Vulnerability and the Erosion of Seismic Culture in Mountainous Central Asia

Authors: Sarah J. Halvorson, and Jennifer Parker Hamilton

Source: Mountain Research and Development, 27(4) : 322-330

Published By: International Mountain Society

URL: https://doi.org/10.1659/mrd.0900
Vulnerability and the Erosion of Seismic Culture in Mountainous Central Asia

Sarah J. Halvorson and Jennifer Parker Hamilton

The damage and upheaval associated with major earthquakes in highland Central Asia exacerbate already challenging social and material realities. Present challenges are associated with several observable trends: 1) the destabilizing nature of colonial/post-colonial experiences and current geopolitical tensions; 2) intense internal struggles that manifest themselves in civil wars, violence, and weak institutions; 3) increasing dependency of local communities on the global economy via wage labor, markets, and foreign capital; 4) rapidly expanding urban construction and transportation networks to facilitate industrial development and global tourism; and 5) population pressures at lower elevations which drive the expansion of settlements into marginal areas and landslide-prone slopes (Kreutzmann 1995; Halvorson 2005; Jackson 2006; Olimova and Olimov 2007). The socio-environmental insecurities associated with these trends, as well as local struggles over access to natural resources and basic services, are intensified by earthquake disasters (IFRC 2006). These phenomena ultimately have implications for survival and sustainability in places facing post-earthquake reconstruction.

Against this complicated background, the present article examines factors that contribute to the high levels of vulnerability to seismic hazards in Central Asia. The factors addressed here include: diminishing levels of indigenous hazard knowledge; demographic shifts; gendered livelihood transformations; and the lack of public access to science-based earthquake information. We argue that the interactions between these complex factors are leading to the slow erosion of what Degg and Homan (2005) term “seismic culture.” A seismic culture is one in which adaptations to seismic hazard become ingrained in society through knowledge sharing, indigenous building practices, vernacular architecture, and so forth (EUCCH 1993; Degg and Homan 2005). We use the notion of seismic culture as a broad concept that encompasses a range of cultural adaptations to seismic risk and hazard. We further bring the mountain-based experiences of women to bear on the relationship between vulnerability and seismic culture by underscoring women’s roles in reducing seismic risk and “building the resilience of nations and communities to disaster” (UNISDR 2005, p 1).

Methodology

This article draws on an analysis of empirical data collected as part of a research project on the geological and societal impacts of earthquakes conducted in the predominantly Muslim cultural realm encompassed by the Tien Shan, Pamir, Hindu Kush, Karakoram, and Western Himalaya ranges. The methodology included: (1) monitoring seismic events and related disasters;
conducting field-based visual surveys and assessment campaigns in Kyrgyzstan, Tajikistan, and Pakistani administered Kashmir between 2004–2007; (3) carrying out 40 interviews with Kashmir Earthquake survivors in May–June 2006 and numerous informal conversations with disaster management personnel, aid and relief workers, development practitioners, educators, government representatives, and community leaders throughout the research setting; and (4) an extensive analysis of secondary data sources such as international and regional media accounts, government and military documents and policy statements, and non-governmental organization (NGO) reports.

The difficult field conditions associated with the rugged terrain of this earthquake-prone area presented significant logistical challenges in terms of field data collection and access. Hence, the combination of methods was critical for advancing understanding of the root causes of vulnerability to earthquakes in this geographical context as well as exploring risk and exposure, protective measures, and women’s roles in building community resilience.

Theorizing earthquake vulnerability

Vulnerability has received a substantial amount of scholarly attention in recent years (Cutter 1996; Hewitt 1997; Comfort et al 1999; Lewis 1999; Bankoff et al 2004). However, relatively few empirical studies examine the specifics of earthquake vulnerability in Central Asia. Here, vulnerability is taken to mean “the characteristics of a person or group and their situation that influence their capacity to anticipate, cope with, resist and recover from the impact of a natural hazard” (Wisner et al 2003, p 11). The central concern of this vulnerability analysis is the deeper-rooted political, cultural, and economic factors that influence overall societal exposure and susceptibility to seismic hazard.

