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With increasing globalization,
trade, and human movement,
the rate of alien species
introduction has increased all
around the globe. In addition,
climate change is thought to
exacerbate the situation by
allowing range expansion of

invasive species into new areas. Predicting the distribution of
invasive species under conditions of climate change is important
for identifying susceptible areas of invasion and developing
strategies for limiting their expansion. We used Maxent modeling
to predict the distribution of one of the world’s most aggressive
invasive weeds, Ageratina adenophora (Sprengel) R. King and H.
Robinson, in the Chitwan–Annapurna Landscape (CHAL) of Nepal
under current conditions and 3 future climate change trajectories
based on 3 representative concentration pathways (RCPs 2.6, 4.5,
and 8.5) in 2 different time periods (2050 and 2070) using species
occurrence data, and bioclimatic and topographic variables.
Minimum temperature in the coldest month was the most
important variable affecting the distribution of A. adenophora.

About 38% (12,215 km2) of the CHAL area is climatically suitable

for A. adenophora, with the Middle Mountain physiographic region

being the most suitable one. A predicted increase in current

suitable areas ranges from 1 to 2% under future climate scenarios

(RCP 2.6 and RCP 8.5). All protected areas and 3 physiographic

regions (Siwaliks, High Mountain, High Himalaya) are likely to gain

climatically suitable areas in future climate scenarios. The upper

elevational distribution limit of the weed is expected to expand by

31–48 m in future climate scenarios, suggesting that the weed will

colonize additional areas at higher elevations in the future. In

conclusion, our results showed that a vast area of CHAL is

climatically suitable for A. adenophora. Expected further range

expansion and upslope migration in the future make it essential to

initiate effective management measures to prevent further

negative impacts of this invasive plant.
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suitability; invasive weeds; Maxent.

Peer-reviewed: March 2020 Accepted: June 2020

Introduction

Biological invasions, a major driver of global environmental
changes, are posing serious threats to global biodiversity and
ecosystem functioning (IPBES 2019). Climate change is likely
to further amplify the risks of biological invasions (Walther
et al 2009; Bradley, Wilcove, et al 2010). Biological invasions
and climate change act synergistically, and this synergistic
relation between the 2 parameters of global change has been
identified as a major threat to biodiversity (Dukes and
Mooney 1999; Walther et al 2009; Mainka and Howard 2010).
The profound negative impacts of invasive plant species on
the diversity of native species, soil dynamics, and ecosystem
processes, which cause ecological and economic losses, are
well known (Marbuah et al 2014; Villa and Hulme 2017;
Castro-Diez et al 2019). These impacts are likely to be further
exacerbated by climate change, enhancing traits that
promote invasiveness and creating a more hospitable climate

for invasive species to cross geographic barriers, thereby
facilitating range expansion in new areas (Dukes and
Mooney 1999; Stacowicz et al 2002; Walther et al 2009;
Bradley, Blumenthal, et al 2010; Bellard et al 2013). In
comparison to native plant species, parameters of global
change, such as increased temperature and CO2 enrichment,
enhance the performance of invasive species, imposing a
threat of further spread (Liu et al 2017). Therefore,
predicting the distribution of invasive weeds under climate
change scenarios and identifying the areas potentially at risk
are urgent needs for effective management planning to
minimize ecological and economic impacts.

A first step to identify the risk of invasions is to use
ecological niche models (ENMs) to predict suitable
ecological niches for a species across a landscape. These
relate documented presence records of the focal species with
the environmental or spatial characteristics of the potential
sites (Elith and Leathwick 2009; Franklin 2009). The niche
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concept is central to ENMs and is based on Hutchinson’s
(1957) concept of fundamental and realized niches (Araujo
and Guisan 2006). It is highly likely that an invasive species at
an early stage of invasion occupies only a small fraction (ie
realized niche) of the fundamental niche in the introduced
range, and there is always a risk of invasion in the
unoccupied part of the fundamental niche (Soberon and
Nakamura 2009). However, controversies persist over which
facets of the niche are projected by ENMs (Araujo and
Guisan 2006; McInerny and Etienne 2012). ENMs have been
gaining popularity and are widely used by ecologists in
invasive species risk assessments (Qin et al 2016; Suarez-Mota
et al 2016; Wan et al 2017; Shrestha et al 2018; Thapa et al
2018). Among different ENMs, Maxent is one of the most
popular species distribution modeling tools. This model uses
presence-only records and has been commonly used in
building habitat suitability maps for invasive species (Phillips
et al 2006; Merow et al 2013; West et al 2016; Lamsal et al
2018).

