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Introduction

Landslides on mountainous terrain often occur during
or after heavy rainfall, resulting in loss of life and dam-
age to the natural or the built environment (or both).
Areas prone to landslides should therefore be identi-
fied in advance to reduce such damage. Landslide sus-
ceptibility mapping can provide much of the basic
information essential for hazard mitigation through
proper project planning and implementation. 

Landslide susceptibility can be defined as the prob-
ability that a landslide will occur in a specific area in
the future and can be measured from the correlation
between determining factors and the spatial distribu-
tion of landslides (Brabb 1984). A variety of techniques,
such as qualitative, statistical, and deterministic
approaches, have been proposed to estimate landslide
susceptibility. In qualitative approaches several maps
representing the spatial distribution of factors that may
influence the occurrence of landslides are combined to
produce a susceptibility map, using subjective decision

rules, based on the experience of the geoscientists
involved (Anbalagan 1992; Pachauri and Pant 1992;
Sarkar et al 1995). In statistical approaches statistical
analysis is used to determine the relation between land-
slide susceptibility and a number of factors that are con-
sidered to have an influence on landslide occurrence.
This relation is then applied to map landslide suscepti-
bility (Yin and Yan 1988; Carrara et al 1991; Dhakal et
al 1999). Both qualitative and statistical approaches are
based on the general principle that “the past and the
present are the keys to the future,” that is, future slope
failures will more likely occur under conditions that led
to past and present landslides (Carrara et al 1991).
Deterministic approaches are based on slope stability
analyses and are only applicable when the ground con-
ditions are fairly uniform across the study area, and the
landslide types are known and relatively easy to analyze.

Geographical information systems (GIS) are tech-
nologically capable of facilitating various functions of
geospatial data handling, analysis, and management
and has been employed to model and predict landslide
susceptibility. The overlay operation commonly associat-
ed with GIS is useful in both heuristic and statistical
approaches (Gupta and Joshi 1989; Carrara et al 1991;
Wang and Unwin 1992; Van Westen et al 1997). The
infinite slope stability model has also been incorporat-
ed into the GIS to calculate the spatial distribution of
the factor of safety within a given region, based on the
assumption that landslides generally occur along shal-
low failure surfaces (Terlien et al 1995; Wu and Sidle
1995; Van Westen et al 1997). The advantage of incor-
porating the deterministic models into the GIS is that
they permit quantitative factors of safety to be quickly
calculated for a given area. The main problem involved
is the high degree of simplification that is usually neces-
sary for the use of such models.

The present article reports on the use of a GIS
database, compiled primarily from existing digital maps
and aerial photographs, to describe the physical charac-
teristics of landslides and the statistical correlations
between landslide frequency and terrain variables on
Lantau Island in Hong Kong. This database is then
exported to an external statistical package to obtain a
logistic multiple regression model for predicting land-
slide susceptibility. The model is then imported back
into the GIS to produce a map of predicted landslide
susceptibility.

Description of the study area

Lantau Island is located in the southwestern part of the
territory of Hong Kong and is the largest island within
the territory (Figure 1). Primarily because of its steep
terrain, the island is virtually undeveloped and unin-
habited, with the exception of small coastal patches of

Steep terrain and high
frequency of tropical
rainstorms make land-
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natural terrain a com-
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compiled primarily from existing digital maps and aerial
photographs, to describe the physical characteristics of
landslides and the statistical correlations between land-
slide frequency and terrain variables on Lantau Island in
Hong Kong. This database is then used to obtain a logis-
tic multiple regression model to predict landslide suscep-
tibility. Slope gradient, lithology, elevation, slope aspect,
and land use cover are indicated as statistically signifi-
cant in predicting landslide susceptibility, whereas slope
morphology and proximity to drainage line are not impor-
tant and are thus excluded from the model. This model is
then imported back into the GIS to produce a map of
predicted landslide susceptibility. This study demon-
strates that landslide susceptibility can be effectively
modeled by using GIS technology and logistic multiple
regression analysis.
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flat land. Land with slope gradients greater than 25°
accounts for 44% of the total land area. Elevation
ranges from sea level to over 900 m above sea level and
changes abruptly.

