surveys. These data were then compiled in a geographic

information system (GIS). Ground photographs taken by Reid at Coe,

Eliot, and Newton Clark glaciers in 1901 (photographs on file at the

Mazamas office), Langille at White River Glacier in 1902 (Langille

et al., 1903), and Richards at Ladd Glacier in 1932 (Richards, 1932)

provided benchmarks for each of the five glaciers. Photographs taken

from essentially the same photo points in summer 2001 allowed us to

visually compare glacier change during the past century.

United States Forest Service (USFS) 1:12,000–1:20,000-scale

vertical airphotos from 1946, 1959, 1967, 1972/1973, 1979, 1982,

1989, and 1995, and 1-m-resolution 1994 and 2000 USFS orthophotos

were used with select GPS measurements (Coe and Eliot glaciers) to

quantify 1946–2001 glacier terminus changes. Airphotos were scanned

and georectified to the 1994 digital orthophotos using ERDAS� soft-

ware. Each terminus was digitized on the georectified airphotos and

orthophotos using ArcGIS� software following the Mazamas’ criteria

for identifying glacier termini—i.e., ‘‘the point at which a glacial

stream emerges’’ (Phillips, 1935). Active glacier termini were dif-

ferentiated from stagnant, debris-covered ice by: (1) an identifiable

glacier front; (2) a lobate planimetric form; and (3) a visible connection

of the lobate form to a debris-free glacier upslope. Lateral moraine-

parallel distances of terminus advance or retreat were subsequently

determined using ArcGIS� by plotting the locations of the heads

of main outflow streams at successive time periods. We estimate our

measurement and mapping error to be approximately 12 m based on

the U.S. Geological Survey lowland vertical mapping standard of one-

half the contour interval of the map (U.S. Geological Survey, n.d.)

and the likelihood that such errors are greater in mountainous areas.

In connecting dating from the post-1946 airphotos, orthophotos,

and GPS measurements to the pre-1947 Mazamas surveys, photo-

graphs, and historical descriptions, we assumed that the glacier termini

shown on the 9 September 1946 vertical airphotos were in essentially

the same positions as those measured by the Mazamas in late August

and late September 1946. Mazamas survey measurements and

estimates (Phillips, 1935, 1938, 1946) were used to back-calculate

from 1946 to the 1930s (all glaciers), 1920s (Coe, Eliot, and Ladd), and

1902/1901 (Eliot, Newton Clark, and White River). We estimated the

1901 locations of Coe and Ladd termini based on Reid’s descriptions

and photograph. Unfortunately, the small scales and large contour

intervals of early topographic maps (Langille et al., 1903; U.S.

Geological Survey, 1913) precluded their use in this study.

CLIMATE DATA

The climatic foundation for assessing glacier-climate relationships

came from the 103-Year High-Resolution Climate Data Set for the

Conterminous United States (see ftp://ftp.ncdc.noaa.gov/pub/data/

prism100) gridded, GIS PRISM dataset created by the Oregon Spatial

Climate Analysis Service (OSCAS). Four additional years of OSCAS

data extended the data set from 1895 to 2001. One 2.59 latitude 3 2.59

longitude (approximately 4 km 3 4 km) data cell centered on Mount

Hood’s summit was used to represent the climate at each of the five

glaciers. Data were divided into a 1 October–30 April accumulation

season and 1 May–30 September ablation season following Tangborn

(1980) in a water year (WY) format. Five-year running average (RA)

temperature and precipitation were calculated for each season to

identify trends and to compare with glacier termini variation (Burbank,

1982). Historical climate and glacier change literature was used to

assess regional patterns of climate and glacier fluctuations and the

causes of the temperature and precipitation patterns.

GLACIER-CLIMATE CORRELATION

A variety of statistical techniques were used to assess the linkage

between Mount Hood’s glaciers and climate. We used Spearman’s rank

correlation to identify significant correlations among Mount Hood’s

cumulative glacier terminus fluctuation records. Spearman’s rank

correlations, multiple regression, and cross correlation were used to

assess the relationship between glacier terminus fluctuations and the

five-year RA climate data (i.e., accumulation and ablation season

temperature and precipitation). In the glacier-climate analysis, we

attempted to correlate the actual (e.g., 1946 and 1959) glacier mea-

surements with climate data averaged over the same period (e.g.,

1947–1959). All statistical analyses were accomplished using Quattro�

and Statistix� software.