Compounding vulnerability in Central Asia are the intense armed conflicts and political tensions that have undermined economies and destabilized social systems. War and conflict create a “dynamic pressure” (Wisner et al 2003) that interacts with earthquake hazards in several complex ways. They contribute significantly to the creation of special groups at risk such as the maimed and disabled (e.g., in relation to landmines) and the displaced. Second, vital infrastructure, local and national institutions, and communication systems are destroyed or fall into disarray. The defense-driven isolation and physical effects of war on disintegrating rural infrastructure in Afghanistan and Tajikistan are clearly profound. Moreover, political insecurities can disrupt everyday livelihood and family activities. Even in post-earthquake situations such as in Kochkor, Kyrgyzstan in December 2006, government attempts to control political demonstrations interfered with the provision of relief and recovery assistance (IFRC 2007).

In addition, vulnerability in the earthquake disaster process is fundamentally shaped by social divisions drawn along gender, class, clan, age, religion, and/or ethnic lines (Wisner et al 2003). As with environmental hazards in general, the differential vulnerability of women in particular is evident in the injury and mortality data associated with recent events (IFRC 2006). Seager (2005, pp 29–30) notes, “In the 1995 Kobe (Japan) earthquake, one and a half times more women died than men; in the 1991 floods in Bangladesh, 5 times as many women as men died; in the Southeast Asia 2004 tsunami, death rates for women across the region averaged 3 to 4 times that of men.” These figures underscore the ways in which women experience disproportionate levels of risk and impact owing to spatial location, patriarchy, gendered social structures, and political marginalization (Enarson and Morrow 2000; Chew and Ramdas 2005).

The data collected for this study suggest that during earthquake disasters women’s vulnerability is apparent in the following ways: they are more likely than men to die as a direct result of a seismic event; they are at increased risk of physical violence and domestic abuse following an earthquake; they do not have access to equal levels of healthcare as men; they may be denied relief aid or compensation for losses if male family members are not present to navigate the available aid channels; and they suffer from voicelessness in the political process of recovery and reconstruction (see also Hamilton and Halvorson 2007, in this issue). When women are forbidden to interact with men outside of their families in Afghanistan and northern Pakistan, they can be systematically marginalized from relief and food distribution. Where women are in their life course—that is, infancy, adolescence, pregnant or lactating, widowhood, elderly, and disabled—dramatically shapes exposure and susceptibility to damage, injury, or death. Widespread poverty (Kreutzmann 2001; Papola 2002) in combination with a highly patriarchal social structure that places constraints upon women’s lives and mobility (Ishkanian 2003; Halvorson 2005; SGWRC 2006) results in women being least likely to have access to information prior to an earthquake. Similarly, women are the least likely to have a place to go in case of an evacuation; when given a safe place to go to, they are the least likely to have the means to get there.

We attach particular importance to women’s vulnerability in earthquake disasters because it is too often forgotten or unacknowledged. Since the 2002 “Celebrating Mountain Women” International Conference held in Thimphu, Bhutan, greater attention has been drawn to the vulnerability and resilience of mountain women in the face of natural hazards and disasters. In
recognizing the importance of women in earthquake response and reconstruction, communities, governments, and international agencies stand to gain key allies in their efforts to understand the elements of seismic culture in Central Asia and how seismic culture might be reinforced in ways that reduce vulnerability.

Characteristics of earthquake disasters in highland Central Asia

The characteristics of recent earthquake disasters in highland Central Asia and their consequences at local and regional levels are comparable to and illustrative of many earthquake-prone areas elsewhere in the world. Careful research has advanced scientific understanding of the dynamic processes associated with the high-energy tectonic collisions between the Eurasian, Arabian, and Indian plates (Dricker et al 2002; Cuiping et al 2003). Despite the progress in analyzing the seismic threat in Central Asia, mountain communities remain vulnerable to earthquake disasters.