Among 124 countries, Nepal has the third highest threat
to agriculture sectors from invasive species (Paini et al 2016).
To date, 179 species of flowering plants are naturalized, and,
among them, 26 species are reported to be invasive in Nepal
(Shrestha 2019; Shrestha, Budha, et al 2019). The crofton
weed, Ageratina adenophora (Sprengel) R. King and H.
Robinson (Asteraceae), is one of the most noxious invasive
weeds in many parts of Asia, Oceania, and Africa. It has had
serious ecological impacts on native biodiversity and caused
enormous economic losses (Poudel et al 2019). It is ranked as
the most problematic invasive weed in Nepal (Tiwari et al
2005).

Though many studies have been carried out to investigate
the potential distribution of A. adenophora on broader spatial
scales in Nepal (Shrestha and Shrestha 2019), China (Wang
and Wang 2006; Wang et al 2017), the Himalayas (Lamsal et
al 2018; Thapa et al 2018), and South Africa (Tererai and
Wood 2014), there is a lack of such studies on smaller scales
where management strategies are implemented. One of the
most important landscapes in Nepal is the Chitwan–
Annapurna Landscape (CHAL), located in central Nepal.
CHAL harbors rich biodiversity due to its wide elevation
gradient (200–8091 m above sea level [masl]), diverse
topography, and climatic variations (subtropical to alpine)
(WWF 2013; MFSC 2016). Invasion by alien species has
already been recognized as a major threat to biodiversity in
CHAL (WWF 2013), and A. adenophora is the invasive weed
most prioritized by the local communities for management
in natural ecosystems due to its negative impacts on
biodiversity and livelihoods (Shrestha, Shrestha, et al 2019).
Therefore, there is an urgent need to recognize potential
areas of distribution of A. adenophora in CHAL under the
current climate and identify areas at risk of being invaded by
this weed under future climate scenarios.

In this study, we used the Maxent modeling tool to
predict the current and future potential distribution of A.
adenophora in CHAL using occurrence records from different
sources. The objective was to prepare habitat suitability
maps for the weed under current climatic conditions and
future climate scenarios (RCP 2.6, RCP 4.5, and RCP 8.5 in
the years 2050 and 2070) to identify the key environmental
factors influencing its distribution and areas at risk of
invasion. Information on its potential distribution will be
very useful for the scientific community and managers in

developing future monitoring and management strategies to
prevent further expansion of the weed in this landscape.

Methods

Study area

CHAL is located in central Nepal and covers 19 districts.
This landscape has a wide elevation gradient, ranging from
200 to 8091 masl, and covers an area of 32,057 km2 (WWF
2013). It spans 4 physiographic regions, namely, Siwalik,
Middle Mountain, High Mountain, and High Himalaya. They
have diverse climatic conditions, from subtropical in Siwalik
to alpine in the High Himalaya, and a cold and dry climate in
Trans-Himalayan regions. This geographic and climatic
diversity shapes the habitat and environmental conditions
for CHAL’s rich biodiversity, which includes more than 104
species of mammals (Bhuju et al 2007), 500 species of birds
(Baral and Inskipp 2005; Bhuju et al 2007), and 3430 species
of plants, with high levels of endemism and genetic diversity
(BPP 1995). Forests and grasslands are the main natural
ecosystems, occupying 35.5% and 8.6% of the landscape,
respectively, whereas 21.1% of the area is under agriculture
(WWF 2013). The region has a population of 4.5 million
people (CBS 2013). The average minimum and maximum
temperatures are 58C and 408C, and the average annual
rainfall ranges from 165 to 5244 mm (MFSC 2016). The
landscape includes portions of 4 globally recognized
ecoregions and comprises 3 national parks (Chitwan, Parsa,
and Langtang) and 2 conservation areas (Annapurna and
Manaslu) (MFSC 2016). Annapurna Conservation Area and
Chitwan National Park are among the sites with a high
number of visiting tourists (DNPWC 2018). Most of the lower
and mid-hill forests of this region are at risk of
fragmentation and conversion to other vegetation types due
to climate change (Thapa et al 2015). In comparison to the
eastern and western regions of Nepal, central Nepal, where
CHAL is located, hosts higher numbers of naturalized plant
species (Bhattarai et al 2014). The combination of diverse
natural environment along with anthropogenic disturbances
has made the region vulnerable to biological invasions (WWF
2013).

