Bathing Behavior of Giant Anteaters (Myrmecophaga tridactyla)

Authors: Louise H. Emmons, Roly Peña Flores, Sixto Angulo Alpirre, and Matthew J. Swarner

Source: Edentata, 2004(6) : 41-43

Published By: IUCN/SSC Anteater, Sloth and Armadillo Specialist Group

URL: https://doi.org/10.1896/1413-4411.6.1.41
Diet of the Yellow Armadillo, *Euphractus sexcinctus*, in South-Central Brazil

Júlio C. Dalponte
Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina 78690-000, Mato Grosso, Brazil.

José A. Tavares-Filho
Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, 14040-903, São Paulo, Brazil.

Introduction

The 21 species of armadillos (Dasypodidae, Xenarthra) show a remarkable variation in size, geographic distribution and feeding patterns, and can be divided into four groups according to their dietary specializations: carnivore/omnivore (*Chaetophractus*, *Euphractus* and *Zaedyus*), generalist insectivore (fossorial) (*Chlamyphorus*), generalist insectivore (terrestrial) (*Dasypus*), and specialist insectivore (ants and termites) (*Priodontes*, *Cabassous* and *Tolypeutes*) (Redford, 1985).

The three genera of hairy armadillos, the carnivore/omnivores, show temporal and geographic variation in their diet which is more pronounced than in the other three feeding groups (Redford, 1985). Detailed and systematic studies on the diet of these species in natural conditions are needed for finer analyses of their patterns of trophic specialization. While research is wanting on the feeding ecology of nearly every edentate species (Redford, 1994), a notable exception among the hairy armadillos is Greegor’s (1980) study on *Chaetophractus vellerosus* in northwest Argentina. *C. vellerosus* combines an insectivorous diet with substantial intake of plant matter, especially *Prosopis* pods, in the winter.

The yellow armadillo, *Euphractus sexcinctus*, is the largest member of the carnivore/omnivore group and consumes many types of animal prey, including carrion, small vertebrates, ants (adults, larvae and cocoons), and plant matter such as fruits and tubers (Redford, 1985; Redford and Eisenberg, 1992; Bezerra et al., 2001). Plant matter (especially fruit) makes up a major portion of the diet in the Pantanal region of Brazil (Schaller, 1983).

Euphractus sexcinctus is a common species ranging from central and eastern Brazil through Paraguay, eastern Bolivia and northern Argentina (Redford and Wetzel, 1985). It occurs in a wide variety of biomes, including the Amazon, Caatinga, Cerrado, Pantanal, Chaco and the Atlantic Forest (Silva-Júnior and Nunes, 2001). Within these biomes it most often inhabits savannas, forest edges and *campos cerrados*, a type of cerrado in which trees are absent and shrubs form an open layer (Eiten, 1979). The biomass of this species was estimated to be approximately 19 kg/km² for dry forest, flooded grassland, and open savanna in the Brazilian Pantanal (Schaller, 1983). In northeastern São Paulo it comprises 37% of total mammal road kills, or 2.56 kg/km, according to a survey of paved highways in the region (J. A. Tavares-Filho, unpubl. data; see below). In this study we examine the diet of the yellow armadillo and compare the results with available data on this species and other armadillos in the carnivore/omnivore group.

Methods

The interior of the state of São Paulo is presently covered with a mosaic of cattle pasture, cultivated fields (mainly sugar cane, cereals and fruit) and exotic plantations of *Pinus* and *Eucalyptus*. Scattered patches of *cerrado* and mesophytic semideciduous forest (*sensu* Rizzini, 1963) are still found in the interior of the state. The northeast of São Paulo is one of the most intensively cultivated areas of the state. Troppmair (1975) classifies the climate as Cwa according to Köppen (1936), characterized by a rainy season in the summer and a dry season in the winter; the rainfall varies between 1100 and 1300 mm, with a period of drought from May to September, and July being the driest month (Caldarelli and Neves, 1981).

