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Introduction

Land use and land cover change (LUCC) and its associ-
ated impacts on global environmental and climate
change are a growing concern for the international sci-
entific community (Dale 1997). Mountain environ-
ments are particularly prone to LUCC because of
increasing industrial (ie forest harvesting) and recre-
ational (ie ski resorts) activities in these areas (Jansky et
al 2002). Increasing LUCC highlights the need for for-
est protection and conservation in mountain environ-
ments (Becker and Bugmann 2001), which are estimat-

ed to contain one-fourth of the world’s forest resources
(Gruen and Murai 2002). Monitoring such areas can be
difficult, though, as accurate information on the status
of forest cover in such regions is often either non-exis-
tent or unreliable (Welch et al 2002).

A major challenge associated with attaining high
accuracy in forest and land cover classification in high
relief mountain areas relates to the effect of topograph-
ic shading that decreases image classification accuracy
(Richards 1994). Topographic shading is caused when
the geometry between the sun, the target, and the imag-
ing sensor (Proy et al 1989) varies as a function of local
topography, thus modifying the illumination received
by a given surface type. Topographic correction of satel-
lite imagery can improve the ability to discriminate
between cover types in mountain areas (Richter 1998).
Through the addition of digital elevation models, topo-
graphic correction methods have been further
enhanced by modeling variation in local slope and
aspect (Fahsi et al 2002).

Human recreational and industrial activities that
occur in mountain areas can also complicate forest cov-
er classification, as modifications to the structure, com-
position, and spatial patterns of forest cover types, and
changes to the natural ecotones that exist between for-
est communities, may alter the spectral properties that
the forest cover types exhibit. Forest cover changes that
impact the spectral properties of the forest cover types
are significant in supervised image classification, as this
classification approach requires that supervised forest
cover training areas are representative of the forest cov-
er classes of interest (Richards 1994). In cases where
forest harvesting disturbances contribute to increased
landscape heterogeneity, selected ground truthing
areas may not be fully representative of the spectral
properties of a forest cover class of interest. The cumu-
lative impact of long-term modifications to the forest
area can lead to the formation of “industrialized land-
scapes,” which may be defined by prolonged LUCC
processes that alter the spectral reflectance properties
of the pre-existing land and forest cover to a new state.
When a single forest cover type exhibits marked spec-
tral variability, or when two forest cover types become
less spectrally distinct from one another, the ability to
accurately classify these cover types decreases when
using conventional image classification techniques and
high-resolution imagery (Hsieh et al 2001).

The main goal of the present study is to present an
improved approach to classifying dominant forest cover
types in the Naeba Mountains of Japan using Landsat
TM satellite imagery and the spectral angle mapper
(SAM) classifier. Using the Jeffries-Matusita (JM) spec-
tral separability measure and forest training areas in the
pre- and post-topographic correction images, the first
objective is to assess and compare the spectral separa-

Space-borne satellite
imagery is increas-
ingly used for classi-
fying and characteriz-
ing forest cover in
mountain environ-
ments. Using medi-
um resolution satel-
lite imagery, acquired
over an industrial
mountain area near

the city of Naeba, in the central part of Honshu, Japan,
this study attempts to characterize forest cover types
situated in an area affected by prolonged anthropogenic
land use and land cover change (LUCC) processes. The
image was topographically corrected, and training sites
selected and assessed for their spectral separability
between forest classes. Using the ground truthed train-
ing sites and a supervised spectral angle mapper (SAM)
classifier, dominant forest cover types were classified.
Post-classification forest cover classification accuracies
range between 77–89%. Results highlight how an
assessment of the spectral separability of forest cover
types prior to image classification, combined with
ground validation that focuses on documenting and not-
ing areas affected by human modifications to the forest,
can aid in refining the forest classification training
areas, which in turn can lead to improved image classifi-
cation accuracies. Through refinement of the training
areas used in the classification via ground truthing, it is
possible to account for localized land use and land cov-
er disturbances (ie forest harvesting, thinning) that cre-
ate non-representative training areas. It is then possible
to select additional training areas that are more repre-
sentative of a forest spectral class and not a localized
anomaly created via human disturbance.
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bility of the forest cover types to determine their suit-
ability for developing a classification legend. The sec-
ond objective is to use the SAM classifier for classifica-
tion, as it is deemed more appropriate for high-relief
areas, compared to using conventional statistical tech-
niques based on Euclidean distance to classify land cov-
er types, because it treats the spectra as vectors in a
space with dimensionality equal to the number of
bands. Using the SAM classifier and spectrally suitable
forest training areas, forest cover types are classified
and their accuracies are related to topographic correc-
tion methods, applied and localized land use, and land
cover change occurring in the study area.