Results

HISTORICAL GLACIER TERMINUS FLUCTUATIONS

The termini of Coe, Eliot, Ladd, Newton Clark, and White River

glaciers all receded between 1901 and 2001; however, magnitude,

timing, and rate of glacier terminus change varied considerably among

these glaciers.

TABLE 1

Selected physical characteristics of Mount Hood’s glaciers.

Glacier Typea Aspectb
Upper

elevationc (m)

Lower

elevationd (m) Lengthe (m)

Overall

slopef (%) Areag (km2)

Maximum

thicknessh (m) Volumei (km3)

Debris

coverj

Coe Cirque N 3261 1811 3322 43.7 1.25 91 0.0532 High

Eliot Cirque NE 3139 1922 3566 34.1 1.68 122 0.0896 High

Ladd Cirque NW 2896 2115 1800 43.3 0.90 91 0.0252 Low

Newton Clark Icefield SE 3048 2438 1250 48.8 1.99 76 0.0392 Low

White River Cirque S 3048 2221 2073 39.9 0.54 46 0.0084 Medium

a Data source (this study).
b Data source (this study).
c Data source (this study with 2000 U.S. Forest Service [USFS] orthophotos).
d Data source (this study with 2000 USFS orthophotos).
e Data source (this study with 2000 USFS orthophoto).
f Data source (this study).
g Data source (Driedger and Kennard, 1986).
h Data source (Driedger and Kennard, 1986).
i Data source (Driedger and Kennard, 1986).
j Refers to terminus. Data source (this study with 1995 USFS airphotos).
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Coe Glacier

Coe Glacier originates in a cirque immediately north of Mount

Hood’s summit and extends ;3.3 km to the north (Figs. 1 and 2A;

Table 1). Reid’s photograph from the right lateral moraine (Fig. 2B)

shows that the debris-covered terminus extended nearly to the top of

the prominent Little Ice Age (LIA) lateral moraines (Lillquist, 1988)

and downvalley to a point where the lateral moraine crests dip steeply

to the north. Boulders painted near the terminus during the initial

MRC survey (Mazamas Research Committee, 1928) are located 82 m

upvalley of the 1901 terminus. Mazamas Research Committee mea-

surements reveal 37 m of retreat between 1928 and 1938 (Phillips,

1938) and 58 m of recession between 1938 and 1946 (Phillips, 1946)

(Table 2). Advance was noted in only one year, 1935, of the MRC

measurements. Coe Glacier rapidly receded 295 m between 1946 and

1959 to its most upvalley position in the past century. A thickening

of the upper profile of the glacier (Handewith, 1959) (i.e., kinematic

FIGURE 2. Coe Glacier: (A) termini changes, 1901–2001; (B) view upglacier and south along right lateral Little Ice Age moraine,
24 July 1901 (H. F. Reid in Williams, 1912); and (C) same view and photo point on 20 August 2001. See photo point on Figure 2A.
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wave) resulted in a terminus advance of 104 m by 1967. This advance

continued through 1972. Although the terminal position over the past

30 years has oscillated, it showed a net retreat of 94 m. As of summer

2001, Coe Glacier’s ice front was still 64 m downvalley of the 1959

terminus. The net 1901–2001 change in the terminus was �408 m,

a 12% loss in glacier length, as dramatically illustrated by the 1901

and 2001 photographs (Figs. 2B and 2C).

Eliot Glacier

Eliot Glacier originates in a cirque immediately northeast of

Mount Hood’s summit and extends about 3.5 km to the northeast (Fig.

1 and 3A; Table 1). In summer 1901, the glacier terminated in the deep

canyon of Eliot Branch (Reid, 1905) (Fig. 3B) and extended nearly

to the top of the prominent, bounding LIA moraines (Lawrence, 1948;

Lundstrom, 1992). The MRC measured 88 m of terminus recession

between 1901 and 1925, 42 m of recession between 1925 and 1938,

(Phillips, 1938), and 51 m of recession between 1938 and 1946

(Phillips, 1946) (Fig. 3; Table 2). During the 1925–1946 period,

advance occurred only in 1932 and 1933 (Phillips, 1938). Significant

recession continued through at least 1959 despite a thickening in an

upper profile noted by Handewith (1959) and Dodge (1964). The

thickening resulted in 79 m of terminus advance between 1967 and

1972. Eliot Glacier retreated 609 m between 1979 and 2000 with 378

m of that retreat occurring between 1995 and 2000 when the lower

portion of Eliot Glacier downwasted sufficiently that its terminus was

only identifiable as an ice-cored moraine. Eliot Glacier’s summer 2000

terminus was at its farthest upvalley position in the past century;

however, the summer 2001 terminus had advanced 18 m downvalley.