From January 1981 to April 1984, 74 specimens of *Euphractus sexcinctus* were found as road kills along paved highways in northeastern São Paulo (within an area of ca. 30 km of radius around the point 21°06’S, 48°27’W) in the municipali-
ties of Ribeirão Preto, Luis Antonio and Pradopolis. From these, it was possible to collect eight stomachs for dietary analysis, and the stomach contents of another four animals were collected at two locations in São Paulo (municipalities of Guareip and São José do Rio Preto) and two locations in Mato Grosso (municipalities of Cuiabá and Vila Bela) on highways crossing cultivated lands and gardens.

The stomach contents were preserved in the field in 10% formalin, and stored until analysis at the Departamento de Biologia, Universidade Federal de Mato Grosso, Cuiabá. The contents were washed with tap water through a metallic sieve (mesh diameter 1 mm). The filtrate (particles < 1 mm) included organic and inorganic residues (digested material, earth and sand), which were not included in the analysis. The material retained in the sieve was transferred to a glass plate for separation and identification of the food items under a dissecting microscope. The frequency of occurrence was calculated based on how many times a selected item occurred in the total number of stomachs. We estimated the volumetric percentage of each item based on the volume of an individual item in relation to the total volume of all items present in the stomachs.

Results

We identified 21 food items (62 total occurrences) in 12 yellow armadillo stomachs (Table 1), representing four main groups: plant material, insects, arachnids and vertebrates. Although plant material was frequent and diversified (grains, succulent stems and fruits), its estimated volume in the stomachs was only about 33%. Among the identified plant material, the only exception in terms of volume was corn (grains strongly chewed), which represented the third most abundant item in the stomach as a whole, and was present in half of the analysed contents. Although sugar cane dominates the cultivated landscape in northeastern São Paulo, it was poorly represented (as masticated stem fragments) in the dietary samples.

Of the four fruits identified, two are cultivated in orchards (orange and papaya), another is associated with human settlements (macaúba palm, Acrocomia sp.), and the fourth is typically wild (mangaba, Hancornia speciosa) and found in a number of vegetation types in the cerrado.

Insects comprised the bulk of the diet of E. sexcinctus, in both the frequency of occurrence and the amount of consumed food, representing more than 50% of the total volume analyzed. Ants (Formiciniae, Myrmiciniae, Dolichoderiniae and Poneriniae) and dung beetles (Scarabaeidae) stood out in this food group, together reaching 57% in relative frequency and 86% of total insect volume. Of the nine stomachs containing ants, seven had combinations of winged adults, cocoons and larvae as the main content. Although other

<table>
<thead>
<tr>
<th>Food items</th>
<th>% Frequency</th>
<th>% Estimated volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn (grains)</td>
<td>9.6</td>
<td>18.9</td>
</tr>
<tr>
<td>Rice (grains)</td>
<td>1.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Sugar cane (stems)</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Orange (pulp and seeds)</td>
<td>3.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Papaya (seeds)</td>
<td>1.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Acrocomia sp. (pericarp)</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Hancornia speciosa (seeds)</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Unidentified fruits</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Unidentified plants</td>
<td>11.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Insects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenoptera (Formicidae)</td>
<td>14.5</td>
<td>22.0</td>
</tr>
<tr>
<td>Coleoptera (Scarabaeidae)</td>
<td>12.9</td>
<td>30.7</td>
</tr>
<tr>
<td>Isoptera (soldiers and workers)</td>
<td>6.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Lepidoptera (larvae)</td>
<td>3.2</td>
<td>6.0</td>
</tr>
<tr>
<td>Orthoptera (Gryllidae)</td>
<td>1.6</td>
<td>0.08</td>
</tr>
<tr>
<td>Diptera (larvae)</td>
<td>3.2</td>
<td>0.08</td>
</tr>
<tr>
<td>Unidentified insects</td>
<td>6.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Arachnids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araneae</td>
<td>4.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Vertebrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammalia</td>
<td>6.4</td>
<td>2.2</td>
</tr>
<tr>
<td>Ophidia</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Aves</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Unidentified vertebrates</td>
<td>3.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

TABLE 1. Stomach contents from 12 individuals of E. sexcinctus, collected as roadkills in agricultural areas of Mato Grosso and São Paulo, Brazil.
groups of insects appeared quite frequently, they contributed modestly to the general abundance. Fragments of large spiders occurred in 25% of the stomach contents.