Study area and forest cover classes

The Mt Naeba study area is located on the southern
part of the Niigata Prefecture at the boundary between
Nagano and Niigata Prefecture in the central part of
Honshu, Japan (36°51′ N and 138°41′ E) (Figure 1).
Across the roughly 9628-ha study area, beech forest
(Fagus crenata) dominates the northern slope of the
Naeba Mountains over a range of altitudes between 550
and 1550 m. In the 1940s, beech forest dominated the
study area, but the forest community has since changed
through both forest harvesting activities and the cre-
ation of a winter ski resort. Beech, birch, mixed decidu-

ous, and cedar are the predominant forest classes, but
due to forest harvesting practices unevenly aged beech,
cedar, and birch forest stands occur throughout the
region. Typically, younger stands of birch (Betula
ermanii) are located above 1350 m, after clear cutting
since ca 1953, while older birch stands are found at
higher elevations (1650 m). A mixed deciduous forest
cover class also exists that consists mainly of beech
(Fagus crenata), oak (Quercus mongolica), and 2 species
of bamboo (Sasa kurilensis and Sasa paniculata).

The cumulative impacts of anthropogenic surface
disturbances such as roadways, ski hills, chairlifts, gon-
dolas, and chalets, as well as a network of hydroelectric
transmission lines have altered the natural shapes of
many of the forest cover types. For example, before
construction of the transmission towers, substantial
areas of beech forest cover were cleared for the right-of-
way under these lines. Following the installation of the
transmission towers, the disturbed areas were colonized
by a dense natural bamboo understorey that remains
today.

Methods

Image pre-processing
The Landsat TM 5 scene and 50-meter digital elevation
model (DEM) were subset to the outline of the Mt Naeba
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FIGURE 1  Location of the study area in the central
part of Honshu, Japan. (Map by Andreas Brodbeck)
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study area prior to topographic correction. In the cen-
ter of the Landsat TM is a visible deep reservoir. The
lowest brightness pixels were selected in the reservoir
to eliminate any dark current noise and path radiance
biases within the image scene. These pixels were
selected as they are assumed to have zero reflectance
values, and their values eliminated using the dark pix-
el subtraction method (Kruse et al 1993). A simple
lambertian correction method was used to correct for
macro-scale topographic variation in the image. Slope
and aspect layers were generated from the DEM and
used as inputs for the topographic correction (Feng et
al 2003):

NormalizedRadiance = RawRadiance*(cosθ/cosi)

where θ is the solar zenith angle at the time of acquisi-
tion and i is the local incidence angle, which can be
determined using the DEM and the following equation:

cosi = cosβ cosθ + sinβ sinθ cos(λ – φ)

where β is the terrain slope (degrees), φ is the solar
azimuth angle at the time of image acquisition and λ is
the local terrain aspect. RawRadiance represents the
LANDSAT TM detected radiance ((W/m-2 µm-1 sr -1)*100)
after removal of the diffuse light component using the dark
object correction. A complete description of this process
can be found in Feng et al (2003). The original and topo-
graphically corrected images are shown in Figure 2.

Collection of field data
Two field data campaigns were conducted at Mt Naeba
to capture ground truthing areas to support image clas-

sification. In the first campaign (October 2001), a pre-
liminary classification scheme was developed to repre-
sent the dominant forest cover types in the area. These
classes included 3 deciduous forest cover classes (birch,
beech, and mixed deciduous) and one coniferous forest
class (cedar). Training sites for the birch, beech, cedar,
and mixed deciduous forest types were chosen in vehi-
cle accessible areas within the study area that were
clearly visible on the Landsat imagery. In the second
campaign (August 2002), field data were collected to
validate the accuracy of the forest classification follow-
ing topographic correction. A total of 69 validation
areas representing the forest cover types were collected.
The confusion matrix in Table 1 highlights the number
of forest cover ground truthing sites captured per class.

