South American Spider Mites: New Hosts and Localities

Authors: Renata S Mendonça, Denise Navia, Ivone R Diniz, and Carlos HW Flechtmann
Source: Journal of Insect Science, 11(121) : 1-18
Published By: Entomological Society of America
URL: https://doi.org/10.1673/031.011.12101
South American spider mites: New hosts and localities

Renata S Mendonça1a, Denise Navia2b, Ivone R Diniz1c, Carlos HW Flechtmann3d

1 Universidade de Brasília, UNB, Instituto de Ciências Biológicas, Departamento de Zoologia, Campus Universitário Darcy Ribeiro, ICC Sul, Sala AT-159, Asa Norte, 70910-900, Brasília-DF, Brazil; Université Montpellier II, Montpellier, France
2 Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Quarentena Vegetal, Parque Estação Biológica, W5 Norte Final, Caixa Postal 02372, 70.770-900 Brasília-DF, Brazil
3 CNPq Researcher, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Cx. Postal 09, 13.418-900, Piracicaba-SP, Brazil

Abstract

In order to contribute to taxonomic information on Tetranychid mites (Acari: Tetranychidae) in South America, surveys were conducted in Brazil (15 States and the Federal District) and Uruguay (one Department); 550 samples of 120 plant species were collected. Tetranychid mite infestations were confirmed in 204 samples, and 22 species belonging to seven genera of the Bryobiinae and Tetranychinae subfamilies were identified on 58 different host plants. Thirty-six new plant hosts were found in Brazil, South America, and worldwide for the following species: Eutetranychus banksi (McGregor); Mononychellus tanajoa (Bondar); Oligonychus ananae Paschoal; O. mangiferus (Rahman and Sapra); Tetranychus bastosi Tuttle, Baker and Sales; T. desertorum Banks, 1900, T. evansi Baker and Pritchard; T. ludeni Zacher; T. mexicanus (McGregor); T. neocaledonicus André; and T. urticae Koch. Four new localities in Brazil were reported for Eotetranychus tremae De Leon; O. ananae; Panonychus ulmi (Koch); and T. gloveri Baker and Pritchard.

Keywords: Eurytetranychini, Hystrichonychini, neotropical region, systematics, taxonomy, Tetranychini

Correspondence: a renatasm@cenargen.embrapa.br, b navia@cenargen.embrapa.br, c irdiniz@unb.br, d chwflech@esalq.usp.br. * Corresponding author

Received: 16 September 2010, Accepted: 14 November 2010

Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

ISSN: 1536-2442 | Vol. 11, Number 121

Cite this paper as:

Introduction

The Tetranychidae Donnadieu family includes a large number of strictly phytophagous mites; a few species are significant agricultural crop pests worldwide (Jeppson et al. 1975; Helle and Sabelis 1985).

The number of described tetranychids remained stable for 75 years and then increased when their economic incidence for agriculture became more significant (Bolland et al. 1998). In 1950, McGregor initially listed 102 species in 15 genera. Five years later, this number increased to 204 species in 18 genera (Pritchard and Baker 1955). In 1998 there were 1189 species in 71 genera registered in the World Catalogue of the Spider Mite Family (Acari: Tetranychidae) (Bolland et al. 1998), and currently there are approximately 1257 species in 76 genera listed on the Spider Mite Web, which is a comprehensive database on the Tetranychidae (Migeon and Dorkeld 2006).