The bedrock geology of the study area is dominat-
ed by Mesozoic volcanic rocks and the younger intru-
sive igneous rocks. The volcanic rocks, which comprise
tuffs and lavas with intercalated sedimentary rocks, crop
out in the west and north of the study area. Intrusive
rocks consist mainly of granites and dykes of various
compositions. The Paleozoic sedimentary strata com-
prising metamorphosed siltstone, sandstone, and car-
bonaceous siltstone occur as a small outcrop in the
northwest coastal portions of the study area. Superficial
deposits of the Quaternary age form large, flat-lying
areas. In hilly terrain, colluvium, including debris flows
and other slope debris deposits, mostly of the late Pleis-
tocene to the Holocene, commonly mantles side slopes
and valleys as a result of numerous individual episodes
of mass wasting and erosion during the Quaternary
period. Colluvium occurs as relatively thin ribbon-like
deposits filling drainage courses. However, there are
considerably thicker deposits of greater extent on some
hillslopes in the study area. The colluvium derived from
volcanics typically consists of subangular cobbles and
boulders, feldsparphyric rhyolite with some tuff, in a
matrix of mottled, reddish brown, and yellowish brown
gravelly, sandy, slightly clayey silt. Small alluvial deposits
occur in hilly areas, but alluvium is generally restricted
to fans developed downslope of the colluvial deposits
(Geotechnical Control Office 1988a,b). A regolith, or
mantle of weathered rock, occurs over most of the study
area. Intrusive rocks and the Paleozoic sedimentary
rocks are mostly deeply weathered and eroded and
form the lower ground. The acidic volcanic rocks are
more resistant to deep weathering and erosion. The
study area is structurally affected by 2 sets of faults
trending NE-NNE and NNW-NW, respectively.

The climate is subtropical and monsoonal, with
mild, dry winters and hot, humid summers. Rainfall is
heavy and occasionally intense during the rainstorms
and typhoons. The hillslopes are drained by numerous
small streams, most of which only flow during or after
heavy or prolonged rainfall. The hillsides are often
deeply incised as a result of erosion caused by ephemer-
al streams. In general, piezometric records from previ-
ous site investigations indicate that the regional
groundwater table lies either just within the slightly to
moderately weathered bedrock or within the overlying
saprolite (Franks 1998). The relatively high permeabili-
ty of the colluvium, when compared with the underly-
ing saprolite or weathered bedrock, allows for the
development of transient perched groundwater tables
at the interface during or following periods of intense
rainfall.

Source and preprocessing of data

The study area was examined using ArcView GIS soft-
ware. The data needed for this study include topogra-
phy, land use classification, a terrain morphologic map,
superficial and bedrock geology, and the locations of
landslides. All locational, geological, and geomorpho-
logic features provided by these different thematic
maps were imported into the ArcView GIS, or digitized
using the GIS PC Arc/Info software, and then trans-
ferred to ArcView for subsequent analyses.

Contour lines and drainage lines were obtained
from 1:20,000-scale topographic maps. Elevation data
were obtained from the digital elevation model derived
from the 1:20,000-scale digital contour lines of the area.
Two data layers were derived from these elevation data,
namely, slope aspect and slope gradient. Proximity to
drainage line was calculated using GIS functions.