Training area selection and spectral separability
Following the October 2001 field campaign, non-target
cover types (water, ski slopes, urban areas) were extract-
ed from the satellite image using an unsupervised
(image-masking) approach. To determine the degree of
separability for generating a classification legend for
the birch, beech, cedar, and mixed deciduous training
sites, spectral separability was computed using the Jef-
fries-Matusita (JM) distance (Richards 1994). The Jef-
fries-Matusita distance was selected to assess the ability
of the image classifier to discriminate between the dif-
ferent forest cover types because it accounts for the
spectral variability among (intra-class) and between (inter-
class) forest cover types. A Jeffries-Matusita value of 2.0
between training areas implies that these two classes are
100% separable. Attempts were made to select those

FIGURE 2  a) Original LANDSAT TM 5 color composite (bands 5–4–3 as RGB) over Mt Naeba. b) Topographically corrected 3-band image composite (bands 5–4–3
as RGB) of the LANDSAT TM 5.
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training areas that could provide at least a high separa-
bility value of >1.98 (Table 2); however, not all classes
could achieve this high level of separability. These for-
est training areas were displayed in n-dimensional fea-
ture space (Landsat TM Bands 3–4–5) to assess which
forest cover types were distinct from one another.

Supervised spectral angle mapper (SAM) classifier
The forest training areas captured during the October
2001 field campaign were used as inputs for the spectral
angle mapper classifier (SAM) (Kruse et al 1993). The
SAM uses the n - dimensional angle to compare satellite
image spectra to the reference (training area) in the
Landsat TM 5 image. Rather than using conventional
statistical techniques based on the Euclidean distance
to classify land cover types, SAM was deemed more
appropriate for high-relief areas because it treats the
spectra as vectors in a space with dimensionality equal
to the number of bands. The algorithm then compares
the angle between the reference spectrum vector and
each pixel vector in n - dimensional space. This tech-
nique emphasizes differences in spectral shape rather

then amplitude, the later having dependence on topo-
graphic variations. Smaller vector angles between spec-
tra represent closer matches to the training area spec-
trum and can be grouped into the cluster represented
by the reference spectrum (Kruse et al 1993). A cutoff
angle of 0.10 radians was chosen for the deciduous and
coniferous cover types. However, the angle was slightly
increased to 0.15 radians for the birch class, as this class
exhibited greater intra-class variability in n - dimensional
space than the other forest cover types.

The classified SAM output image was then filtered
using a 3 × 3 median filter to eliminate pixels that are
not surrounded by any other pixels of the same class.
Finally, the forest cover classes were converted to vector
polygons to be able to analyze the landscape structure
of the forest classes. The total landscape area, number
of patches, and mean patch size of the forest cover
classes were computed and are presented in Table 3.

Results and discussion

Forest spectral separability in pre- and post-topographic
corrected imagery
The field training areas representing the beech, birch,
mixed deciduous, and cedar forests were used in the
image to classify the forest cover types across the study
area. The JM distance measure and views of the spectral
clusters in n - dimensional space can highlight those for-
est cover types that are becoming confused through
increased intra-class and decreased inter-class
reflectance. Both tools can be used to improve the abili-
ty to determine what forest classes can be classified with
higher accuracy in the final classified image scene.

The JM separability values between forest cover
types for the pre- and post-topographic corrected
imagery are shown in Table 2. The JM values for the
training areas prior to topographic correction of the
image shows that all the deciduous forest cover types
are highly spectral separable from the coniferous cedar

Class Beech Cedar Birch Mixed deciduous Water Built environment Total %

Beech 16 – 1 1 – – 18 89

Cedar – 18 2 2 – – 22 82

Birch 2 10 1 13 77

Mixed deciduous – – 1 4 – – 5 80

Water – – – – 1 1 100

Built environment – – – – – 10 10 100

Total 18 18 14 8 1 10 69 –

% 89 100 71 50 100 100 – 86

TABLE 1  Confusion matrix for the forest and land cover classes at Mt Naeba. An overall classification accuracy of 89% is reported for this study region.