Study species

A. adenophora is native to Mexico but is established in 40
countries outside its native range (Poudel et al 2019). In
Nepal, 26 invasive plant species are reported, 20 of which
have been documented in the CHAL region, where A.
adenophora is the most problematic weed in natural
ecosystems, and its management is highly prioritized by local
people (Tiwari et al 2005; Shrestha 2019; Shrestha, Shrestha,
et al 2019). It was first reported in 1958, having been
accidentally introduced from the eastern border of India to
Nepal (Tiwari et al 2005). It covers a wide elevation gradient
of 400–3280 masl in Nepal (Siwakoti et al 2016). The ability
of A. adenophora to occupy a wide range of climatic habitats
and spread rapidly can be attributed to its phenotypic
plasticity, allelopathy, and ability to alter the soil microbial
community to favor its further invasion (Poudel et al 2019).
It has reduced forage supply, displaced native plant species,
causing loss of biodiversity, and prevented forest
regeneration in CHAL (WWF 2013; Shrestha, Shrestha, et al
2019).
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Species occurrence data

In total, 686 occurrence points were collected from different
sources. We noted 245 occurrence points from secondary
sources (Siwakoti et al 2016; Shrestha and Shrestha 2019).
The remaining 441 occurrence points were collected by the
first author during field visits in 2016–2019. Road networks
are the major conduit for dispersal of A. adenophora (Dong et
al 2008); therefore, occurrence data were mainly collected
through field surveys along roadsides and trekking routes
(Figure 1). This sampling bias was addressed by spatial
filtering of the data. Duplicate records of occurrence points
were deleted and spatially thinned using the spThin package
(Aiello-Lammens et al 2015) in the R software (version 3.4.4)
(R Core Team 2017), so that only 1 single location occurred
in each 1 km2 grid cell. Spatial filtering makes it possible to
reduce overfitting to sampling bias in ENMs (Boria et al
2014). In total, 403 occurrence records obtained after
filtering were used to build the models (Figure 1).

Environmental and bioclimatic variables

In December 2018, we downloaded 19 grid-based bioclimatic
variables that represent annual trends, seasonality, and
extreme climatic conditions from the WorldClim database
(version 1.4) (www.worldclim.org; Hijmans et al 2005) at a
spatial resolution of 30 arc-seconds (~1 km2) (Appendix S1,

Supplemental material, https://doi.org/10.1659/MRD-JOURNAL-
D-19-00069.1.S1). Elevation was obtained from the Shuttle
Radar Topographic Mission (SRTM) at 90 m spatial
resolution. This was then resampled into 30 arc-second
spatial resolution by using the nearest neighbor resampling
technique in ArcGIS (version 10.3). Slope and aspect rasters
of the study area were derived from the elevation data.

To predict climatically suitable areas in future climate
scenarios, we chose projections from the Community
Climate System Model (CCSM4) under b1 emission
scenarios, which are based on the fifth phase of the Coupled
Model Intercomparison Project5 (CMIP5) (Gent et al 2011).
We selected 3 greenhouse gas (GHG) emission scenarios, also
known as Representative Carbon Pathways (RCP 2.6, RCP
4.5, and RCP 8.5), for 2 different time periods (2050 and
2070) as adopted by the Intergovernmental Panel on Climate
Change in its Fifth Assessment Report (AR5) (IPCC 2013).
RCP 2.6, RCP 4.5, and RCP 8.5 represent the lowest, medium,
and highest emission scenarios, corresponding to a 1.08C,
1.4–1.88C, and 2.0–3.78C projected increase in global mean
surface temperature, respectively (van Vuuren et al 2011;
IPCC 2013).

The datasets were extracted for the study area (CHAL)
using the Spatial Analyst Tool and the Extraction Tool in
ArcGIS (version 10.3). These datasets were converted from

FIGURE 1 Study area, with elevation zone, major rivers, road networks, and occurrence locations of Ageratina adenophora in the Chitwan–Annapurna Landscape, Nepal.

(Source: Survey Department, Government of Nepal)
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raster format to ASCII files in ArcGIS. We repeated the
procedure to prepare the predicted distribution maps for
the 2 future climate scenarios (2050 and 2070).

Model building

Maxent (version 3.3.3) software was used to build the ENMs
(Phillips and Dudik 2008). Maxent is one of the most
commonly used habitat suitability modeling techniques. It
uses presence-only data and is widely used for invasive
species (Phillips et al 2006; Shrestha et al 2018; Maharjan et
al 2019). Maxent works well with incomplete or limited data,
so it can provide robust estimates of potentially suitable
habitats for invasive species at small spatial scales (Jarnevich
et al 2006; Jarnevich and Reynolds 2011; West et al 2016).

To reduce multicollinearity among predictor variables
(19 bioclimatic and 3 topographic variables) and overfitting
of the model, pairwise correlation analyses were performed
in R, and highly correlated variables with a Pearson’s
correlation coefficient �0.8 were removed (Appendix S2,
Supplemental material, https://doi.org/10.1659/MRD-JOURNAL-
D-19-00069.1.S1) (Merow et al 2013). While selecting one
variable from each pair of highly correlated variables (r2 .

0.8), special attention was paid to existing biological and
ecological insights into the species. Ultimately, 7 bioclimatic
variables—isothermality (Bio 3), minimum temperature of
the coldest month (Bio 6), temperature annual range (Bio 7),
precipitation of the driest month (Bio 14), precipitation
seasonality (Bio 15), precipitation of the warmest quarter
(Bio 18), and precipitation of the coldest quarter (Bio 19)—
and 2 topographic variables—aspect and slope—were used
as predictors to build the habitat suitability model.