In Brazil, taxonomic studies on the Tetranychidae were initially conducted between 1920 and 1930. Among the early findings was the report of *Tetranychus gloveri* Banks 1900 and the description of *Mononychellus tanajoa* (Bondar 1938) based on specimens collected in Brazil by G Bondar, a Russian researcher living in the state of Bahia (Bondar 1930, 1938). In the 1960s numerous contributions were made by pioneers in agricultural mite studies in Brazil, such as CHW Flechtmann (Flechtmann 1967, 1967a, 1967b, 1972, 1975, 1976; Flechtmann and Baker 1970, 1975) and AD Paschoal (Paschoal 1970, 1970a), followed by RJF Feres in subsequent decades (Feres 1986, 1992; Feres and Flechtmann 1986, 1986a, 1988, 1995, 1995a, 1995b). From that time forward these and other researchers have conducted major studies on tetranychids in several fields such as taxonomy, ecology, biology, control, and resistance, bringing important advances to knowledge of Brazilian tetranychids. Currently 185 of the 1257 described tetranychid species are reported in South America, of which 104 are found in Brazil (Bolland et al. 1998; Migeon and Dorkeld 2006).

The most intensive search for Tetranychidae mites in Brazil, the largest country in South America, has been centered in the southeast region and is usually associated with economically important crops. Agriculture continues to expand, approaching biological reserves and other regions in the country. It is important to continue tetranychid research in previously unexplored areas in hopes of increasing our understanding of this family. This paper presents new information about the occurrence and distribution of Tetranychidae in five Brazilian regions and in Uruguay, on plants ranging from ornamental, fruit-bearing, vegetable, grass, oilseed, to large crops species. New hosts and localities for tetranychid mites in Brazil, South America, and the world are reported.

Materials and Methods

A legal permit to collect zoological material for scientific purposes is required by the Brazilian Institute for the Environment and Renewable Natural Resources (IBAMA). A permit was requested and permit number 231/2006 CGFAU/IBAMA was issued.

Mite collection

Mites were collected between October 2004 and July 2008. A total of 550 samples were collected from several host plants found in
five regions in Brazil that include the states of Acre, Bahia, Ceará, Espírito Santo, Goiás, Minas Gerais, Mato Grosso do Sul, Paraná, Pernambuco, Rio Grande do Norte, Rio Grande do Sul, Roraima, Santa Catarina, São Paulo, Sergipe, and the Federal District (Figure 1; Appendix 1). One additional collection was conducted in Uruguay. Plants were collected when symptoms of tetranychid attacks were observed, according to Moraes and Flechtmann (2008). The geographical points of collection were logged into a Garmin 12 GPS using WGS84 (World Geodetic System 84) datum; maps were created using ARCGIS 9.0 (ESRI, www.esri.com).

Inspecting and processing plant samples
Mites were collected from the plants using a washing/sieving extraction method (Miranda et al. 2007). The resulting 70% ethanol solution was inspected under Stemi SV6 (www.zeiss.com) and Olympus SZX 122 (www.olympus.com) stereomicroscopes connected to a Highlight 3000-1 transilluminator at 50× magnification. Finally, Tetranychidae mites were directly mounted on microscopic slide preparations in Hoyer’s medium. From each population, 25 females were mounted in dorso-ventral position and ten isolated males were mounted in lateral position to identify the species by morphological analysis. When only a few males were present in a sample, all of them were slide-mounted.

Identifying mite species
Microscopic slide preparations of specimens were examined under phase contrast (Leitz Wetzlar, www.leica-microsystems.com) and interference microscopes (Nikon Eclipse 80i, www.nikon.com) in 40× and 100× objectives and. Morphological identification was conducted by examining relevant taxonomic characteristics of male and female Tetranychidae systematics. The shape of the aedeagus, or male genitalia, was used to classify the species (Pritchard and Baker 1955, Meyer 1974, 1987, Baker and Tuttle 1994, Ehara, 1999), which were then compared to specimens that had been deposited in the Reference Mite Collection of the Laboratory of Plant Quarantine, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil. Materials from this study were deposited in this collection as voucher specimens.