Vertebrates made up only a small portion of the diet. Mammal remains in the stomachs included small rodents (Sigmodontinae), armadillo plates (probably from scavenging) and skin fragments of a large species of domesticated mammal, probably a pig. Other vertebrates included a snake and a bird, both small and found in the same stomach.

Discussion

In the absence of other data on the diet of the yellow armadillo, the present discussion is based on comparisons with Schaller (1983). Of the eight E. sexcinctus stomachs collected by Schaller (1983) in the Pantanal, seven were from the Acurizal ranch (17°45’S, 57°37’W) in the Serra do Amolar. This area is covered by a variety of swamp formations, gallery forest, semideciduous forest, and several subtypes of cerrado and savanna (Prance and Schaller, 1982). The estimated volumes supplied by Schaller (1983) were compared with the data for estimated volume in the present study. The occurrence of the different dietary groups and percent estimated volume from the two studies were compared using χ^2 goodness-of-fit tests (Magurran, 1988), and the results are compared with those obtained for C. vellerosus in northern Argentina (Greegor, 1980). Our data may represent the feeding tendencies of the yellow armadillo during the rainy season in northeastern São Paulo, in marginal road habitats. As a typical omnivorous/opportunistic feeder, the yellow armadillo is able to change its diet geographically; and the roadside provides scavengers with an additional supply of carcasses.

In intensively cultivated landscapes, the yellow armadillo is omnivorous, as previously reported by Redford (1985) and Redford and Wetzel (1985). Plant matter and insects made up the bulk of the diet in undisturbed (Pantanal) and intensively cultivated areas (northeastern São Paulo) (Table 2). We found no significant difference in the frequencies of occurrence of food groups between the two areas ($\chi^2 = 2.129, \text{df} = 3, p = 0.5461$). We found a strongly significant difference ($\chi^2 = 43.755, \text{df} = 3, p << 0.001$), however, when we compared the estimated volumes. This was due to the large quantities of plant matter in the stomachs from the Pantanal, and the substantial number of insects in the stomach contents from the agricultural region. Although the same food types are consumed, the quantities evidently vary greatly between the two areas. Shifts in diet based on geographic location are expected to be more pronounced among carnivore/omnivores than in other feeding groups (Redford, 1985), and the large geographical variation in the abundance of certain dietary items, as documented for the two areas compared here, supports this assumption.

Omnivory is characteristic of the diet of the euphractine armadillos (Redford, 1985), having been previously registered for C. vellerosus (Greegor, 1980). The diet of the yellow armadillo is evidently similar to that observed for C. vellerosus, with plant matter and insects composing the largest proportions of items in the stomach contents of both. Ants and beetles, very frequent in the diet of C. vellerosus, were the most common insects in the stomachs of E. sexcinctus in the agricultural areas of south-central Brazil.

Vertebrates account for a relatively large proportion of the diet of Chaetophractus vellerosus – approximately 14% by volume in the winter and 28% in the summer – when compared to the

<table>
<thead>
<tr>
<th>Food groups</th>
<th>Schaller (1983)*</th>
<th>Present study**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% occurrence</td>
<td>% volume</td>
</tr>
<tr>
<td>Plant matter</td>
<td>50.0</td>
<td>79.1</td>
</tr>
<tr>
<td>Insects</td>
<td>37.5</td>
<td>20.5</td>
</tr>
<tr>
<td>Spiders</td>
<td>6.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>6.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* Pantanal, eight stomachs analysed.
** Cultivated fields of São Paulo and Mato Grosso, 12 stomachs analysed.
common long-nosed armadillo, *Dasypus novemcinctus* (Greegor, 1980). Most of the vertebrates consumed by *C. vellerosus* were small rodents, reaching high frequencies: 23% in the summer and 19.4% in the winter. Small rodents also seem to be frequent in the diet of *E. sexcinctus*, occurring in three of 12 stomachs analysed here. A yellow armadillo collected in a soybean field in Goiás State, Brazil, had four individuals of *Calomys* sp. in its stomach (Bezerra *et al.*, 2001), two of which were young (F. H. G. Rodrigues, pers. comm.).