The Maxent model used 75% of the data for training and
the remaining 25% for testing. We used a logistic format
because it improves model calibration by estimating the
probability of a species being present depending on
environmental variables (Phillips and Dudik 2008). A
convergence threshold of 10�5, a maximum iteration value of
5000, 15 replications with a replicated run type subsample,
and 10,000 random background points were used to build
the model. As a threshold rule, we chose tenth percentile
training presence on the basis of the area under the curve
(AUC) and true skill statistic (TSS). Tenth percentile training
presence omits the 10% of localities or training presence
records with the lowest predicted values (Radosavljevic and
Anderson 2014) and is highly conservative in estimating
species tolerance with respect to each climatic variable
(Svenning et al 2008). The remaining parameters were kept
at their default values.

We imported the Maxent output, which is continuous
data with values ranging from 0 to 1, into ArcGIS (version
10.3) and classified the map using the Reclassify Tool into 2
classes, suitable habitat and unsuitable habitat, on the basis

of a tenth percentile training presence logistic threshold. In
this way, a binary habitat suitability map was created for the
current and all future climate scenarios. We also calculated
the climatically suitable area for present and future climate
scenarios, as well as changes in suitable areas in terms of
gain, loss, and stable areas in the future under all scenarios in
ArcGIS. Data for physiographic regions and protected areas
were then clipped to projected maps with suitable areas for
current and future climate scenarios to calculate the suitable
areas in these physiographic regions and protected areas.
Changes in the upper and lower elevational distribution
range under future climate scenarios in comparison to
current were quantified using the Extraction Tool and
digital elevation model (DEM) raster for all maps, current
and future, in ArcGIS.

Model evaluation

Threshold-independent (area under the receiver operating
characteristic [ROC] curve [AUC]) and threshold-
dependent (TSS) measures of model accuracy were used to
evaluate model performance (Fielding and Bell 1997;
Allouche et al 2006; Franklin 2009). AUC values range from
0–1.0, with 0.5–0.7 considered low, 0.7–0.9 moderate, and
.0.9 high (Swets 1988; Manel et al 2001). The TSS value
ranges from �1 to þ1, where þ1 indicates a perfect
agreement, and 0 or less indicates a performance no better
than random (Allouche et al 2006). Marginal response
curves were used to visually investigate the relationship
between environmental variables (predictors) and the
predicted index of habitat suitability of A. adenophora. The
relative contribution of different predictor variables to the
Maxent model was assessed by the variable percentage
contribution and jackknife procedures (Elith et al 2011).
The jackknife test of variable importance helps to identify
those variables with important individual effects (Elith et al
2011). Two jackknife tests were taken into account. The
jackknife test of regularized training gain shows the
training gain of a variable when used in isolation and the
training gain of a variable when omitted, and it compares
these values to the training gain of all variables. Similarly,
the jackknife test of AUC based on the AUC of test data
shows the predictive performance of the variable when used
in isolation and the predictive performance of the variable
when omitted, and it compares these values with the AUC
value when all variables are used (Phillips 2017).

Results

Model performance and variable contribution

The current model for A. adenophora performed better than
random, with a mean training AUC value of 0.85, mean
test AUC value of 0.80, and a TSS value of 0.52 (Table 1).
Responses of each predictor variable are shown in the
response curve (Appendix S3, Supplemental material, https://
doi.org/10.1659/MRD-JOURNAL-D-19-00069.1.S1). Out of 9
predictor variables used for model building, minimum
temperature of the coldest month (Bio 6) contributed the
most (48.7%), followed by precipitation of the warmest
quarter (Bio 18). Aspect had the lowest contribution (2.9%)
(Table 2). Maxent’s jackknife test of variable importance
also showed that minimum temperature of the coldest
month (Bio 6) had the highest training gain and AUC,

TABLE 1 Model evaluation matrices.

Measures Value

Mean training AUC 0.85

Mean test AUC 0.80

TSS 0.52

R64Mountain Research and Development https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1

MountainResearch

Downloaded From: https://bioone.org/journals/Mountain-Research-and-Development on 21 Sep 2024
Terms of Use: https://bioone.org/terms-of-use

https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1.S1
https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1.S1
https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1.S1
https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1.S1


followed by precipitation of the warmest quarter (Bio 18)
when used in isolation (Figure 2). The response curve of
the variable minimum temperature of the coldest month
(Bio 6) showed that the probability that the weed will
occur below 18C was the lowest, increasing with increasing
minimum temperature (Appendix S3, Supplemental material,
https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1.S1).
In addition, the minimum temperature of the coldest
month of about 96% of the occurrence points used in
model building was above 08C (Appendix S4, Supplemental
material, https://doi.org/10.1659/MRD-JOURNAL-D-19-
00069.1.S1). Similarly, the response curve of precipitation
of the warmest quarter (Bio 18) indicated that the
probability the weed will occur increased with increasing
precipitation in the warmest quarter above 500 mm
(Appendix S3, Supplemental material, https://doi.org/10.1659/
MRD-JOURNAL-D-19-00069.1.S1).