Results and Discussion
Tetranychid mites were found on 37.1% (n = 204) of the 550 plant material samples that were collected (Appendix 1). Twenty-one species of Tetranychinae and one of Bryobiinae were identified on the 204 samples from different localities and inspected hosts (Table 1).
Several samples contained more than one species of tetranychid on the same leaf. This occurred on bean (T. urticae and Eutetranychus banksii; T. urticae and M. planki; T. urticae, T. ludeni, and T. desertorum; T. desertorum and M. planki; T. ludeni and M. planki; T. desertorum, T. ludeni and M. planki; T. desertorum and M. planki), cotton (T. urticae and M. planki; T. ludeni and M. planki; T. ludeni and T. mexicanus), okra (T. neocaledonicus and M. planki), and eggplant (T. urticae and M. tanajoa). T. mexicanus, P. ulmi, Oligonychus aff. mangiferus, and O. fileno were found on grapes in the municipality of Pirapora. Foott (1962, 1963) reported phytophagous mite species coexisting on a single host. The fact that different species coexist on a single host requires careful sampling and collecting larger numbers of specimens in microscopic preparations. This allows for greater representation of mite fauna and increases the probability of identifying all Tetranychidae species present on a specific host and/or at a specific locality.

Table 1. Tetranychid mite species (Tetranychinae) collected in Brazil between October 2004 and July 2008.

<table>
<thead>
<tr>
<th>Species</th>
<th>Localities</th>
<th>Hosts</th>
<th>Collections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eutetranychus banksii (McGregor, 1914)</td>
<td>10</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>2. Eutetranychus tremulae De Loni, 1957</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3. E. smithi Pritchard & Baker, 1955</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4. Neomeiothricus tetranychus Mendonça, Navia & Flechtmann, 2010</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5. Mononychellus planki (McGregor, 1950)</td>
<td>18</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>6. M. tanaojao (Bodon 1938)</td>
<td>17</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>7. Oligonychus anomae Paschoal, 1970</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8. O. irizki (McGregor, 1977)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9. O. irizki Mendonça, Navia & Flechtmann, 2010</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10. O. mangiferus (Rahman & Sapra, 1940)</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11. O. aff. mangiferus</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12. Parameiothricus urticae Koch, 1836</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13. Tetranychus obscures Baker & Pritchard, 1962</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15. T. desertorum Banks, 1909</td>
<td>15</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>16. T. ottewilli Baker & Pritchard, 1960</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>17. T. phoeniceus Baker & Pritchard, 1962</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18. T. ludeni Zachar, 1913</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>19. T. mexicanus (McGregor, 1950)</td>
<td>14</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>20. T. neocaledonicus Andre, 1933</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>21. T. phyllophthalmus Ferraria & Flechtmann, 1997</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22. T. urticae Koch, 1836</td>
<td>55</td>
<td>54</td>
<td>101</td>
</tr>
</tbody>
</table>

* The columns do not equal a total of 207 collections due to repeated hosts in some localities.

Table 2. New hosts and localities for tetranychid mites species collected in Brazil and Uruguay between October 2004 and July 2008 with information on collection sites, host plants, collecting dates, and collectors.

<table>
<thead>
<tr>
<th>Host species</th>
<th>Collection site</th>
<th>Host plant</th>
<th>Collector</th>
<th>Date</th>
</tr>
</thead>
</table>
| New reports: | * = New host for species in the world; ** = First report as host in Neotropical region; + = First reported as host in South America; # First reported as host in Brazil. Species names marked in red indicate new localities in Brazil.

New hosts for Tetranychidae mites in Brazil, South America, and the world

New hosts were found for 11 tetranychid mite species: E. banksii, M. tanaojao, O. anomae, O.
mangiferus, T. bastosi, T. desertorum, T. evansi, T. ludeni, T. mexicanus, T. neocaledonicus, and T. urticae (Table 2). The new hosts are listed below according to mite species and host plant family.

Tetranychinae Berlese, Eurytetranychini Reck

Eutetranychus banksi
(McGregor 1914)

Tetranychus banksi McGregor, 1914. Type-host: _Ricinus communis_ L. Type-locality: Orlando, Florida, United States.