Eliot Glacier had a net 1901–2001 change of �775 m, representing

a 22% loss in total length, as illustrated by the recession from the

lower trough during the past century (Figs. 3B and 3C).

Ladd Glacier

Ladd Glacier originates with Coe Glacier in a cirque northwest

of the summit and extends 1.8 km to the northwest (Figs. 1 and 4A;

Table 1). Snow cover prevented Reid (1905) from photographing

the summer 1901 terminus; however, his description allowed us to

estimate that the 1901 glacier terminated ;70 m downvalley of the

1927 snout (Fig. 4A; Table 2). Only 3 m of recession were recorded

by MRC surveys between 1927 and 1936 (Phillips, 1938). Mazamas

Research Committee measurements show that Ladd Glacier receded

40 m from 1936–1946 (Phillips, 1946). The terminus receded an

additional 111 m between 1946 and 1967. Snow cover prevented the

identification of the 1959 terminus. However, a 1956 oblique airphoto

(Mazamas Research Committee, 1956) revealed little recession

between 1946 and 1956, thus it is likely that the majority of the 111

m of recession occurred between 1956 and 1967. A brief, minor

advance between 1967 and 1973 preceded the 1973–1989 retreat of

992 m. Unlike the Eliot Glacier’s extensive retreat, the majority of this

major recession occurred between 1984 and 1989, leaving the former

terminus as ice-cored ground and lateral moraine, and the active

terminus at the top of an icefall. The 1989 terminus was at its farthest

upvalley point of the past century; however, Ladd Glacier advanced

100 m from 1989–2000. Despite the recent advance, the net 1901–

2000 change in Ladd Glacier terminus was �1102 m, a 61% loss in

length. These values are the highest of any of the five glaciers ana-

lyzed (Figs. 4B and 4C).

Newton Clark Glacier

Newton Clark Glacier extends approximately 1.2 km east of

Mount Hood’s summit (Figs. 1 and 5A; Table 1). It differs from the

TABLE 2

Measured changes in Mount Hood’s glacier termini at select intervals over the period 1901–2001.

1901 1928a 1938b 1946c 1959d 1967e 1972f 1979g 1984h 1989i 1995j 2000k 2001l Total

Coe 0 �82 �37 �58 �295 104 54 �20 4 �28 �15 �39 4 �408

Eliot 0 �88 �42 �51 �102 20 79 �80 �48 �63 �40 �378 18 �775

Ladd 0 �72 �3 �40 �111 16 �39 �31 �922 84 16 �1102

Newton Clark 0 �150 �111 180 37 �127 154 69 �18 �253 157 �62

White River 0 �561 27 272 �258 22 141 �141 22 �100 �41 �617

a Mazamas measurements began on Coe Glacier in 1928, Eliot in 1925, and Ladd in 1927. Neither Newton Clark nor White River glaciers were measured in the 1920s.

Data sources for Coe and Ladd (this study) and Eliot (Phillips, 1938).
b Mazamas terminus measurements occurred at Coe and Eliot glaciers in 1938, Ladd and White River glaciers in 1936, and Newton Clark Glacier in 1937. Data source

(Phillips, 1938).
c Data sources for Coe, Eliot, and Ladd (Phillips, 1946; this study with 1946 airphotos), and Newton Clark and White River (this study with 1946 airphotos).
d The snow-covered terminus of Ladd Glacier in 1959 prevented measurement from airphotos. Data sources for other glaciers (this study with 1959 airphotos).
e Data sources (this study with 1967 airphotos).
f Data sources for Coe, Eliot, Newton Clark, and White River glaciers (this study with 1972 airphotos). Data source for Ladd Glacier (this study with 1973 airphotos).
g Data sources for all glaciers (this study with 1979 airphotos).
h Data sources (this study with 1984 airphotos).
i Data sources (this study with 1989 airphotos).
j Data sources (this study with 1995 airphotos).
k Data sources (this study with 2000 airphotos).
l Only the termini of Coe and Eliot were measured in 2001. Data source (this study with GPS data).