Cover type
Original 
image

Topographically 
corrected

Cedar–beech 1.99 1.99

Cedar–birch 1.99 1.99

Cedar–mixed deciduous 1.98 1.98

Birch–mixed deciduous 1.99 1.98

Mixed deciduous–beech 1.92 1.34

Beech–birch 1.69 1.74

TABLE 2  Jeffries-Matusita distance calculated on the original and topographi-
cally corrected images for the 4 forest cover types over the Naeba Mountains,
Japan.
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forest class (JM value >1.98). The lowest JM distance
values are found between the deciduous forest cover
types. The mixed deciduous and beech classes maintain
a low JM value of 1.92, and beech and birch forest train-
ing areas have the lowest JM values (1.69). Examining
these classes in the 2-dimensional viewer shows that
beech and birch forest (JM value 1.69) overlap in the
near infrared (band 4) and short wave (band 5)
infrared bands (Figure 3). Although the beech class
appears more tightly grouped along the mean pixel val-
ue, this class exhibits great internal variation. The birch
class pixels form an elongated array along bands 4 and
5 and form three distinct pixel groupings. The charac-
teristics of these two forest classes contrast with those of
the coniferous cedar forest pixels, which tend to form a
tighter cylindrical pattern with less internal variability
in their spectral cluster.

Following topographic correction, the ability to dis-
criminate between forest cover types in the rugged
mountain area varies as a function of forest cover type.
JM distance between the deciduous and the coniferous
forest cover highlights minimal improvement in separa-
bility. This lack of improvement reflects the already
high inter-class separability between the deciduous and
coniferous cover types (JM >1.98) even before the topo-
graphic correction (Figure 3). The ability to discrimi-
nate between the previously confused beech and birch
did improve following the topographic correction from
a JM distance of 1.69 to a higher value of 1.74. This is a
marginal improvement in separability, however, and still
considered a low separability between these 2 decidu-
ous forest classes. The low separability (JM value 1.69)
between the mixed deciduous and beech forest classes

before topographic correction, decreased to a JM value
of 1.34 following the topographic correction. The
decreased separability between the mixed deciduous
and beech forest may indicate that this cover type is not
sufficiently distinct from the beech class, particularly if
the mixed deciduous forest training areas contain a
high proportion of beech trees that are characteristic of
this mixed deciduous forest.

An examination of the forest cover classes in 2-
dimensional space following the topographic correction
shows that the birch and beech classes appear to shift
closer together along Landsat bands 4 and 5. Addition-
ally, the previously noted 3 independent clusters of
birch appear to have been smoothed into a larger
group and there are no longer 3 distinct clusters 
(Figure 3). The beech and mixed deciduous classes
show less inter-class distance, indicating that the bright-
ness variations that result from topographical changes
may have been slightly dampened after topographic
correction. The cedar forest class underwent little to no
change in shape or distance from the birch or beech
forest classes following the topographic correction.

Human modifications to forest cover types are
assumed to affect the spectral reflectance properties of a
given forest cover type. Modifications that lead to struc-
tural and composition changes in the forest may result
in a training area not being able to represent the spec-
tral variability of a forest cover type across the study
area. To examine whether the forest clusters disperse in
a distinct trajectory from that caused by topography in
the Landsat TM bands (Figure 4), the pre- and post-
topographic correction training areas were examined in
a 3-band spectral space composite. Viewing the forest

TABLE 3  Land cover types and their dimensions within the Mt Naeba study area with and without topographic correction.

Dimension Built environment Beech Birch Mixed deciduous Cedar

Percentage of landscape

with correction 5 41 19 30 5

without correction 6 46 19 24 5

Area by class (ha)

with correction 493 3963 1833 2856 483

without correction 603 4428 1857 2264 476

Number of patches

with correction 165 500 1286 937 321

without correction 226 465 1108 778 213

Mean patch size (ha)

with correction 448 3747 1211 2477 400

without correction 525 4236 1236 1812 412
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clusters in Landsat bands 3–4–5 before the topographic
correction shows the spread-out beech forest classes and
more distinctly shows the 3 distinct clusters of birch. Fol-
lowing the topographic correction, the definitions
between clusters are lost and greater internal variability
may be attributed to such factors as forest age, canopy
density, and amount of understorey visible to the satel-

lite sensor. These factors may contribute to spectral vari-
ability independent of topographically induced variation
in the spectral reflectance properties of the deciduous
forest classes. In contrast, the mixed deciduous class
appears to exhibit less internal variability in the shape of
its cluster, but also undergoes the largest shift toward
the beech forest following topographic correction. The

FIGURE 3  Two-dimensional scatter plot of training site spectral data for forest classes within the Mt Naeba study area. a) Prior to topographic correc-
tion, showing birch (×), beech (×), cedar (+), and mixed deciduous (+) forests. b) After topographic correction. Spectral data displayed in Landsat TM
bands 4 and 5.