Fabaceae

Acacia sp., (acacia), Universidade Federal Rural de Pernambuco, UFRPE, Recife, Pernambuco, 11.VIII.2006.

Mucuna aterrima Holland (black mucuna), Instituto Agronômico de Campinas, ICA, Campinas, São Paulo, 10.I.2006.

The presence of _E. banksi_ on _Acacia_ sp. was previously reported in Colombia (Urueta 1975). The occurrence on this host from Pernambuco is the first in Brazil.

McGregor (1914) described _E. banksi_ on _M. prurients_ in the United States and Livshits and Salinas-Croche (1968) located it on _Mucuna_ sp. in Cuba. Garret et al. (1967) reported _E. banksi_ infestations on _P. lunatus_ in Hawaii. This is the first report of _E. banksi_ on _M. aterrima_ and _P. lunatus_ in South America.

Magnoliaceae

Passifloraceae

Passiflora edulis Sims (sour passion fruit), Lagoa Grande, Minas Gerais, 07.IV.2006.

Solanaceae

Michelia champaca, P. edulis, S. gilo and _S. melongena_ are new hosts for _E. banksi_ in the world.

Tetranychinae Berlese, Tetranychini Reck

Mononychellus tanajoa
(Bondar 1938)

Tetranychus tanajoa Bondar, 1938. Type-host: _Manihot utilissima_ and _M. aipim_. Type-locality: Bahia, Brazil.

Fabaceae

This is the first report of _M. tanajoa_ infesting beans (_P. vulgaris_) under field conditions. This mite mainly infests species from the _Manihot_ genus (Euphorbiaceae) and is also reported on plants from the Asteraceae,
Caesalpiniaceae, Curcubitaceae, Passifloraceae, Malvaceae, Rubiaceae, and Solanaceae families in the northeastern region of Brazil (Tuttle et al. 1977; Moraes et al. 1995). Plants of the Fabaceae family were cited as hosts for the *M. tanajoa* in Brazil (*Canavalia Braziliensis* Mart. ex Benth., *Macroptilium martii* Benth) (Moraes et al. 1995), in Central America (*Erythrina* sp., *Gliricidia maculata* Kunth) (Andrews and Poe 1980; Gutierrez 1986; Bolland et al. 1998, Migeon and Dorkeld 2006), and Mexico (*Gliricidia sepium* (Jacq.) Kunth)] (Tuttle et al. 1976).

Passifloraceae

Passiflora edulis Sims (yellow passion fruit), Faculdades Integradas da União Pioneira de Integração Social, UPIS, Planaltina, Distrito Federal, 06.XII.2005.

Passiflora edulis is a new host for *M. tanajoa*. This mite was previously reported on *P. cincinnata* Mart. by Moraes et al. (1995) in the northeast region of Brazil (Moraes et al. 1995). The passion fruit plants (*P. edulis*) and the bean plants (*P. vulgaris*) were near a cassava plantation (*Manihot esculenta* Crantz) that was highly infested with *M. tanajoa*. According to Moraes et al. (1995), high levels of *M. tanajoa* in cassava plantations can cause to the species to be dispersed by the wind to nearby plants and temporarily infest alternative hosts.

Oligonychus anona

Paschoal 1970

Oligonychus anona Paschoal, 1970. Type-host: *Annona muricata* L. Type-locality: Jaboticabal, Brazil.

Annonaceae

Annona squamosa L. (sweetsop), in the Jaíba, Mucambinho Project, Minas Gerais, 08.IV.2006.

This species was reported in São Paulo on soursop (*A. muricata*) (Annonaceae) (Paschoal 1970) and was collected from Lauraceae plants (*Persea americana* Mill.) and Vitaceae (*Vitis vinifera* L.) in Brazil (Paschoal 1970a). *Annona squamosa* (sweetsop) is a new host for the *O. anona*.