Euphractine armadillos are predators of small and slow-moving prey. They lack an effective killing bite, however, subduing their prey by standing on it and tearing pieces with their jaws (Redford and Wetzel, 1985; Redford, 1994). In captivity, *E. sexcinctus* can kill large rats (Redford and Wetzel, 1985), and captive individuals have also been observed attacking a live deer fawn (*Mazama gouazoubira*) and a young rhea (*Rhea americana*) and trying to drag them into their burrows (J. C. Dalponte, pers. obs.). The presence of small rodents in the diet (Bezerra *et al.*, 2001; present study) demonstrates that free-ranging yellow armadillos may occasionally capture small prey. In addition, one stomach of *C. vellerosus* contained four infant leaf-eared mice, *Phyllotis gris eo flavus* (Greegor, 1980).

Armadillos which are carnivore/omnivores may also consume small rodents as carrion, and perhaps other vertebrates as well; but it is difficult to determine from stomach contents whether remains are from predation or from scavenging (Bisbal and Ojasti, 1980). Euphractine armadillos are known to eat rotting meat, and perhaps also the maggots associated with carcasses (see references in Redford, 1985). Larvae of necrophagous flies (Sarcophagidae) were found in two stomachs analysed in the present study, and in one they were associated with the remains of a small rodent. The remains of vertebrates in other stomach contents were not associated with sarcophagid fly larvae, although the presence of armadillo plates and pig skin would indicate carrion consumption.

The yellow armadillo has the largest and most powerful teeth of any armadillo (Moeller, in Redford, 1985), which may allow it to chew the meat, skin and small bones of a variety of carcasses. In fact, the high biomass of vertebrate carcasses concentrated on the highway (645,695 kg over a distance of 9,315 km; J. A. Tavares-Filho, unpubl. results) suggests this would be a plentiful food source for a potential carrion eater such as *E. sexcinctus*. It is easily sighted in open habitats, and aspects of its feeding ecology, in particular its foraging habits, could be easily studied.

Acknowledgements: We thank Dr. K. H. Redford for comments on an earlier version of this paper. We also thank Dr. A. B. Araújo for the statistical analysis suggested and Dr. J. D. V. Hay for helpful corrections on the English version.

References

Redford, K. H. 1985. Food habits of armadillos (Xenarthra: Dasypodidae). In: *Evolu-
While following maned wolves (*Chrysocyon brachyurus*) during the dry season at Los Fierros (14°33.24’S, 60°55.40’W) in Parque Nacional Noël Kempff Mercado (Santa Cruz Department, Bolivia), we discovered an isolated pampa waterhole in a landscape depression, where mammals come to drink. The Los Fierros pampa has been experiencing an increasingly severe water shortage during the late dry season (August–October), and we have been following events at this water hole for three seasons.

When the water table drops below the ground surface, giant anteaters dig down to reach the water, as evidenced by a deep, fist-sized hole that is scarred with large claw marks. This activity by anteaters allows other animals – such as maned wolves, ocelots, raccoons, marsh deer, and birds – to reach otherwise inaccessible drinking water. Since 2002, we have been shoveling out and enlarging the hole and digging steps to enable mammals and birds to drink from water as deep as 90 cm below the ground surface, held within a layer of fine gray clay. During the wet season, which extends from November to June, there is a large pond over the site. To monitor animal activity in the dry season, we set a camera trap (TrailMaster 1550 or 550) aimed at the approach to the hole during September and October of 2002, 2003 and 2004.

We have acquired over 70 photos of giant anteaters coming to the water hole, including many photo pairs of the same individual, first arriving and then leaving the water source. The photos show many anteaters arriving dry, then leaving the hole soaking wet. They often emerge covered with gray mud from the soft clay of the water basin (Fig. 1). They are clearly rolling over within the waterhole, soaking their entire body and tail.

Although the anteaters were often completely coated with mud, we believe it likely that they were bathing, rather than mud-wallowing. We have a photo, taken when there was a small shallow pond present, of an anteater rolling in clean water at the ground surface. Bathing in water or wallowing in mud is rare in mammals that are

Bathing Behavior of Giant Anteaters (Myrmecophaga tridactyla)

Louise H. Emmons
Smithsonian Institution, Division of Mammals, NHB 390 MRC 108, P.O. Box 37012, Washington, DC. 20013-7012, USA. E-mail: <emmons.louise@nmnh.si.edu>.