FIGURE 4  n-Dimensional visualization of training site spectral data for the classes of interest within the Mt Naeba study area in the central part of Hon-
shu, Japan. a) Prior to topographic correction, showing birch (×), beech (×), cedar (+), and mixed deciduous (+) forests. b) After topographic correction.
Axes displayed reflect Landsat TM bands.
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cedar forest training areas that represent both high- and
low-density stands form a defined spectral group with
high inter-class variability that does not become con-
fused with the deciduous cover types.

Forest classification accuracy and forest cover analysis
The forest cover classification accuracies range from 77
to 89%. Beech forest had the highest accuracy at 89%,
followed by cedar at 82%. The confusion matrix is
shown in Table 1. Some confusion between the beech
and birch cover types may exist, since the boundaries of
these classes do not necessarily form clear bona-fide
boundaries but rather grade together with the birch
replacing the beech through natural regeneration.

An analysis of the landscape structure metrics for
the forest classes shows that beech forest dominates the
landscape at 41%, followed by mixed deciduous
(29.5%), birch (19%), anthropogenic/urban (5.1%),
and cedar forest classes (5.0%). The total landscape
area patch metric shows that both the beech and mixed
deciduous forest classes have the largest numbers of
forest patches that have the larger mean patch sizes in
comparison to the other forest and land cover types fol-
lowing topographic correction (Table 3). Cedar forest
forms small patches, as it is planted in the study area.
These cedar forest patches are not the result of forest
fragmentation; rather, they are insertions into the forest
landscape. Figure 5 displays the final classification and
spatial locations of the forest cover types.

Implications for regional monitoring systems in
mountainous terrains
Landscapes that have been affected by both natural and
human disturbances are the forested landscapes of the
future. As satellite imagery is increasingly being used by
global and regional monitoring systems to characterize,
examine, and quantify remaining forest cover, it is
important to consider how LUCC processes can also
affect the ability to detect and classify forest cover types
using a given satellite imagery and image processing
methodology. A single method for accurately mapping
forest and land cover, over both small and large moun-
tain areas under varying LUCC pressures, may be diffi-
cult, as increased spectral variability among land cover
types may not be overcome by using conventional
image classification techniques, as a result of the com-
plex nature of the mountain environment.

LUCC studies using satellite imagery for classifica-
tion and monitoring purposes in mountain terrains
(Adams 1999) should be aware of the limitations of
attempting to use standardized vegetation classification
schemes and image classification methodologies for
regional/global forest cover mapping without examin-
ing the spectral variability of the land and forest types
of interest. As a result of variability in the spectral

reflectance among different forest cover types, high for-
est cover classification accuracies may not be achievable
when compared with studies in less disturbed, even-
aged forested areas from flat regions. A method for
assessing the spectral separability of the cover types is
crucial for determining what forest cover types can be
suitably represented in a forest cover classification
scheme and with what degree of relative accuracy.

Improved methods for managing intra- and inter-class
variability in the spectral response of forest cover types
require both a better understanding of the spatial and
temporal spectral responses of the vegetation types. As a
result of the high number of species that can occur in an
area and the phenological changes to the forest cover
types over a growing season, image classification method-
ologies will likely achieve high accuracy by optimizing
satellite image acquisition dates to time periods where
maximum separability can be achieved among forest cover
species. In the case of Mt Naeba, the optimal image acqui-
sition date for the study areas will likely occur in the fall
season, when one or more tree species begins to senesce
and change leaf color at different time periods.

Conclusion

This study suggests that Jeffries-Matusita distance and
the n-dimensional visualizer tools can aid in assessing

FIGURE 5  Spectral angle mapper (SAM) classification of the Mt Naeba
study area.
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the ability to select adequate training areas in develop-
ing a forest classification legend for a mountain ter-
rain that has undergone a significant amount of
change. The forest cover types with the greatest spec-
tral contrast as assessed with JM distance also achieve
the highest classification accuracy. Although topo-
graphic correction can be used to remove dominant
topographic effects that shade land cover types adja-
cent to mountain areas, it cannot reduce the internal
spectral variability of those cover types affected by for-

est industry thinning and harvesting activities. Local-
ized variation in the spectral properties of a forest cov-
er type that are the results of short- and long-term
human alterations can be managed using a compre-
hensive approach such as the one presented in this
paper. Such an approach ultimately leads to a refine-
ment of training areas for supervised classification
that in fact improve forest classification accuracy and
lead to a better characterization of a highly altered
mountain terrain.
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