Oligonychus mangiferus

(Rahman and Sapra 1940)

Paratetranychus mangiferus Rahman and Sapra, 1940. Type-host: *Mangifera indica* L. Type-locality: Pakistan.

Euphorbiaceae

Punicaceae

Rubiaceae

Mussaenda sp. (pink mussaenda), Recanto Novo, Minas Gerais 13.V.2006.

This is the first report of *O. mangiferus* on castor oil plants and pomegranates in the Neotropics. This mite was previously found on these host plants in India (Gupta 1976, Gupta and Gupta 1994). *Mussaenda* L. is reported for the first time as a host for *O. mangiferus*.

Tetranychus bastosi

Tuttle, Baker, and Sales 1977
Tetranychus (Tetranychus) bastosi Tuttle, Baker, and Sales 1977. Type-host: Morus rubra L. Type-locality: Crato, Brazil.

Malvaceae

This is first report of T. bastosi on cotton (G. barbadense). This species was observed previously on Malva rotundifolia L. (Tuttle et al. 1977).

Tetranychus desertorum
Banks 1900

Tetranychus desertorum Banks, 1900. Type-host: Larrea tridentata J. M. Coult, Phacelia crenulata Torr. ex S. Watson. Type-locality: Mesilla, United States.

Fabaceae
Mucuna aterrima Holland (black mucuna), Instituto Agronômico de Campinas, ICA, Campinas, São Paulo, 10.I.2006.

Baker and Pritchard (1962) reported T. desertorum on M. pruriens in Central America. Therefore, M. aterrima is a new registered host in the Fabaceae family for the T. desertorum in South America.

Magnoliaceae

Michelia champaca is a new host for T. desertorum.

Solanaceae

This is the first report of T. desertorum on eggplant (S. melongena) in South America previously registered in Japan by Ehara (1956). Infestations of T. desertorum in Brazil were registered on Acnistus cauliflorus (Flechtmann 1967); Brugmansia suaveolens (Furtado et al. 2006); Brunfelsia sp, (Flechtmann 2004); Lycopersicon esculentum (Flechtmann 1967), and Solanum tuberosum (Paschoal 1970a).

Solanum gilo is reported as a new host for T. desertorum.

Tetranychus evansi
Baker and Pritchard 1960

Caricaceae
Carica papaya L. (papaya), Mumbecas farm, Recife, Pernambuco, 11.VIII.2006.

Tetranychus evansi was originally described using samples collected from tomato plants (Baker and Pritchard 1960). However, this mite had already been discovered in Brazil by Silva (1954) who described it as T. marianae McGregor. Since then it has been reported in the United States (Bolland et al. 1998) and
more recently in Africa, Argentina, China, Spain, France, Greece, Israel, Italy, Puerto Rico, Portugal, and Taiwan (Migeon and Dorkeld 2006). *Tetranychus evansi* is currently reported on 93 host species (Migeon and Dorkeld 2006), most of which belong to the Solanaceae family (Bolland et al. 1998; Moraes et al. 1987). Infestations were reported in Europe of this mite across several plant families (Ferragut and Escudero 1999). However, the only reports on the biology of *T. evansi* are for those found on tomato plants. *Carica papaya* is a new host for the *T. evansi*.

Tetranychus ludeni
Zacher 1913

Cucurbitaceae

Geraniaceae

Rosaceae

Prunus domestica L. (plumb), Universidade Federal de Lavras, Lavras, Minas Gerais, 09.V.2006.

Tetranychus ludeni was previously found on *C. lanatus*, *P. hortorum* and *P. domestica* in Africa, Central America, (El Salvador), Australia, and India (Meyer and Ryke 1959; Davis 1968; Andrews and Poe 1980; Gutierrez and Schicha 1983; Gupta and Gupta 1994). This is the first report of these hosts in South America.

Rutaceae

Citrus limonia L. (mandarin-lime), Universidade Federal de Lavras, Lavras, Minas Gerais, 09.V.2006.