Superficial and bedrock geological data were
obtained from 1:20,000-scale solid and superficial geo-
logical maps developed by the Hong Kong Geological
Survey of the Geotechnical Engineering Office (GEO),
formerly known as the Geotechnical Control Office.
The maps covering the study area describe the geologi-
cal groups, each comprising geological units of broadly
similar lithology. For ease of analysis, the groups were
further reclassified into 9 categories: (1) alluvial, ter-
race, and beach deposits; (2) debris flow deposits and
talus; (3) sedimentary rock; (4) metasedimentary rock;
(5) intrusive rock; (6) minor intrusive rock; (7) ash
tuff, tuffite, and tuff breccia; (8) trachydacite, dacite,
and rhyolite lava; and (9) volcaniclastic sedimentary
rock, based on stratigraphy and genesis.

The 1:20,000-scale digital terrain classification
maps covering the study area, developed by the GEO,
were available to the authors. This data set contains ter-
rain classification information that includes erosion

FIGURE 1 Location of the
study area. (Map by authors)
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and stability as well as terrain components and mor-
phology, which was derived primarily using the aerial
photography interpretation technique (Geotechnical
Control Office 1988a,b). Based on the terrain classifica-
tion information, terrain morphology, which describes
the physical appearance of the slope and the general
shape of the slope profile (straight, concave, or con-
vex), is extracted and then reclassified into 10 classes
for simplicity. These are: hillcrest or ridge, straight
sideslope, concave sideslope, convex sideslope, straight
footslope, concave footslope, convex footslope,
drainage plain, rock outcrop, and others.

The landslide database used was derived from the
GEO work in which landslide locations and trails were
digitized from 23 temporal sets of 1:20,000- to 1:40,000-
scale stereoscopic aerial photographs dating from 1945
to 1994 (King 1999). The aerial photographs used thus
cover a period of 50 years. On aerial photographs, land-
slides were observed as having a distinctive light tone
generally bare of vegetation (King 1999). Because land-
slides as old as about 10 years were visible before revege-
tation masked most of the scars, the aerial photographs
record a period of landslide activity of about 60 years.

The location of each identified landslide crown was
recorded on the 1:5000-scale base map. The width of the
landslide scars was classified as either greater or less than
20 m wide, and the ground slope angle across the land-
slide head, calculated from the distance between the
steepest 2 adjacent contours on the 1:5000-scale map,
was noted. Figure 2 shows the locations of the landslides.

A 1:50,000-scale coverage of land use types for the
whole territory of Hong Kong, based on the interpreta-
tion of SPOT images by Chi (personal communication)
in 1998, is used for the analysis. Although 35 land use
types were mapped, these were reduced to 6 for the
purposes of this study. They are (1) developed land,
such as cropland, roads, structures, reservoirs, and
reclamation; (2) forestland; (3) shrub-forestland; (4)
dense shrub–grassland with a shrub coverage of less
than 40%; (5) moderate grassland with >50% coverage;
and (6) sparse grassland on rock outcrop-dominated
areas. It should be noted that figures for land use cover
should be considered only as estimates because of
increased current and future development of coastal
flat-lying lands and possible changes in land use types
over the past few decades.

FIGURE 2 Relief map of the
study area showing location of
landslides (black dots). (Map
by authors)
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The aforementioned vector data sets were then ras-
terized into grid cells for subsequent analyses. The grid
cells were 20 m � 20 m. This was based on the scale of
the topographic map used and the size of the land-
slides, most of which are less than 20 m in width.

Physical characteristics

Description of landslides
Landslide classification systems are usually based on a
combination of material and movement mechanism.
Using the system proposed by Cruden and Varnes
(1996), most of the landslides in the study area can be
characterized as probably debris slides, debris flows,
complex debris slide-flows, or composite debris slide-
flow falls, all of which may be either open slope or
channelized (King 1999). About 79.2% of the 2135
landslides recorded were less than 20 m in source
width.

Field observations revealed that the majority of
landslides had the following characteristics:

• The volume of failure generally ranged from 10s of
cubic meters to over 1000 m3.

• The failure depth generally varied from about 0.5 to
3 m.