TABLE 3

Spearman rank correlations and associated significance (P)
values of cumulative terminus changes, Mount Hood’s glaciers,

1901–2000.

Coe Eliot Ladd Newton Clark

Eliot 0.8833

P-value 0.0029

Ladd 0.7833 0.9333

P-value 0.0156 0.0003

Newton Clark �0.2000 �0.3333 �0.4333

P-value 0.6126 0.3848 0.2489

White River 0.2594 0.1590 �0.0753 0.5858

P-value 0.4927 0.6764 0.8438 0.0958
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other glaciers analyzed in that it comprises a broad icefield constrained

by Cooper Spur to the north and Steel Cliff to the west (Fig. 1), and it

had termini at the heads of Cold Spring, Newton, and Clark creeks.

We measured the Newton Creek terminus because it was the focus of

previous glacier observations and measurements. Reid’s 1901 pho-

tograph (Fig. 5B) (Phillips, 1935) reveals the glacier draped over the

edge of a prominent cliff. Mazama Research Committee members,

using Gilardi’s 1937 photographs (Phillips, 1937), estimated that the

FIGURE 3. Eliot Glacier: (A) termini changes, 1901–2001; (B) view across trough and southeast at right lateral Little Ice Age moraine
on 23 July 1901 (H. F. Reid photo in Phillips, 1935); and (C) same view and photo point on 21 August 2001. See photo point on Figure 3A.
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glacier receded about 150 m and thinned by about 30 m between 1901

and 1937 (Phillips, 1938) (Table 2). We measured 111 m of retreat

from the estimated 1937 terminus to the 1946 ice front shown on the

vertical airphoto. The 1946 terminus was at its most upvalley point of

the past century. Post-1946 termini were characterized by alternating

advances and retreats (þ217 m between 1946 and 1967, �127 m

between 1967 and 1972,þ223 m between 1972 and 1984, and�271 m

between 1984 and 1995). The 2000 position of the Newton Clark

Glacier terminus extended 157 m downvalley of the 1995 position.

Ground photographs from 2001 reveal a dramatically thinner ice front

than that of 1901 (Figs. 5B and 5C). Despite the differences seen in

the ground photos, the net 1901–2000 change in the Newton Clark

terminus was only �62 m, a 5% decline in length. This represents

the least terminus retreat of any of the glaciers analyzed.

FIGURE 4. Ladd Glacier: (A) termini changes, 1932–2001; (B) view across trough and southwest at left lateral Little Ice Age moraine
on 25 September 1932 (Richards, 1932); and (C) same view and photo point on 19 August 2001. See photo point on Figure 4A.
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White River Glacier

White River Glacier originates south of Mount Hood’s summit

in a cirque bounded by Steel Cliff, Crater Rock, and an unnamed ridge

to the west (Figs. 1 and 6A). It extends approximately 2.1 km south

to a point well above timberline (Table 1). In summer 1870, White

River Glacier was significantly longer, extending approximately 150 m

below timberline (Hague, 1871). Reid (1905, p. 196) described the

1901 White River Glacier terminus as 2100 m elevation ‘‘at the head

of a very deep canyon’’. Langille’s (1903) photograph (Fig. 6B) reveals

that White River Glacier may have been connected with Coalman

FIGURE 5. Newton Clark Glacier: (A) terminus changes, 1937–2001; (B) view upglacier and north at Newton Creek terminus from
late Pleistocene eruptive deposits (Scott et al., 1997) on 25 July 1901; and (C) same view and photo point on 15 September 2001. See
photo point on Figure 5A.
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Glacier above Crater Rock. However, J. N. LeConte’s photograph in