Roly Peña Flores
Museo de Historia Natural Noël Kempff Mercado, Avenida Irla 565, C.C. 2469, Santa Cruz, Bolivia.

Sixto Angulo Alpirre
WCS-Bolivia, 349 Calle Bumberque, Santa Cruz de la Sierra, Casilla 6272, Bolivia. E-mail: <sixtopolus@hotmail.com>.

Matthew J. Swarner
Wildlife, Fish, and Conservation Biology Department, University of California – Davis, 1 Shields Avenue, Davis, CA 95616, USA. E-mail: <mjswarner@ucdavis.edu>.
FIGURE 1. Giant anteater approaching the waterhole, 10 October, 2004, at 00:23 h (above); and the same animal leaving the waterhole, 00:31 h (below).
Horses and humans bathe, both of them species that sweat, and thus benefit from washing to clean off dried salts; and both also species that often need cooling, which is probably why sweating evolved. Elephants, tapirs and hippos also bathe in water: these are thinly-haired megafauna that likely bathe to thermoregulate. Pigs and peccaries, generally sparse-haired, wallow in mud, perhaps to thermoregulate, prevent sunburn, repel biting flies, or all of the above. Many mammals, including the above species, also play in water.

But why do anteaters bathe? They are hairy, not large-muscled (muscles produce the body heat) and do not sweat. Moreover, they bathe (or wallow) during the middle of the night, when it is cool (usually < 23°C), and during the dry season, when there are almost no biting flies at night. On clear nights, the pampa grass is usually soaked with dew before midnight, and sometimes the anteaters arrived at the waterhole with legs and the lower half of their tails dripping. Giant anteaters do not share the physical characteristics of other bathing or wallowing mammals, and we cannot explain why they bathe: perhaps they can rid themselves of attached biting ants or termites. Maybe they simply enjoy it: captive giant anteaters at the Santa Barbara Zoo in California were hosed down as part of their behavioral enhancement. The anteaters apparently took great pleasure from this, craning their necks into the water, and aggressively trying to displace each other for position under the spray (Jessie Quinn, pers. comm.). Giant anteaters occupy habitats that include flooded grasslands (pantanal) and humid forests where seasonal flooding covers large portions of the habitat (várzea and igapó), and where the animals may need to swim to travel between dry patches. It is therefore not surprising that they should readily take to water, but their bathing behavior remains an enigma to be resolved by further observation.

Acknowledgments: This work was part of a collaboration with the Museo de Historia Natural Noël Kempff Mercado, Santa Cruz, Bolivia, to study the biodiversity of Parque Nacional Noël Kempff Mercado (PNNKM). We thank Fundación Amigos de la Naturaleza for their continuing support of research in PNNKM. Fieldwork there was supported by the Douroucouli Foundation, The National Geographic Society, The Wildlife Conservation Society, and the W. Alton Jones Foundation through the Amazon Conservation Association.
1964; Meritt Jr., 1976; Pérez Jimeno, 2003) lo que se traduce en altas tasas de mortalidad en el primer año de cautiverio.

Lo cierto es que a la hora de alimentar a los tamanduás en los zoológicos sudamericanos la situación es complicada, ya que en la mayor parte de las instituciones no poseen los conocimientos mínimos sobre el género, además de no disponer de muchos de los productos comerciales que sugieren especialistas de USA o Europa, o los costos de los mismos los convierten sencillamente en inaccesibles.

Alimentación en la naturaleza

Montgomery (1985a) encontró en la isla de Barro Colorado, Panamá, que los tamanduás enfocaban su dieta en una especie de hormiga durante cada período de alimentación, no siendo la misma especie día a día o de un individuo a otro. Las hormigas preferidas por los tamanduás fueron *Procryptocerus belti* y *Crematogaster* sp. Estas junto a una especie que no se pudo identificar sumaron el 45% de las hormigas de la dieta (Montgomery, 1985a).

Redford y Dorea (1984) publicaron que los tamanduás en libertad consumen dietas con rangos de proteína que varían entre 30 y 65%, y con 10 a 50% de grasa, debiéndose estas variar al rango de diferencias bromatológicas existentes en los insectos consumidos. Por otra parte la proteína no es necesariamente proteína disponible, ya que parte de ésta proviene del cálculo de nitrógeno del exoesqueleto (Redford y Dorea, 1984).