• The failures generally occurred along the colluvi-
um–bedrock contact, and the predominant failure
mode was of the translational type, involving a slip-
ping of a thin layer of colluvium with a planar failure
surface.

• Most landslides started as slides and quickly convert-
ed to flows because of the water involved and the
steep terrain below the debris sources (Dai et al
1999).

Field checking indicates that the majority of the
landslides had the following common features: a source
area, defined by a surface of rupture that comprises the
main scarp and the scarp floor; a landslide trail down-
slope of the source where debris transport predomi-
nates, though erosion and deposition may also occur;
and a deposition fan where the majority of the land-
slide debris is deposited. It should be noted that a dep-
osition fan may not be well developed for many failures
on open slopes because the landslide debris is com-
pletely deposited on the trail path.

Frequency of landslides and terrain variables
Landslides that occurred in the study area were corre-
lated with all the factors considered to influence their
occurrence. These factors include lithology and struc-
ture, slope gradient and slope morphology, slope
aspect, elevation, proximity to drainage line, and land
use cover. The digital map of landslide distribution was

overlaid on the physical parameters or data layers men-
tioned previously, using the GIS, and the frequency of
landslides, which is the number of landslides per square
kilometer, was calculated for each category on the fac-
tor maps. Table 1 shows the frequency values of the
landslides for each subclass variable used to represent
terrain parameters that may affect landslide susceptibil-
ity. This was achieved through use of the GIS and its
ability to quickly determine the area of individual cover-
age components throughout the study area for each ter-
rain parameter. In Table 1 the predominant terrain
variable classes for landslide occurrence, such as slope
angle class and elevation zone, can be readily observed.

Landslide susceptibility mapping

Logistic multiple regression
Logistic multiple regression is a multivariate technique
that considers several physical parameters that may
affect probability. It accepts both binary and scalar val-
ues as the independent variables, which allows for the
use of variables that are not continuous or qualitatively
derived. Logistic multiple regression modeling has sev-
eral advantages over other multivariate statistical tech-
niques, including multiple regression analysis and dis-
criminant analysis. The dependent variable can have
only 2 values—an event occurring or not occurring, and
predicted values can be interpreted as probability
because they are constrained to fall in the interval
between 0 and 1. An appealing S-shaped description of
the combined effect of several independent variables
on the dependent variable is also an important factor in
the popularity of logistic multiple regression modeling. 

Logistic multiple regression identifies variables that
are significant in predicting the probability of occur-
rence. In the present study the dependent variable is a
binary variable representing the presence or absence of
landslides. The technique of logistic multiple regres-
sion yields coefficients for each variable based on data
derived from samples taken across a study area. These
coefficients serve as weights in an algorithm that can be
used in the GIS database to produce a map depicting
the probability of landslide occurrence. 

Quantitatively, the relationship between the occur-
rence and its dependency on several variables can be
expressed as

Pr(event) =
1 ,

(1 + e−Z)

where Pr(event) is the probability of an event occur-
ring. In the present situation the Pr(event) is the esti-
mated probability of landslide occurrence. As Z varies
from −∞ to +∞, the probability varies from 0 to 1 on an
S-shaped curve. However, in a strict sense, it is not a
probability because the dynamic variables triggering
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TABLE 1 Frequency of
landslides according to terrain
variables.