Table 1 presents a listing of selected earthquakes and associated losses. Owing to the high relief and unstable geological structures, the secondary hazards triggered by earthquakes often cause large-scale environmental change and loss of life. This process was evident in October 2005 in Afghanistan and northern Pakistan, as hundreds of landslides disrupted critical infra-

<table>
<thead>
<tr>
<th>Country</th>
<th>Region</th>
<th>Date</th>
<th>Magnitude</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Hindu Kush</td>
<td>3 Apr 2007</td>
<td>6.2</td>
<td>0</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Kyrgyzstan–Tajikistan border</td>
<td>8 Jan 2007</td>
<td>5.9</td>
<td>0</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>SE of Bishkek</td>
<td>26 Dec 2006</td>
<td>5.8</td>
<td>0</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Khatlon District</td>
<td>29 Jul 2006</td>
<td>4.5</td>
<td>3</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>Hindu Kush</td>
<td>12 Dec 2005</td>
<td>6.5</td>
<td>5</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Kashmir</td>
<td>8 Oct 2005</td>
<td>7.6</td>
<td>86,000</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>Hindu Kush</td>
<td>5 Apr 2004</td>
<td>6.6</td>
<td>3</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Kyrgyzstan–Xingjiang border</td>
<td>25 Dec 2002</td>
<td>5.7</td>
<td>0</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Kashmir</td>
<td>20 Nov 2002</td>
<td>6.3</td>
<td>19</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>Hindu Kush</td>
<td>25 Mar 2002</td>
<td>6.1</td>
<td>1000</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>Hindu Kush</td>
<td>3 Mar 2002</td>
<td>7.4</td>
<td>166</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Afghanistan–Tajikistan border</td>
<td>30 May 1998</td>
<td>6.6</td>
<td>4000</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>Afghanistan–Tajikistan border</td>
<td>4 Feb 1998</td>
<td>5.9</td>
<td>2323</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Northern Pakistan</td>
<td>28 Dec 1974</td>
<td>6.2</td>
<td>5300</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Khait</td>
<td>10 Jul 1949</td>
<td>7.5</td>
<td>12,000</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>Ashgabat</td>
<td>5 Oct 1948</td>
<td>7.3</td>
<td>110,000</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Off coast</td>
<td>27 Nov 1945</td>
<td>8</td>
<td>4000</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Quetta</td>
<td>30 May 1935</td>
<td>7.5</td>
<td>30,000</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Sarez</td>
<td>18 Feb 1911</td>
<td>7.4</td>
<td>90</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Chong-Kemin</td>
<td>3 Jan 1911</td>
<td>7.8</td>
<td>450</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Qaratog</td>
<td>21 Oct 1907</td>
<td>8.0</td>
<td>12,000</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>Eastern Uzbekistan</td>
<td>16 Dec 1902</td>
<td>6.4</td>
<td>4700</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Almaty</td>
<td>8 Jun 1887</td>
<td>7.3</td>
<td>0</td>
</tr>
</tbody>
</table>
structure, destroyed agricultural land, and buried villages. The Hattian Bala landslide, recorded to be over one kilometer long and over 200 meters wide, was of massive proportions (Owen et al 2007). Within seconds, 4 villages with approximately 450 residents were overtaken and completely buried in landslide debris. The landslide created dams that blocked 2 drainages of the Jhelum River and led to the formation of 2 potentially hazardous lakes (Owen et al 2007).