La dieta natural de los tamanduás es alta en proteínas, moderada en grasas, variable en vitaminas y baja en minerales (Tabla 1; Oyarzun *et al*., 1996).

Dietas ofrecidas en cautiverio

Para alimentar a los Xenarthras se han utilizado tantas dietas como instituciones los han mantenido en cautiverio. Pero lo cierto es que sólo recientemente se ha comenzado a realizar estudios sobre las composiciones de las mismas. En el año 1992 Trusk *et al.* llevaron a cabo un estudio en zoológicos de Sur y Norte América con el fin de analizar las dietas ofrecidas a los tamanduás. En dicho trabajo se determinó que las dietas en zoológicos sudamericanos se encontraban deficientes en uno o más nutrientes incluyendo proteína, niacina, biotina, vitamina E, hierro y zinc. Mientras que los análisis de las dietas de los zoológicos norteamericanos revelaron un alto

TABLA 1. Análisis bromatológico del contenido estomacal de tamanduás silvestres en Venezuela.

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Valor hallado</th>
<th>Unidad</th>
<th>Variación (±)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteína cruda</td>
<td>50.85%</td>
<td>%</td>
<td>1.64</td>
</tr>
<tr>
<td>Grasa cruda</td>
<td>11.2%</td>
<td>%</td>
<td>2.89</td>
</tr>
<tr>
<td>ADF</td>
<td>31.32%</td>
<td>%</td>
<td>2.68</td>
</tr>
<tr>
<td>NDF</td>
<td>32.26%</td>
<td>%</td>
<td>0.8</td>
</tr>
<tr>
<td>MS</td>
<td>17.77%</td>
<td>%</td>
<td>1.14</td>
</tr>
<tr>
<td>Energía bruto</td>
<td>4.58 Kcal/g</td>
<td></td>
<td>0.53</td>
</tr>
<tr>
<td>Cenizas</td>
<td>13.85%</td>
<td>%</td>
<td>2.72</td>
</tr>
<tr>
<td>Ca</td>
<td>0.11%</td>
<td>%</td>
<td>0.03</td>
</tr>
<tr>
<td>P</td>
<td>0.41%</td>
<td>%</td>
<td>0.04</td>
</tr>
<tr>
<td>Mg</td>
<td>0.10%</td>
<td>%</td>
<td>0.01</td>
</tr>
<tr>
<td>K</td>
<td>0.52%</td>
<td>%</td>
<td>0.06</td>
</tr>
<tr>
<td>Na</td>
<td>0.29%</td>
<td>%</td>
<td>0.06</td>
</tr>
<tr>
<td>Fe</td>
<td>2748 ppm</td>
<td></td>
<td>775</td>
</tr>
<tr>
<td>Z</td>
<td>190 ppm</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Mn</td>
<td>82 ppm</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Cu</td>
<td>28 ppm</td>
<td></td>
<td>2.68</td>
</tr>
<tr>
<td>Se</td>
<td>3.75 ppm</td>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td>Retinol</td>
<td>2.52 µg/g</td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>α tocoferol</td>
<td>44.35 µg/g</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
contenido de grasa, vitaminas A y D, y calcio en algunos casos. Por ende, podrían esperarse anormalidades esqueléticas y mineralización de tejidos blandos como resultado del consumo de las mismas (Graham et al., 1996). Los valores promedios obtenidos de las dietas de los zoológicos norteamericanos por Trusk et al. (1992) se detallan en la Tabla 2.

Beresca y Cassaro (2001) reportan una dieta utilizada en el zoológico de São Paulo con la cual han mantenido satisfactoriamente sus tamanduás hasta la segunda generación. La misma es similar a la analizada en el presente estudio y se basa en leche de soya, alimento para perro, huevos de gallina, carne molida de bovino, frutas y suplementos vitamínicos y minerales. Con las dietas que contienen carne suelen presentarse problemas con las fibras de ésta que se enredan en la lengua de los animales causando trastornos que pueden desencadenar en la muerte del individuo (Vogt, pers. comm.). Las dietas formuladas con alimentos balanceados para perros y/o gatos evitan los problemas mencionados; por otra parte son más fáciles de conservar, no se contaminan con salmonella y no presentan los problemas de intolerancia a la lactosa, que se pueden ver con las dietas en las que se utiliza leche (Gillespie, 2003).