Variable Landslide frequency

Lithologic type

Alluvial, terrace, and beach deposits 0

Debris flow deposits and talus 6.43

Sedimentary rock 26.05

Metasedimentary rock 22.03

Intrusive rock 4.19

Minor intrusive rock 2.56

Ash tuff, tuffite, and tuff breccia 14.49

Trachydacite, dacite, and rhyolite lava 31.36

Volcaniclastic sedimentary rock 15.56

Land use type

Developed land 0

Forestland 14.36

Shrub–forestland 14.48

Dense shrub–grassland 19.12

Moderate grassland 17.43

Sparse grassland 6.29

Proximity to drainage line

<40 m 16.34

40–80 m 17.99

80–120 m 16.57

120–160 m 14.32

160–200 m 8.01

200–240 m 7.79

240–280 m 5.87

>280 m 1.55

Slope angle

0–5° 0

5–10° 0

10–15° 0.86

15–20° 1.61

20–25° 5.67

25–30° 8.26

30–35° 54.09

35–40° 65.44

≥40° 36.31

Variable Landslide frequency

Elevation

0–50 m 2.20

50–100 m 9.81

100–150 m 16.36

150–200 m 20.24

200–250 m 24.25

250–300 m 27.42

300–350 m 25.59

350–400 m 25.72

400–450 m 21.62

450–500 m 19.17

500–550 m 10.76

550–600 m 11.31

600–650 m 6.16

650–700 m 1.54

>700 m 0

Slope aspect

Flat 0

North 8.31

Northeast 11.99

East 17.08

Southeast 17.28

South 23.62

Southwest 18.95

West 16.52

Northwest 11.98

Slope shape

Hillcrest or ridge 8.70

Straight sideslope 18.84

Concave 21.36

Convex sideslope 17.30

Straight footslope 0

Concave 5.67

Convex footslope 3.89

Drainage plain 11.30

Rock outcrop 20.53

Others 0.88
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landslides, such as rainfall, are not accounted for. It
may be more appropriate to term it hereafter “landslide
susceptibility” based on the quasi-static physical param-
eters. Z is the linear combination

Z = B0 + B1X1 + B2X2 + … + BnXn,

where Bi (i = 0,1,…,n) must be estimated from the sam-
ple data, n is the number of independent variables (ie,
landslide-related physical parameters), and Xi
(i = 1,2,…n) is the independent variable. In logistic
multiple regression a coding scheme should be selected
for the categorical variables by creating a new set of
variables that correspond in some way to the original
categories. The number of new variables required to
represent a categorical variable is one less than the
number of categories. The parameters of the logistic
multiple regression model are estimated using the max-
imum likelihood method.

Logistic multiple regression modeling is intended
to describe the likelihood of landslide occurrence on a
regional scale and is very suitable for the assessment of
landslide susceptibility because the observed data con-
sist of locations (points) or cells with a value of 0
(absence of landslide) or 1 (presence of landslide).
This method allows a spatial distribution of probabili-
ties or susceptibility values to be calculated within the
GIS environment.

Variable selection and sampling
All terrain variables considered relevant to the occur-
rence of landslides, as shown in Table 1, were selected
as the initial categorical variables in the present study.
For each factor the same categorization scheme used
previously to study the relation of landslide frequency
to factor classes was adopted for consistency.

For the purpose of the statistical analysis, sample
data representing both the absence and the presence of
landslides must be provided to fit the logistic multiple
regression model. The way in which these data are
obtained will affect both the nature of the regression
relation and the nature and accuracy of the resulting
estimates. In this study the data set of landslide invento-
ry is an indispensable data source representative of sam-
ples of landslide presence. All locations of the 2135
landslides studied were thus used to extract the physical
parameters (independent variables) automatically from
the existing data layers. To eliminate bias in the sam-
pling process, an equal number of points were chosen
from the area not yet affected by landslides as samples
representing the absence of a landslide. These locations
were obtained using a spatially uniform sampling
scheme but excluding a 40-m buffer zone for all land-
slides. Each sample point has its respective binary value
for the presence or absence of landslide, as well as

information on independent variables. The training
data were then used to input to the logistic multiple
regression algorithm within the SPSS, a desktop statisti-
cal software package, to obtain the coefficients for the
logistic multiple regression model.