This is the first report of *Citrus limonia* as a host for *T. ludeni*.

Tetranychus mexicanus
(McGregor 1950)

Tetranychus mexicanus (McGregor 1950). Type-host: *Citrus sinensis* L. Type-locality: Mexico.

Fabaceae

Erythrina indica Lam. (coral tree), Três Marias, Minas Gerais, 09.IV.2006.

This is the first report of *T. mexicanus* infesting the *E. indica* ornamental plant in South America. According to Migeon and Dorkeld (2006), *T. mexicanus* infests these hosts of the Fabaceae family: *Arachis hypogaea* L., *Bauhinia* sp., *Centrosera pubescens* Benth, *Crotalaria retusa* L., *Erythrina poepigiana* O. F. Cook, and *Phaseolus vulgaris* L.

Vitaceae

Vitis vinifera L. (grapes.), Pirapora, Minas Gerais, 12.IV.2006.

This is the first report of *T. mexicanus* on plants of the Vitaceae family.

Tetranychus neocaledonicus
André 1933
Eotetranychus neocaledonicus André., 1933. Type-host: Gossypium sp. Type-locality: New Caledonia (Southwest Pacific Ocean).

Lamiaceae

Moraceae
Morus rubra L. (mulberry), SQS 202 Sul, Brasília, Distrito Federal, 23.VI.2008

Solanaceae
Cestrum intermedium Sendtn. (night blooming jasmine), Recanto Novo, Minas Gerais, 13.V.2006

Cestrum intermedium, O. basilicum, and M. rubra are new hosts for T. neocaledonicus in the world. However, the presence of T. neocaledonicus on Cestrum sp. has been registered in the state of Rio de Janeiro (Flechtmann 1981). Other plant species belonging to the Ocimum and Morus genera (O. sanctum L., M. alba L., M. australis Poir, M. indica L., M. nigra L., M. sp.) were registered as hosts for T. neocaledonicus in Cuba, India, Japan, and Thailand (Livshits and Salinas-Croche 1968; Baker 1975; Gupta 1992; Gupta and Gupta 1994; Ehara and Yamaguchi 2001).

Tetranychus urticae
Koch 1836

Tetranychus urticae Koch, 1836. (Koch 1836 apud Pritchard and Baker 1955). Type-host: Urtica sp. Type-locality: Regensburg, Germany.

Asteraceae

Paschoal (1970b) first confirmed the presence of T. urticae on A. trifida L. in the state of São Paulo. Ambrosia polystachya is a new host for T. urticae in Brazil and in the world.

Reports of Tetranychus urticae on Parthenium sp. were made in India (Gupta and Gupta, 1994). In the Americas, the first report of its presence on Parthenium sp. occurred in Rio Grande do Sul.

Bignoniaceae

Pyrostegia venusta Miers (flame vine), Universidade Federal de Lavras, Lavras, Minas Gerais, 09.V.2006.

Vargas et al. (1996) described T. urticae infestations on P. ignea C. Presl. in Costa Rica. This was the first report of T. urticae infesting P. venusta in the world.

Fabaceae

Macroptilium atropurpureum (L.) (siratro), Caliman farm, Cruz das Almas, Bahia.

Infestations of T. urticae on P. lunatus were reported in the United States, India, and Thailand (Reeves 1963; Gupta and Gupta 1994; Ho et al. 1997) and on M. atropurpureum in Greece (Hatzinikolis 1969). Phaseolus lunatus and M. atropurpureum are new hosts for T. urticae in South America.
Passifloraceae

Tetranychus urticae on passion fruit (P. caerulea L. and P. edulis) was reported in Venezuela (Doreste 1968) and Australia (Passiflora sp.) (Gutierrez and Schicha 1983). This is the first report of T. urticae on passion fruit (P. edulis) in Brazil.

Poaceae

The first T. urticae infestation of wheat crops (Triticum sp.) was registered in Greece (Hatzinikolis 1969). This wheat infestation in Brazil is the first occurrence in the Americas.