In addition to reworking landscapes, recent earthquakes have dramatically reconfigured community dynamics. These calamities have torn families apart through sudden death and traumatic separation. One of the most striking examples of destruction is the city of Balakot, which was 80 to 90% destroyed during the Kashmir Earthquake (Figure 1). Cases of severe physical suffering and psychological stress associated with extremely trying post-disaster situations have been documented (Chew and Ramdas 2005). Families found themselves dramatically uprooted from their land and resource base; in some cases they became landless internally displaced refugees and were forced to relocate to urban centers that lacked the capacity and social services to absorb large numbers of earthquake victims. For example, the remote town of Rostaq, Afghanistan, with 10,000 residents, experienced a population increase of nearly 50% following the earthquake on 4 February 1998, which destroyed nearly 30 mountain villages. The Kashmir Earthquake experience has dramatically underscored the challenges of coordinating relief operations (Hicks and Pappas 2006; Ozerdem 2006) and addressing the needs of displaced populations (UNFPA 2006).

Given the lack of building codes and/or their enforcement in the countries of Kyrgyzstan, Tajikistan, Afghanistan and Pakistan, even relatively minor earthquakes have the potential to be disastrous. For example, 2 relatively localized earthquakes, magnitude 4.5 and 5.0 respectively, struck Tajikistan on 29 July 2006. Ten settlements with a population of over 21,000 in Kumsangir District, Khatlon Oblast were affected as many structures collapsed. Although the death toll was low (3 deaths), 2651 houses were partially or totally destroyed. The damage, estimated at US$ 22 million, received little attention from international media despite the crippling effect on already poor infrastructure and a weak regional economy.

The overall lack of resources, building codes, construction standards, and earthquake-resistant engineering methods has produced a seismically vulnerable built environment. Following the December 2006 earthquake in Kyrgyzstan, for example, government allocations of funds to construct dwellings were insufficient to construct seismically appropriate houses (IFRC 2007). Contributing to these unsafe building conditions is the lack of available economic resources among the population. Levels of poverty and economic hardship are pronounced. The per capita GDP for Afghanistan, Tajik-
isti, Kyrgyzstan, and Pakistan, respectively, is US$ 218, US$ 360, US$ 464, and US$ 697 per year (UNSD 2007). The Kashmir Earthquake further revealed the scale of human vulnerability as structures such as schools, hospitals, health centers, and government offices catastrophically failed (EERI 2006). Hospitals and health centers were destroyed exactly when they were desperately needed during the chaotic aftermath. Pakistan’s building codes were adopted in 1986 yet were not enforced before the Kashmir Earthquake (Ghauri 2006, Khan 2007).

Factors contributing to the erosion of seismic culture
The analysis of data underscores several interrelated factors—diminishing levels of indigenous hazard knowledge, demographic shifts, gendered livelihood transformations, and the lack of public access to earthquake information—that interact in ways that reduce the capacity of mountain communities to resist or to recover from the harmful impacts of earthquakes.

Diminishing levels of indigenous hazard knowledge
Recent earthquake disasters have exposed evidence of diminishing levels of indigenous hazard knowledge. Knowledge specifically about geophysical hazards and approaches to coping with the high levels of seismicity is evident in indigenous building practices and vernacular architectural styles (Ambrosey et al 1975; Davis 1984; Spence and Coburn 1984; Szabo and Barfield 1991; Dekens 2007; Gardner and Dekens 2007). The traditional timber-laced construction pattern and stone masonry, for example, proved highly resistant to the earth movements caused by the Kashmir Earthquake (Rai and Murty 2006). Acquired from ancestors and personal experiences, the hazard knowledge base is embedded in local traditions, skills, and culture. Unfortunately, traditional approaches to home construction are being gradually replaced by “modern” architectural styles that rely less on indigenous engineering practices sensitive to seismic loading and more on quick construction and cheaper materials. An extremely dangerous situation is created as families forgo structural soundness in exchange for a modern appearance. The combination of modernization, urbanization, and shifts in housing preferences is producing communities that are dominated by these shoddily built undressed stone or cinderblock and mortar dwellings without sufficient reinforcements and the structural integrity needed to withstand extreme shaking (Zoback 2004). As Coburn and Spence (2002) and Wisner et al (2003) point out, these very elements of design and quality of construction are crucial for minimizing death and injury. Clearly, those we interviewed in northern Pakistan would like to see these seismic risk reduction measures adopted during post-earthquake rebuilding. As echoed by one male teacher near Muzaffarabad, “new buildings should be earthquake-resistant. Japan has large earthquakes and their buildings survive. Our construction should be similar to theirs.”