Modeling results
A logistic multiple regression model was initially con-
structed based on the physical parameters defined pre-
viously. Then, at each step the variables were evaluated
for removal, one by one, if they did not contribute suffi-
ciently to the regression equation. In the present analy-
sis, the likelihood-ratio test was always used to deter-
mine whether variables should be added to the model.
This involved estimating the model with each variable
eliminated in turn and looking at the change in the log-
arithm of likelihood when each variable was deleted. If
the observed significance level was greater than the
probability of remaining in the model (0.1 in this
study), the variable was removed from the model, and
the model statistics were recalculated to determine
whether any other variables were eligible for removal.
The variables included in the model were slope gradi-
ent, lithology, elevation, slope aspect, and land use cov-
er. Both proximity to drainage line and slope shape
were not significant and were thus eliminated from the
stepwise procedure.

The modeling result indicated that the model pro-
duced a concordance rate of 81.7% and that 85.2% of
the actual landslides were correctly classified with the
use of 0.5 as a classification cut-off value. To map future
landslide susceptibility in the study area, the logistic
multiple regression model obtained was then trans-
ferred into the ArcView GIS and applied to the inde-
pendent variables representing the existing conditions
for each cell within the study area. For general purpos-
es, the range of landslide susceptibility was classified
into 4 categories: (1) very low susceptibility (0–0.2), (2)
low susceptibility (0.2–0.35), (3) moderate susceptibility
(0.35–0.5), and (4) high susceptibility (>0.5). The
ranges of the individual classes were derived based on
the histogram of the estimated landslide susceptibility.

The final product of the analysis is shown in
Figure 3. Zones classified as having “very low” suscepti-
bility are distributed in clusters on the coastal lowland
and footslope areas and on the top of high mountains
characterized by relatively gentle gradients. All these
sites are generally stable and not prone to landslides.
Zones of “low” susceptibility are relatively dispersed; the
combination of factors is not very likely to adversely
affect slope stability, and chances that landslides will
occur are small. In zones with “moderate” susceptibility
the combination of factors may adversely influence
slope stability. When disturbed, the slopes are prone to
landslides, and the costs of investigation and preventive
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measures are likely to be high. The “high”-susceptibility
class exhibits a spatial distribution strongly character-
ized by clustered patterns. This category has a high
potential for landslide occurrence and is characterized
by relatively high elevations and steep terrain. About
85% of the locations of the identified landslides actually
fall within this class, and existing ground conditions are
very likely to create further serious landslide problems.

The landslide susceptibility map obtained from this
study (Figure 3) provides information that can be used
to identify different levels of risk owing to landslides.
This in turn can facilitate the implementation of appro-
priate loss-reduction strategies (prevention, mitigation,
avoidance, or all of them) for both existing and future
development. The most practical and cost-effective loss
reduction method is to avoid areas with relatively high
landslide susceptibility. The map can also be used to
identify areas where detailed geologic–geotechnical
investigations are desirable before development.

However, it should be understood that the land-
slide susceptibility map is intended primarily for the
assessment of landslide susceptibility for planning pur-
poses on a regional scale and that it cannot be used to
determine the stability of specific sites. Natural as well

as human-induced changes can affect landslide suscep-
tibility in any area, and the absence of past or present
landslides does not necessarily mean that landslides will
not occur in the future.

Conclusions

With Lantau Island of Hong Kong as a study area, the
pertinent landslide characteristics were described, and
the relations of landslide frequency with the terrain
parameters that contribute to landslide occurrence
were presented. GIS tools made possible the production
of innovative landslide susceptibility maps. In particu-
lar, they facilitated the application of the logistic multi-
ple regression technique. Logistic multiple regression
applied to training samples collected from existing data
layers considered to be relevant to landslide occurrence
made it possible to predict landslide susceptibility at a
rate of about 85% concordance. The predicted suscepti-
bilities generated from the model within the GIS envi-
ronment were in turn used to produce a map of relative
landslide susceptibility that can be used to facilitate the
implementation of appropriate loss reduction strategies
for both existing and future development.

FIGURE 3 Map of relative
landslide susceptibility. (Map
by authors)
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