Zingiberaceae

Cases of Tetranychus urticae on Zingiberaceae (Curcuma longa L.) were reported in India (Gupta and Gupta 1994). This is the first report of T. urticae on alpinia (A. purpurata) in the world.

The single sample collected in Uruguay revealed a new host for the two-spotted spider mite (T. urticae).

Verbenaceae

Tetranychus urticae infesting L. camara was first observed in the United States and in India (Thewke and Enns 1969; Gupta and Gupta 1994); this is the first record in South America.

New localities for Tetranychidae mites in Brazil

New localities have been registered for Eotetranychus tremae, O. anona, T. gloveri, P. ulmi, and E. smithi (Table 2).

Tetranychinae Berlese, Tetranychini Reck

Eotetranychus tremae

De Leon 1957

Eotetranychus tremae, De Leon 1957. Type-host: Trema floridanum. Type-locality: Coral Gables, United States.

Reports of Eotetranychus tremae infesting Acalypha sp. ornamental plant have been registered in Viçosa, Minas Gerais. Previous reports in Brazil were registered in the states of Rio de Janeiro (Flechtmann 1981) and São Paulo (Flechtmann 2004; Daud and Feres 2005; Feres et. al. 2005).

Oligonychus anona

Paschoal 1970

Paschoal (1970a, 1970b) described this species from samples collected from soursop (Annona. muricata) in the state of São Paulo. Its presence on A. squamosa in the municipality of Mocambinho, in northern Minas Gerais, indicates a new locality for this species in Brazil.

Tetranychus gloveri
Banks 1900

Tetranychus gloveri Banks, 1900. Type-host: *Gossypium hirsutum* L. Type-locality: Baton Rouge, United States

Tetranychus gloveri was reported on beans in Bahia (Bondar 1930) and on papaya at an (unspecified location) (Migeon and Dorkeld 2006). Reports of its presence on papaya (*Carica papaya* L.) in the state of Rio Grande do Norte indicate a new locality for this species.

Panonychus ulmi
(Koch 1836)

Tetranychus ulmi Koch, 1836. Koch (1836). Type-host: *Ulmus sp.* Type-locality: Regensburg, Germany.

Reports of the European red mite (*P. ulmi*) on grape vines (*Vitis vinifera* L.) were registered for the first time in Brazil in 2008 when damages caused by these mites were first noticed on crops in Rio Grande do Sul (Ferla and Botton 2008). In this work, a second occurrence of *P. ulmi* infesting grape vines was reported in Pirapora, state of Minas Gerais.

Panonychus ulmi was first reported in Brazil by Flechtmann (1967a), who discovered them on apples imported from Argentina. Soon after, Bleicher (1974) reported their presence on apple trees (*Malus domestica* L.) growing in orchards in the south of the country. However, European countries such as France, Austria, Portugal, Italy, and Greece consider the *P. ulmi* a grape vine pest (Rambier 1958; Artofer 1976; Carmona and Dias 1980; Girolami and Mozzi 1983; Papaioannou-Souliotis et al. 1994). Similar reports were also registered in Morocco and the United States (Reeves 1963; Tixier et al. 2003).

Despite reports of *P. ulmi* on apple trees as early as 1967 (Flechtmann, 1976a), grape vines in Brazil were not affected, in contrast to the damages the *P. ulmi* caused to vineyards in Europe. Navia et al. (1998) hypothesized that the mites that attacked grape vines in Europe had different biotypes than those that infested apple trees. Moraes and Flechtmann (2008) emphasized the importance of avoiding introduction of European mites into Brazil, stating the reason this species was not present on grape vines in Brazil was unknown. They suggested the possibility of biological differences between Brazilian and European mites.