Current potential distribution

Currently, 38% (12,215 km2) of the total area of CHAL is
suitable for A. adenophora (Figure 3; Table 3). All districts of
CHAL within the elevational range of 119–2824 masl had
climatically suitable areas for this weed. The most suitable
areas for A. adenophora were found to be in the Middle
Mountain physiographic region (75%), followed by Siwalik
(37%), High Mountain (29%), and High Himalaya (0.1%)
(Table 4). High Himalaya is hardly suitable for the weed, with
the fewest suitable areas found in the districts of Manang
and Mustang. Nonetheless, all districts of the CHAL region
were found to have climatically suitable areas. Because the
Middle Mountain and High Mountain regions had the most
suitable areas for the weed, we tried to observe the change in
climatically suitable areas in 3 protected areas situated in
these physiographic regions. Among the 3 protected areas—
Annapurna Conservation Area, Langtang National Park, and
Manaslu Conservation Area—Langtang National Park was
predicted to have the highest percentage of area suitable for
this weed (Figure 4).

Future invasion risk and change in habitat suitability

The predicted climatically suitable areas for A. adenophora
would increase under RCP 2.6 for the year 2070 and RCP 4.5
for both the years 2050 and 2070 (Figure 3; Table 3). The
highest increase (2%) in area of suitable habitat was
predicted for the year 2070 under RCP 2.6 and 4.5. This gain
in suitable areas was more prominent in districts like
Lamjung, Gorkha, Dhading, Makwanpur, Chitwan, and
Tanahun. However, an increase in radiative force (from RCP
4.5 to 8.5) would decrease climatically suitable areas for the
weed in both the years 2050 and 2070 (Figure 3; Table 3).

Though the suitable area was predicted to decrease in
extreme climate scenarios (RCP 8.5), the upper elevational
distribution limit would expand by 31 m and 42 m for the
years 2050 and 2070, respectively (Figure 5). Though a small
decrease (24 m) in upper elevation limit was predicted under

TABLE 2 Relative contribution of the environmental variables to the Maxent

model built for current climatic conditions.

Predictor variablesa)
Percentage

contribution

Permutation

importance

Bio 6 48.7 50.1

Bio 18 19.4 8.1

Slope 6.6 9.5

Bio 7 5.9 8.0

Bio 15 5.7 3.4

Bio 19 3.8 5.0

Bio 3 3.5 8.8

Bio 14 3.4 2.7

Aspect 2.9 4.3

a) Bio 3, isothermality; Bio 6, minimum temperature of coldest month; Bio 7,

temperature annual range (Bio 5–Bio 6); Bio 14, precipitation of driest month;

Bio 15, precipitation seasonality (coefficient of variation); Bio 18, precipitation

of warmest quarter; Bio 19, precipitation of coldest quarter.

FIGURE 2 Results of jackknife test of relative importance of predictor variables

for A. adenophora for the current distribution. (A) Jackknife of regularized training

gain. (B) Jackknife of AUC. Predictors used: Bio 3, isothermality; Bio 6, minimum

temperature of coldest month; Bio 7, temperature annual range; Bio 14,

precipitation of driest month; Bio 15, precipitation seasonality; Bio 18,

precipitation of warmest quarter; Bio 19, precipitation of coldest quarter; slope;

aspect.
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FIGURE 3 Predicted suitable area for A. adenophora in the Chitwan–Annapurna Landscape, Nepal, under (A) current scenario; (B) RCP 2.6 for the year 2050; (C) RCP

2.6 for the year 2070; (D) RCP 4.5 for the year 2050; (E) RCP 4.5 for the year 2070; (F) RCP 8.5 for the year 2050; (G) RCP 8.5 for the year 2070. For future climate

scenarios, likely stable, gain, and loss in areas are shown in bar graphs denoted by green, red, and yellow, respectively.
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RCP 2.6 in 2050, the highest increase of 48 m was expected
under RCP 2.6 for the year 2070 in comparison to current
climatic conditions. However, under the medium emission
scenario of RCP 4.5, the model predicted a contraction in
the upper elevational limit for both years 2050 and 2070. In
contrast, the lower elevation limit of A. adenophora would
either remain stable or contract in future climate scenarios
(Figure 5).