El desarrollo de diferentes patologías como la hiperostosis vertebral observada en tamanduás del Zoológico de Toronto, cuyas lesiones pueden deberse a excesivas concentraciones de vitamina A y D en el alimento (Crawshaw y Oyarzun, 1996) han llevado a realizar muchos cambios en las dietas ofrecidas a estas especies.

En el año 2002, Aguilar y colaboradores reportan que dos osos hormigueros gigantes (*Myrmecophaga tridactyla*) murieron a causa de problemas cardíacos similares a los provocados por la deficiencia de taurina en gatos, por lo que este aminoácido deberá tomarse en consideración también en las dietas ofrecidas a tamanduás.

El Disney’s Animal Kingdom (DAK) ha utilizado para sus tamanduás una dieta basada en jugo de manzana, bizcochos para primates, Linatone®, mangos, bananas, lams cat food®, y tenebrios (*Tenebrio molitor*). Esta dieta fue analizada utilizando el software Zootrition® y se obtuvieron algunos de los siguientes resultados presentados en la Tabla 3 (Valdés, pers. comm.).

Materiales y Métodos

La dieta en estudio fue utilizada para la alimentación de cuatro ejemplares de tamanduás en el Zoológico de Rosario, Argentina y el Zoológico La Aurora, Guatemala y a lo largo de ocho años. En el Zoológico de Rosario se logró la reproducción exitosa de *T. tetradactyla*, con un nacimiento en el año 2003. La fórmula administrada en el Jardín Zoológico de Rosario y La Aurora, es básicamente...
la misma con pequeñas variantes debidas a la disponibilidad de los componentes en cada país. Por lo dicho en Argentina se utilizó carne magra vacuna, en vez de la equina utilizada en Guatemala.

Composición de la dieta analizada:

- ½ banana
- ½ manzana
- 1 yema de huevo
- 100 g de carne de caballo
- 40 g de alimento para bebé (Nestum 4 Cereales, Nestlé®)
- 40 g de leche deslactosada (Delactomy, Dos Pinos®)
- 10 mg de vitamina K
- 1 tableta de vitaminas y minerales para perro (Pet-A-Min®)
- 350 ml de agua pura.

Todos los ingredientes son licuados hasta alcanzar la consistencia semilíquida.

La dieta recién preparada y envasada en frasco seco y estéril fue remitida para su análisis el 21 de abril de 2003 a la Universidad de San Carlos de Guatemala, Facultad de Medicina Veterinaria y Zootecnia, Escuela de Zootecnia, Unidad de Alimentación Animal, Laboratorio de Bromatología, bajo la identificación “Dieta Tamanduá” para su análisis. Posteriormente se analizó la dieta con el programa de nutrición informático Zootrition® (Versión 1.0.0, Wildlife Conservation Society, USA, 1999). A la base de datos de dicho programa se agregaron los ingredientes utilizados en el mercado guatemalteco y se utilizó la información nutricional del empaque de cada producto.

Resultados

Todos los animales aceptaron muy bien la dieta, sus heces fueron consistentes y de emisión regular. Ninguno de ellos desarrolló patologías digestivas a lo largo de estos años, como tampoco ninguno de ellos mostró signos clínicos de trastornos osteoarticulares. A dos de los ejemplares (Zoológico de Rosario) se les evaluó radiológicamente durante el desarrollo, y se pudo observar una buena mineralización de los huesos largos.

Los resultados del análisis bromatológico fueron expresados en Base de Materia Seca y Base de Materia Húmeda (Tabla 4).

Los resultados del análisis con el software Zootrition® se expresan en dos formas. La Tabla 5 presenta los nutrientes más importantes y la Tabla 6, el total de ingredientes que el programa puede analizar. El total de energía bruta provisto por la dieta fue de 151.60 kcal, lo que representa 1.04 kcal/g/M.S.