Adding to the diminishment of indigenous seismic knowledge is the fact that the strong systems of self-reliance and kinship and friendship networks utilized in house construction are increasingly being replaced by contractors who provide housing for payment. Individuals in low income categories, recent migrants, refugees, and women as a whole tend to have little to no role in designing and building the dwellings in which they live or in ensuring that construction meets codes.

Another important area in which seismic culture is diluted is in the realm of indigenous monitoring of earthquake indicators. Women and men we met in northern Pakistan reported observing anomalous animal behavior in the days and hours preceding the earthquake. These types of behavior included birds flocking and leaving the area the day prior to the earthquake and normally docile buffalos breaking chains and escaping just hours before the earthquake struck at 8:50 AM. While similar earthquake indicators have been examined elsewhere in Asia (Tributsch 1984; Ikeda 2004), our observations suggest that little credence is given to locals’ intimate knowledge and careful monitoring of physical surroundings and behavioral changes in animals. Interestingly, in Tajikistan scientists have successfully forecasted impending natural disasters using a set of natural cues; however, the Western scientific approach to disaster risk reduction tends to place the role of these macro-anomaly earthquake precursors in the realm of quackery.

Demographic shifts
The demographic picture of the region, especially the relatively young age of the population, has contributed to the erosion of seismic culture in several ways. All 4 countries of focus have low median ages: 23.9 years in Kyrgyzstan; 19.2 years in Tajikistan; 16.4 years in Afghanistan; and 20.3 years in Pakistan (UNDESA 2007). The relatively young age of the population influences the level of preparedness, planning, response, and recovery capacity of mountain communities. A significant portion of the population lacks experience and skills that would, first, help quell fears and encourage hope among earthquake victims that people have survived these events in the past; and second, serve as guides for what to do to stay alive or, at the very least, propagate what strategies worked in the past to help mitigate earthquake damages. Such experiences, skills, and memories are fundamental to the development,
maintenance, and transmission of seismic culture. Our research suggests that hazard-related information is typically held and shared by elders and passed on orally to younger generations. One Kashmir Earthquake survivor commented, “children didn’t previously, but now they ask why the earthquake happened so we [the teachers] talk about it.” Yet, the trends in migration, human movement, and social change (Olimova and Olimov 2007) imply the uprooting and relocation of younger segments of the population with an overall erosive effect on cultural adaptations to seismic exposure.

Gendered livelihood transformations
Another important factor affecting earthquake vulnerability is gender dimensions of livelihood transformations. Mountain-based livelihood strategies are being fundamentally reoriented within the global economy (Kreutzmann 1995; Pandey and Misnikov 2001; Breu et al 2005). As such, the high rates of poverty noted above (eg, 64% of the population in Tajikistan live below the poverty line), unemployment, and increasing pressures for cash have encouraged men and boys to seek employment elsewhere in the region, in distant urban areas, or overseas. The result is that the outmigration of men from rural communities is now commonplace.

On the local level, the effects of male off-farm employment and male outmigration in weakening seismic culture in Central Asia are manifold. First, there is a marked increase in women’s agricultural and household responsibilities given the absence of men. Women are left with little or no time for supervising house construction let alone community organizing or attending disaster preparedness information sessions. Second, there is a concomitant draining of skills, such as in the areas of literacy and community leadership, and able-bodied men to engage in physically demanding construction (and after an earthquake, in rescue and recovery work). This loss of skills and manpower affects all social and economic sectors, particularly the capacities to cope with disasters. We have found that post-earthquake health problems have been exacerbated by the sheer lack of residents trained in first aid and emergency medical assistance. Third, livelihood transformations affect demographic shifts as well. Communities become dominated by women, the young and the old, and their mere spatial location places them more at risk to seismic impact. And fourth, men who have left rural areas indefinitely to pursue opportunities in urban centers may gain access to skills, training, and knowledge, yet fail to pass these on to family members back home. This leaves one of the most vulnerable populations—mountain women and their children—isolated from information about seismic hazard, disaster preparedness, and emergency services.