The spread of *P. ulmi* infestation on grape vines from Rio Grande do Sul (2005/2006) to Minas Gerais (2006) state could be the result of the two states trading plant propagation material. The hypothesis that European mites were introduced into Brazil cannot be discarded considering that *P. ulmi* were discovered approximately 40 years ago and have only recently been causing damage to grape vines. Ferla and Botton (2008) state that the probable causes for *P. ulmi* dispersion in Brazil are: the proximity of apple tree plantations to vineyards in the south of Brazil; the trading of infested plant material within Brazil and abroad; and unbalanced apple orchards due to excessive application of chemical products, especially non-selective fungicides.

New occurrences of phytophagous mites in South America were recently reported in the literature. For instance, the citrus Hindu mite, *Schizotetranychus hindustanicus* (Hirst) was collected from citrus in the municipality of Boa Vista, State of Roraima (Navia and...
Marsaro Jr. 2010), and *Eotetranychus smithi* Pritchard & Baker 1955 from roses in Rio Branco, Acre (Mendonça et al. 2010); both states from the Northern region of the country. *Tetranychus roseus* Gutierrez 1969 was first observed in São Paulo in 2007 (Matioli et al. 2008) and its dispersal in the state was reported by Matioli et al (2010).

These new occurrences for mites in Brazil together with the results obtained in this study indicate the importance of intensified surveys on different host plants in the country. Doing this will broaden the understanding of the Tetranychidae family and give light to management and control of these mite species in agricultural systems.

Conclusions

Acknowledgements

The authors would like to thank Fábio Aquino Albuquerque, Embrapa - Centro Nacional de Pesquisa de Algodão, Campina Grande, PA; Adalton Raga and Mario E. Sato, Instituto Biológico de São Paulo, Campinas, SP; Marineide Rosa Vieira, Faculdade de Ciências Agronômicas, UNESP, Botucatu, SP; Lino Bittencourt Monteiro, Universidade Federal do Paraná, Paraná, RS; Manoel G. C. Gondin, Universidade Federal Rural de Pernambuco, Recife, PE; José Maria Milanez, Embrapa Trigo, Passo Fundo, RS; Empresa Caliman, Espírito Santo; Aloyséia Cristina Noronha, Embrapa Embrapa Amazônia Oriental, Belém, PA; Marcílio Thomazini, Embrapa Acre, Rio Branco, Acre; Marcone C. M. Chagas, Empresa de Pesquisa Agropecuária do Rio Grande do Norte, Natal, RN; Elton Lúcio de Araújo, Universidade Federal Rural do Semi-Árido, Mossoró, RN; Ricardo Adaima da Silva, Embrapa Agroflorestal, Macapá, AP; Paulo E. Degrande, Universidade Federal da Grande Dourados, Dourados, MS; Marcelo Poletti, PROMIP Ltda, Piracicaba, SP, and students Renato Tratch and Samuel Rogger for assistance in the collection of mite samples. Research for this paper was conducted in part to fulfill requirements for the PhD degree of the senior author in Animal Biology, University of Brasília, and Ecology, Biodiversity and Evolution, University of Montpellier II, France. This work was partially supported by CAPES, Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil. The authors are also grateful to CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil, for providing the fellowship.

Editor’s note: Paper copies of this article will be deposited in the following libraries. Universitaetsbibliothek Johann Christian Senckenberg, Frankfurt Germany; National Museum of Natural History, Paris, France; Field Museum of Natural History, Chicago, Illinois USA; University of Wisconsin, Madison, USA; University of Arizona, Tucson, Arizona USA, Smithsonian Institution Libraries, Washington D.C. USA; The Linnean Society, London, England. The date of publication is given in ‘About the Journal’ on the JIS website.
References

Flechtmann CHW. 1967. Contribuição para o conhecimento dos ácaros de plantas de algumas regiões do estado de São Paulo. Tese

Appendix 1. Tetranychid mites species collected in Brazil and Uruguay between October 2004 and July 2008 with information on collection sites, host plants, collecting dates, and collectors.

Larger appendix available online.