Williams (1912) shows that White River Glacier was separated from

Coalman Glacier. A Mazamas survey in 1936, coupled with Reid’s

estimate of his photopoint being ‘‘500 yards downvalley of the

terminus’’ indicates that White River Glacier retreated 561 m between

1901 and 1936 (Phillips, 1938) (Table 2). Since 1936, White River

Glacier has experienced alternating periods of advance and retreat—

i.e.,þ299 m between 1936 and 1959,�258 m between 1959 and 1967,

þ163 m between 1967 and 1979,�141 m between 1979 and 1984,þ22

m from 1984 to 1989, and �141 m from 1989 to 2000. Thickening

of the upper glacier noted in 1958 and 1959 by Handewith (1959)

likely impacted the terminus advance between 1967–1972. Despite

FIGURE 6. White River Glacier: (A) terminus changes, 1901–2001; (B) view of terminus from late Pleistocene and Holocene eruptive
deposits in 1902 (Langille, 1903); and (C) same view and photo point on 14 September 2001. See photo point on Figure 6A. The dashed
line at the top of the White River Glacier in 1902 indicates that the White River may have separated from the Coalman Glacier.
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the alternating nature of advances and retreats over at least the past

60 years, the net 1901–2000 change in White River Glacier terminus

was �617 m, a 30% decline in length (Figs. 6B and 6C).

HISTORICAL CLIMATE PATTERNS

Five-year RA temperatures increased during the 1896–2001 WY

period—;1.58C in the accumulation season and ;48C in the ablation

season (Fig. 7A). Accumulation and ablation season temperatures were

at their lowest levels in ;1900, 0.78C and 3.18C, respectively, cooler

than the 1896–2001 averages. By 1940, temperatures had climbed to

reach their highest levels of the century—i.e., five-year RA accumula-

tion season temperatures were approximately 1.48C higher and ablation

season temperatures were 1.58C higher than the 1896–2001 averages.

Temperatures began to decline soon after 1940 and generally continued

to drop until ;1975. Five-year RA accumulation season temperatures

fell 0.68C, and five-year RA ablation season temperatures dropped 0.18C

below the 1896–2001 averages during this second coldest period of the

past century. Since ;1975, five-year RA accumulation and ablation

season temperatures have generally risen 1.08C and 1.28C, respectively,

above the 1896–2001 averages. The second warmest five year period

during the past century occurred from 1996–2000.

Overall, five-year RA accumulation and ablation season pre-

cipitation increased during the 1896–2001 WY period (Fig. 7B).

FIGURE 7. Climate and glacier
terminus fluctuations, 1896–
2001. (A) Five-year running
average (RA) (thin lines) and
1896–2001 average (thick lines)
ablation and accumulation season
temperatures. (B) Five-year RA
(thin lines) and 1896–2001 aver-
age (thick lines) ablation and
accumulation season precipita-
tion. (C) Cumulative glacier ter-
minus fluctuations. See text for
data sources.
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Within this pattern, precipitation generally declined between 1896–

1948 and increased from 1948–present. Five-year RA accumulation

season precipitation has been above the 1896–2001 mean by as much

as 70 cm (þ20%) during seven different periods. Conversely, five-year

RA accumulation season precipitation has been below the long-term

mean six times by as much as 105 cm (�37%). The wettest five-year

RA accumulation seasons occurred in 1995–1999 when each aver-

aged 336 cm of precipitation. The driest five-year RA accumulation

seasons occurred in 1927–1931 with an average of 238 cm.

GLACIERS AND CLIMATE

The pronounced period of retreat displayed by all of Mount

Hood’s glaciers from 1901 through the mid-1930s, and all but White

River Glacier through 1946 (Fig. 7C), coincided with generally rising

temperatures (especially following 1924) and falling precipitation

(1925–1930 and 1938–1944). Falling temperatures and rising pre-

cipitation beginning in the early 1940s appears to have initiated

advances in all glaciers; however, the timing of these advances varied.

Newton Clark and White River glaciers were advancing by 1959, Coe

and Eliot by 1967, and Ladd by 1973. Retreat was the overall trend

of glaciers from the mid-1970s to the mid-1990s, corresponding with

generally rising temperatures since the mid-1970s and periods of

declining precipitation in 1975–1980 and 1986–1993. Increasing pre-

cipitation appears to have dampened the impacts of rising temper-

atures on glacier termini, especially during the past decade, when

the Coe, Eliot, Ladd, and Newton Clark glaciers each advanced.

Spearman rank correlation analysis of cumulative glacier terminus

fluctuation data reveals that Mount Hood’s northern glaciers fluctuated

similarly over the past century (Table 3). Coe, Eliot, and Ladd glacier

terminus fluctuations were strongly correlated, while Newton Clark

and White River were not (p , 0.05). These results suggest that the

Coe, Eliot, and Ladd glacier terminus fluctuations responded to

common factors or forcing mechanisms. Unfortunately, none of the

statistical tests showed significant, strong to moderate correlations

among glacier terminus fluctuations and the various climate variables.