With climate change, all physiographic regions except the
Middle Mountain region were expected to gain climatically
suitable areas. Though a minimal loss in suitable areas was
predicted for Middle Mountain, this region will still contain
the most suitable areas for the weed, followed by High
Mountain, Siwalik, and High Himalaya, in all future climate
scenarios (Table 4). In 4 of the future climate scenarios—
RCP 2.6 in 2050 and 2070, and RCP 8.5 in 2050 and 2070—
Siwalik will gain climatically suitable areas. Except under
RCP 8.5 for the year 2050, High Mountain will also gain

suitable areas in all future climate scenarios. Furthermore,
under RCP 4.5 and 8.5 for the year 2070, the climatically
suitable area is also predicted to increase in High Himalaya.
Among all physiographic regions, the percentage gain in
suitable area was highest (2.4%) in Siwalik under RCP 8.5 for
the year 2050 (Table 4).

Like under current climatic conditions, in future climate
scenarios, Langtang National Park will have more suitable
areas than the other 2 protected areas (Figure 4). Under RCP
2.6 and 4.5 for both 2050 and 2070, climatically suitable areas
are predicted to increase in Annapurna Conservation Area,
whereas under extreme climate scenarios, it will lose some
suitable areas. For Langtang National Park, climatically
suitable areas will increase under RCP 2.6 and 8.5 for both
years, but not under RCP 4.5 (likewise for both years). For
Manaslu Conservation Area, a remarkable gain in suitable
areas is predicted only under RCP 8.5 for the year 2070.

Discussion

This study is the first to predict current and future suitable
habitat for A. adenophora in CHAL, Nepal. The model
evaluation parameters (AUC and TSS) obtained for our
models both lie within a range that confirms the robustness
of the models (Table 1): AUC values above 0.8 and TSS values
closer to 1 are considered to be acceptable (Swets 1988;
Manel 2001; Allouche et al 2006). Though our study did not
include a model transferability assessment, this would
provide valuable information for model validation as well as
model selection (Wenger and Olden 2012).

Climatic factors, such as temperature and precipitation,
play a pivotal role in determining the pathways and success
of plant invasions (Kathiresan and Gualbert 2016; Wang et al
2017). Our predictions suggest that the minimum
temperature in the coldest month is the most influential
factor for the distribution of A. adenophora. This is in line
with the findings of other researchers (Wang and Wang 2006;
Zhu et al 2007; Wang et al 2017; Lamsal et al 2018; Thapa et
al 2018; Datta et al 2019). According to our model, the
minimum temperature in winter (Bio 6) alone contributes

TABLE 3 Predicted climatically suitable area for A. adenophora under current and

future climate scenarios in the Chitwan–Annapurna Landscape, Nepal.

Scenariosa)
Suitable

area (km2)

Suitable

area (%)

Change in

suitable

area (%)

Current 12,215 38

RCP 2.6, 2050 12,113 38 0

RCP 2.6, 2070 12,758 40 2

RCP 4.5, 2050 12,385 39 1

RCP 4.5, 2070 12,889 40 2

RCP 8.5, 2050 11,836 37 �1

RCP 8.5, 2070 11,823 37 �1

a) RCP 2.6 (2050 and 2070), Representative Carbon Pathway 2.6 (lowest

emission scenarios) for years 2050 and 2070; RCP 4.5 (2050 and 2070),

Representative Carbon Pathway 4.5 (medium emission scenarios) for years

2050 and 2070; RCP 8.5 (2050 and 2070), Representative Carbon Pathway

8.5 (highest emission scenarios) for years 2050 and 2070.

TABLE 4 Predicted suitable area for A. adenophora in different physiographic

regions of the Chitwan–Annapurna Landscape, Nepal.

Scenariosa)

Suitable area (%)

Siwalik

Middle

Mountain

High

Mountain

High

Himalaya

Current 36.56 75.09 29.25 0.09

RCP 2.6, 2050 36.33 73.83 30.14 0.07

RCP 2.6, 2070 37.70 77.90 31.81 0.09

RCP 4.5, 2050 34.06 76.00 31.63 0.10

RCP 4.5, 2070 36.29 78.65 33.38 0.10

RCP 8.5, 2050 43.28 71.13 26.77 0.07

RCP 8.5, 2070 40.15 70.53 29.65 0.15

a) RCP 2.6 (2050 and 2070), Representative Carbon Pathway 2.6 (lowest

emission scenarios) for the years 2050 and 2070; RCP 4.5 (2050 and 2070),

Representative Carbon Pathway 4.5 (medium emission scenarios) for the years

2050 and 2070; RCP 8.5 (2050 and 2070), Representative Carbon Pathway

8.5 (highest emission scenarios) for the years 2050 and 2070.

FIGURE 4 Change in suitable areas of A. adenophora in different protected areas

of the Chitwan–Annapurna Landscape, Nepal, under current and future climate

scenarios.
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about 49% to the habitat suitability model (Table 2), and the
probability of occurrence of the weed decreased to almost 0
below the minimum winter temperature of 18C (Appendix
S3, Supplemental material, https://doi.org/10.1659/MRD-
JOURNAL-D-19-00069.1.S1). This indicates that the
occurrence of this weed in high mountains is constrained by
the lower minimum winter temperature, which is supported
by observations in India, where the low temperature in
winter limits the uppermost distribution range of A.
adenophora (Datta et al 2017).