Lack of public access to earthquake information
The lack of public access to information about the geophysical processes which cause earthquakes and awareness of the steps individuals can take to protect themselves from impact produces a form of “informational vulnerability” (Degg and Homan 2005). Nearly half (45%) of the women and men we interviewed believed
that the Kashmir Earthquake occurred because, as many put it, “it was God’s will” and “God’s will and destiny chooses who survives and what places get destroyed.” There was also a disturbing campaign alleging that one of the reasons for the Kashmir Earthquake was women’s sins, inappropriate behavior, and dress. The lack of sound information can lead to blaming these types of events on metaphysical phenomena or social groups rather than focusing attention on the physical hazard, preparedness, and planning. When asked from where they received information regarding relief and reconstruction, the majority of respondents indicated that they had no place to go to collect such information. Nevertheless, tremendous concern exists with regard to the safety of structures and communities in the future. One 30-year-old male teacher in a local school put it this way, “this area is not safe. People are tense and tremors make people worry. Areas should be planned to be safer.”

Information dissemination among the public is heavily scrutinized and censored in Central Asian countries marked by powerful urban elites and hierarchical socioeconomic structures. Similar to the outcomes of Degg and Homan’s (2005) study on earthquake vulnerability in the Middle East, we find that the existing power relations and informational disconnect between government officials, scientists, and the public tend to expand the gap between community members’ weak perceptions of earthquake risk and vital life-saving information. Nonetheless, the individuals we interviewed in northern Pakistan hope for greater knowledge transfer and disaster risk reduction measures. As one 19-year-old mother optimistically observed, “there are lessons from the earthquake. We must help each other.”

Concluding remarks: towards greater community resilience

Several practical and theoretical implications of this vulnerability analysis emerge. First, the weakening of seismic culture throughout mountainous Central Asia has increased earthquake vulnerability. This is largely due to the fact that vulnerability is being literally built into the social landscape. As such, mountain development should not be accepted as a risk-free process given the concomitant breakdowns in cultural adaptations to seismic hazard. Local perspectives point to the need for earthquake-resistant dwellings and the mandatory establishment and enforcement of building codes in order to reduce seismic risk and counteract the modernizing trend towards inappropriate construction practices (Figure 2).

Second, women play a vital role in reducing earthquake vulnerability in Central Asia (Figure 3). The long-term success of earthquake mitigation, response, and recovery efforts in this region is intimately linked to the degree of women’s control, involvement, and
ACKNOWLEDGMENTS

This research was made possible through the generous support of the National Science Foundation Small Grant for Exploratory Research Program (EAR #0352675) awarded to Lewis Owen, University of Cincinnati, and Ulrich Kamp, The University of Montana; the Montana–Kyrgyzstan State Partnership for Peace Program; and The University of Montana. We would like to thank colleagues, local leaders, development practitioners, and residents in Kyrgyzstan, Tajikistan and northern Pakistan for their time and interactions. We appreciate the suggestions and comments provided by Jeffrey Gritzner, Ulrich Kamp, Monika Iseli-Felder, Anne Zimmermann, and two anonymous reviewers on earlier versions of this article. We are also grateful to the participants of the “Women of the Mountains” International Conference held on 8–9 March 2007 at Utah Valley State University in Orem, Utah for their helpful insights.

AUTHORS

Sarah J. Halvorson and Jennifer Parker Hamilton
Department of Geography, Social Science Building 203, The University of Montana, Social Sciences Building, Missoula, MT 59812-5040, USA.
sarah.halvorson@umontana.edu (S.J.H.);
jennifer.parker.hamilton@gmail.com (J.P.H.)

REFERENCES