Thus, statistical analysis did little to support the qualitative obser-

vations of glacier-climate relations mentioned above.

Discussion

GLACIER-CLIMATE LINKAGES

Each of Mount Hood’s glaciers retreated overall during 1901–

2001. Statistical analysis shows that Coe, Eliot, and Ladd glaciers

displayed generally synchronous patterns of advance and retreat within

this overall period of retreat. The similar pattern of Mount Hood’s

northern glacier terminus fluctuations, combined with qualitative

analysis of glacier terminus fluctuation and climate data, suggests that

temperature and precipitation played a significant role in Mount

Hood’s glacier terminus fluctuations during the past century.

Supporting evidence for glacier-climate linkages comes from

other mountainous areas around the PNW. The general patterns of

glacier terminus change seen at Mount Hood—i.e., retreat from 1901

through the mid-1940s, advance from the mid-1940s through the

mid-1970s, and retreat from the mid-1970s through the mid-1990s—

have been observed in Washington’s North Cascades (Hubley, 1956;

Harper, 1993; Pelto and Reidel, 2001), South Cascades (Heliker et al.,

1983; Driedger, 1993), and Olympics (Spicer, 1989), and in Oregon’s

Central Cascades (Hopson, 1960; O’Connor et al., 2001). The

historical glacier terminus fluctuations may have been set in motion

by rising, mid- to late 19th century temperatures that caused significant

ablation, making glaciers more susceptible to 20th century climate

changes (Burbank, 1982). The general correspondence of glacier

terminus fluctuations across ;68 latitude in mountainous terrain

suggests that regional scale, interannual- to interdecadal-scale weather

and climate events helped shape Mount Hood’s glacier fluctuations

over the past century.

PNW weather and climate changes are forced by atmosphere

and ocean interactions. One such coupled atmosphere-ocean circulation

forcing mechanism, the Pacific Decadal Oscillation (PDO) (Mantua

et al., 1997; JISAO/SMA Climate Impacts Group, 1999), affects glacier

climate on decadal and interdecadal scales throughout the PNW (e.g.,

McCabe and Fountain, 1995; Bitz and Battisti, 1999; Kovanen, 2003).

The PDO (Mantua et al., 1997) is characterized by 20- to 30-year-long

phases (JISAO/SMA Climate Impacts Group, 1999) in the north Pacific

Ocean. Warm phase October–March air temperatures are higher and

precipitation is lower than normal, with below-normal PNW spring

snowpack (Mantua, 2002). Cool phases have the opposite character-

istics. Mantua et al (1997) and Mantua (2002) identified four PDO

phases during the past century—cool from 1890 to 1924, warm from

1925 to 1946, cool from 1947 to 1976, and warm from 1977 to the mid-

1990s. These phases correspond well with Mount Hood’s historical

temperature and precipitation patterns, and glacier terminus fluctuations

(Fig. 7), as they do elsewhere in the PNW (Kovanen, 2003).

OTHER FACTORS AFFECTING GLACIER

TERMINUS FLUCTUATIONS

Much circumstantial evidence supports the linkage between

Mount Hood’s glaciers and ocean-atmosphere forced climate changes;

however, the lack of strong, statistically significant correlations

between glaciers and climate variables indicate that these glaciers

were not well synchronized with climate changes. Variations in the

terminus responses of Mount Hood’s glaciers over time further support

this point—i.e., Coe, Eliot, and Ladd glacier termini fluctuated very

differently than did the termini of Newton Clark and White River

glaciers. Further, even the termini of the Coe, Eliot, and Ladd glaciers

occupied their most upvalley points at different times during the past

century. Such differences in overall glacier response and response time

may occur because of a myriad of local factors (Nesje and Dahl, 2000;

Pelto and Hedlund, 2001; Klok and Oerlemans, 2004).

Some of the differences between the terminus fluctuations of

Mount Hood’s glaciers may be attributed to the physical characteristics

of each of the glaciers (Table 1). The three corresponding glaciers

are similar in type, aspect, elevation of source area, and thickness.