Our ENMs were built based on the occurrence data of
invaded regions only, which indicates that the potential
niche that we estimated is part of the fundamental niche of
the species (Elith and Leathwick 2009; Soberon and
Nakamura 2009). Moreover, factors such as biotic
interactions and dispersal limitations also restrict the species

from occupying its full potential niche (Soberon and
Nakamura 2009). Thus, use of occurrence data from both
native and invaded ranges would provide a more accurate
estimate of the potential niche of the species (Jimenez-
Valverde et al 2011).

In current climatic conditions, as well as in future climate
scenarios, Middle Mountain is found to have more
climatically suitable areas for A. adenophora compared to
other physiographic regions. The elevation of the Middle
Mountain region ranges from 1000 to 2500 masl (DHM
2017), which lies within the suitable range for the
distribution of this weed (Wang and Wang 2006; Zhu et al
2007). A recent study that modeled the distribution of 24
invasive alien plants in Nepal also identified the Middle
Mountain region as having a particularly large area of
invasion hotspots, with suitable areas for the greatest
number of species studied (Shrestha and Shrestha 2019).
Displacement of native species, such as Artemisia indica and
Urtica dioca, and reduction of the ground vegetation layer of
Digitaria sp., Eragostris sp., and Imperata cylindrica by A.
adenophora have already been observed in the Middle
Mountain region (Tiwari et al 2005; Baral et al 2017).
Therefore, this region requires the urgent attention of
policymakers and land resource managers to implement
effective management plans to prevent further spread of this
weed. In contrast, the High Himalaya region is unsuitable for
the weed because this region has a low minimum winter
temperature (�108C to 58C) and low annual precipitation
(400–1000 mm) (DHM 2017), which limit the distribution of
the weed (Datta et al 2017). Most of the current areas
predicted to be suitable for A. adenophora were found along
road verges and river networks, which is in accordance with
a study conducted in China (Wang and Wang 2006). These
river and road networks enhance the rapid spread of A.
adenophora (Dong et al 2008; Sang et al 2010). Therefore,
control and monitoring efforts for the management of this
weed should be focused on areas near rivers and roads.

There is growing evidence that climate change is likely to
increase the risk of plant invasions, creating more suitable
areas in the future (Bradley, Wilcove, et al 2010). Our
projections also showed an increase in climatically suitable
areas for A. adenophora in the future. The weed will gain
suitable areas in 3 future climate scenarios: RCP 2.6 (2050)
and RCP 4.5 (2050 and 2070). A recent study also reported
that climatically suitable niches for A. adenophora would
expand by 5.3% under RCP 6.0 in Nepal (Shrestha and
Shrestha 2019). Studies in other parts of the world have also
predicted the expansion of climatically suitable areas for A.
adenophora in future climate scenarios (Wang and Wang 2006;
Zhu et al 2007; Wang et al 2017; Lamsal et al 2018; Thapa et
al 2018). However, a study conducted in Bhutan predicted a
contraction of suitable areas for A. adenophora by 0.22% in
2050 (Thiney et al 2019). An experimental warming study
conducted in China revealed that warming (28C rise)
increased biomass allocation and canopy cover of the weed,
making it more stress tolerant (He et al 2012). Similarly, CO2

enrichment was also reported to increase the relative growth
rate and biomass allocation of the weed (Lei et al 2012).
Thus, an increase in suitable areas in future climate
scenarios with increased temperature and CO2

concentration can be attributed to the innate and
evolutionarily increased ecophysiological tolerances of A.
adenophora favoring its growth (Blossey and Notzold 1995; He

FIGURE 5 Change in upper and lower elevation range of A. adenophora in future

climate scenarios compared to current conditions. (A) Year 2050. (B) Year 2070.
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et al 2012; Lei et al 2012). Although, under extreme climate
scenarios (RCP 8.5), a loss in total climatically suitable areas
is predicted, the weed will still thrive and gain suitable areas
in protected habitat and physiographic regions. Districts like
Lamjung, Gorkha, Dhading, Makwanpur, Chitwan, and
Tanahun are predicted to be vulnerable to further invasion
by the weed due to climate change, so it is crucial to
implement scientifically informed site-specific management
policies, with the participation of local communities.