However, the relatively small size of these glaciers may reduce their

climate sensitivity (Klok and Oerlemans, 2004). Further, the climate

sensitivity of the Newton Clark Glacier may also be hampered by its

wide terminus (Klok and Oerlemans, 2004).

Given Mount Hood’s setting, it is also likely that volcanic and

geothermal activity, subglacial topography, and debris cover have also

played an important local role in Mount Hood’s historical glacier

termini fluctuations. Heat associated with volcanic and geothermal

activity can accelerate melting of glacial ice, firn, and snowpack, thus

decreasing glacier mass balance and ultimately reducing glacier length.

Conversely, such activity may enhance basal melting and basal sliding,

thus causing glacier advance (Frank and Krimmel, 1978; Zimbelman

et al., 2000; Sturm et al., 1991). A series of minor eruptions, including

glowing lava at Crater Rock (Fig. 1), occurred between 1853 and 1869

(Harris, 1988), and in 1907 (Sylvester, 1908a, 1908b). Fumaroles and

warm ground near Crater Rock produced caves beneath snowfields

(Phillips and Collins, 1935) and bisected White River Glacier

(Sylvester, 1908a, 1908b; Cameron 1988), thus reducing the

accumulation area feeding the terminus. Separation of White River

Glacier from its upper accumulation zone (now the Coalman Glacier)

occurred between 1894 (see M. W. Gorman’s photograph in Russell,

1904, plate 12) and 1912 (see J. N. LeConte’s photograph in Williams,
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1912, p. 75). Minor eruption and geothermal effects likely enhanced

a climatically reduced glacial mass, thus collectively resulting in rapid

recession and associated thinning of White River Glacier between 1901

and the mid-1930s. Volcanic and geothermal activity does not appear

to have changed since 1907.

Subglacial topography may have influenced the sensitivity of

Mount Hood’s glacier terminus fluctuations to climate change. Icefalls

form as glacial ice passes over abrupt, convex-upward topography.

Tensile stresses at icefalls (Benn and Evans, 1998) thin glaciers, thus

reducing the amount of ice reaching the terminus and ultimately

affecting glacier front positions (Venteris et al., 1997). Newton Clark

Glacier terminates atop an escarpment beyond which it has not

extended since before 1901. Post-LIA warming, combined with icefall-

induced thinning of the downwasted glacial ice, likely severed the

upper glacier and its accumulation zone from a lower portion of the

glacier, ultimately resulting in recession to the top of the escarpment.

Similarly, the terminus of the Ladd Glacier thinned and receded 922 m

between 1984 and 1989 to the top of a bedrock escarpment that once

underlaid a prominent icefall. Since 1989, the portion of the glacier

below the icefall has become an ice-cored ground moraine complete

with thermokarst terrain. The tensile stresses imposed on glaciers at

icefalls, combined with the generally thin nature of Mount Hood’s

glaciers—i.e., all were less than ;120 m thick in the mid-1980s

(Driedger and Kennard, 1986)—will likely keep the Newton Clark and

Ladd glaciers from advancing beyond the escarpments unless very

positive mass balance conditions again develop.

Differences in superglacial debris cover may have affected the

climate sensitivity of Mount Hood’s glaciers. Debris cover decreases

glacier ablation rates (e.g., Ogilvie, 1904; Sharp, 1949; Nakawo and

Young, 1982; Kirkbride and Warren, 1999; Nakawo et al., 1999), thus

reducing glacier sensitivity to mass balance changes (Benn and Evans,

1998). Twentieth century warming has amplified mountain mass

wasting processes, thus adding debris to alpine glacier surfaces

(Diolaiuti et al., 2003). Coe, Eliot, and Ladd glacier termini have been

debris covered since before late ablation season airphotos were taken

in September, 1935. Lundstrom (1992) determined that 60% of Eliot

Glacier’s ablation area was covered with .1 cm of debris which has

decreased thermal conduction and ultimately ablation rates. Further,

increased debris cover downglacier resulted in a net ablation decrease

thus a less negative net mass balance. Despite the extensive debris

cover, Eliot Glacier experienced significant terminus retreat (this study)

and thinning (Lundstrom, 1993) in recent years. Extensive ablation

zone debris cover has also likely reduced ablation rates on Coe and

Ladd glaciers rendering them less sensitive to changing temperatures

during the past century.
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