Despite its apomictic nature, with the associated
evolutionary constraints, niche expansion has been observed
in A. adenophora (Datta et al 2019). In addition, the weed is
found to exhibit phenotypic plasticity that helps it to occupy
a broader climatic niche (Zhao et al 2012). Our future
climate models also demonstrate an expansion of the upper
elevational distribution limit of the weed. Our results
confirm findings in the Western Himalaya, where the weed
was predicted to expand its upper elevational limit by 981 m
compared to current climatic conditions (Thapa et al 2018).
This indicates that the weed will spread toward cooler and
drier regions in future. A similar trend was observed in a
study of spatiotemporal patterns in China (Zhu et al 2007).
Increased cold tolerance due to epigenetic modifications
might help the weed to gain more suitable habitats in cooler
and drier places at high elevations (Xie et al 2015). With
climate change, all 3 protected areas will gain areas of
potential suitable habitat. Though the weed has already been
identified as the most problematic weed in Annapurna
Conservation Area, impacting native diversity and
livelihoods (Thapa and Maharjan 2014), no such studies have
been carried out in Langtang National Park and Manaslu
Conservation Area. Upward movement and colonization of
A. adenophora due to recent climate changes have already
been observed in Langtang National Park (Lamsal et al 2017).
Our model also predicted that Langtang National Park has
the highest proportion of climatically suitable areas in
current climatic conditions and will continue to do so in
future climate scenarios. A range shift of A. adenophora might
threaten the habitat of 2 endangered animals, Ailurus fulgens
(red panda) and Moschus chrysogaster (Himalayan musk deer),
in Langtang National Park (Lamsal et al 2017). Thus, this
information should act as a prompt for land managers, the
scientific community, conservationists, and policymakers to
adopt precautionary measures and formulate effective
policies to prevent the further spread of this weed into new
regions.

Taking climatic and topographic factors into
consideration, our model predicted elevational range
expansion, as well as an increase in suitable areas in future
climate scenarios. However, other factors, such as biotic
interactions, dispersal ability, demography, evolution,
adaptation, and land-use change, also play key roles in
determining the species range shift with climate change
(Sinclair et al 2010; Urban et al 2016). Furthermore, long-
term temporal predictions in climate change scenarios are
associated with 2 other main errors. The first is the
extrapolation of data beyond the training range to
nonanalogue environmental conditions (climate change
scenarios), which might make predictions unreliable
(Fitzpatrick and Hargrove 2009). Another risk is that, as the
relationship between climatic variables could change with
time, the correlation structure of current and future climate
variables might also change, thus reducing the certainty of

models (Dormann et al 2013). To overcome these
uncertainties and achieve more realistic predictions of
species distribution, all factors, abiotic and biotic, that shape
the distribution of invasive species should be incorporated
in the species distribution models (Gonzalez-Salazar et al
2013; Leach et al 2016). Nevertheless, ENMs provide
predictive information on species distribution required by
vegetation managers and conservation practitioners for
developing effective strategies to prevent further invasion
(Peterson 2003). Thus, our study provides useful information
about the current distribution of A. adenophora and identifies
areas that may be at risk in the future on a local scale,
demonstrating the urgent need for formulating effective
management strategies to mitigate the impact of the weed.

Conclusions and management recommendations

Our study suggests that A. adenophora could spread further
under future climate scenarios while retaining most of the
currently suitable areas. Among the 4 physiographic regions
in CHAL, the Middle Mountain region currently has the
highest proportion and the High Himalaya region currently
has the lowest proportion of climatically suitable areas for A.
adenophora, and this is projected to continue under future
projected climate scenarios. Similarly, Langtang National
Park contains a higher percentage of areas suitable for the
weed compared to the other 2 protected areas under current
and future climate scenarios. All protected areas will gain
additional suitable areas in future climate scenarios.
Furthermore, it is predicted that the weed will expand its
distribution range to higher elevations in future climate
scenarios; this will amplify the consequences of climate
change, which is already impacting these areas. For
physiographic regions (Siwalik and High Himalaya) and
protected areas (Manaslu Conservation Area) that have few
suitable areas for invasion, regular inspection of habitats is
needed to allow effective action to be taken in time to
prevent further expansion of the weed. Management
strategies for smaller and accessible invaded areas could
either be mechanical control, for example, by hand pulling,
or chemical control, by using herbicides (Parsons and
Cuthbertson 2001; Di Tomaso et al 2013). Local communities
in Nepal use A. adenophora for cattle bedding, composting,
and also for making bio-briquettes (Tiwari et al 2005; Baral
et al 2017; Shrestha, Shrestha, et al 2019); these cultural
control methods can also be employed to manage the weeds,
as long as precautions are taken to prevent seed dispersal.
However, for regions like Middle Mountain and protected
areas like Langtang National Park that have large areas at
risk of invasion, effective management options, such as an
integrated weed management approach, must be adopted
and implemented along with regular monitoring of suitable
habitats. By identifying areas that are potentially at risk in
the future, our study constitutes a helpful resource for
managers and policymakers to take appropriate and timely
action to minimize the risk of invasion by A. adenophora
associated with climate change.
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