Discusión

Proteínas

La dieta en estudio proveyó 27.31% de proteína cruda, valor que resulta ligeramente menor al nivel mínimo (30%) que publicaran Redford y Dorea (1984), Pernalete (1999) y Meritt Jr. (1976) como convenientes para los tamanduás en condiciones controladas. Por otra parte este
Lamentablemente en los estudios realizados no se logró determinar este aminoácido. Si bien es cierto que la carne de caballo utilizada en Guatemala aporta 1.4 g/kg (Bechert et al., 2002) lo que podría ser suficiente para los tamanduás, en el zoológico de Argentina la carne utilizada fue bovina, en este caso no se puede postular que la concentración fuese suficiente.

Grasas
El valor de grasa cruda encontrado por los autores (14.39%) es ligeramente inferior al publicado por Trusk et al. (1992) de 16%, y semejante al hallado en contenidos estomacales estudiados por Oyarzun et al. (1996) de 11.2 ± 2.89%.

Energía bruta
En la dieta en estudio se determinó un valor de energía bruta equivalente a 1.04 kcal/g, considerablemente menor a los 4.58 ± 0.53 kcal/g encontrados en los estómagos de los tamanduás silvestres (Oyarzun et al., 1996) y casi la mitad del valor obtenido de la dieta del DAK (2.01 kcal/g), por lo que se deberá considerar el incremento de la energía bruta de esta dieta.

Minerales
Los análisis determinaron un valor de calcio (0.47%) que triplica largamente al del estudio de Oyarzun et al. (1996) de 0.11 ± 0.03%, y a su vez es notablemente inferior al hallado por Trusk et al. (1992) de 1.3%. Mientras el valor de fósforo (0.32%) es apenas inferior al de los estómagos de los tamanduás (0.41 ± 0.04%); pero casi la mitad del publicado por Trusk et al. (1992) de 0.6%. A pesar de lo expuesto Crawshaw y Oyarzun (1996) recomiendan dietas con menos de 1% de calcio, por lo que según esa opinión se podría conside-

TABLA 4. Los resultados del análisis bromatológico.

<table>
<thead>
<tr>
<th>Ingrediente</th>
<th>Valor encontrado</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>84.9</td>
<td>%</td>
</tr>
<tr>
<td>ADF</td>
<td>0.00</td>
<td>%</td>
</tr>
<tr>
<td>Energía</td>
<td>1.04</td>
<td>kcal/g</td>
</tr>
<tr>
<td>Ceniza</td>
<td>1.94</td>
<td>%</td>
</tr>
<tr>
<td>Proveína</td>
<td>27.31</td>
<td>%</td>
</tr>
<tr>
<td>Ca</td>
<td>0.47</td>
<td>%</td>
</tr>
<tr>
<td>Grasa</td>
<td>14.39</td>
<td>%</td>
</tr>
<tr>
<td>NDF</td>
<td>0.00</td>
<td>%</td>
</tr>
<tr>
<td>Vit A</td>
<td>17.07</td>
<td>U/g o RE/g</td>
</tr>
<tr>
<td>Vit D3</td>
<td>2.62</td>
<td>U/g</td>
</tr>
<tr>
<td>Vit E</td>
<td>165.94</td>
<td>U/kg</td>
</tr>
<tr>
<td>Ca:P</td>
<td>1.46</td>
<td>relación</td>
</tr>
</tbody>
</table>

TABLA 5. Análisis de los nutrientes más importantes hallados por Zootrition®.

<table>
<thead>
<tr>
<th>Ingrediente</th>
<th>Valor encontrado</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>84.9</td>
<td>%</td>
</tr>
<tr>
<td>ADF</td>
<td>0.00</td>
<td>%</td>
</tr>
<tr>
<td>Energía</td>
<td>1.04</td>
<td>kcal/g</td>
</tr>
<tr>
<td>Ceniza</td>
<td>1.94</td>
<td>%</td>
</tr>
<tr>
<td>Proveína</td>
<td>27.31</td>
<td>%</td>
</tr>
<tr>
<td>Ca</td>
<td>0.47</td>
<td>%</td>
</tr>
<tr>
<td>Grasa</td>
<td>14.39</td>
<td>%</td>
</tr>
<tr>
<td>NDF</td>
<td>0.00</td>
<td>%</td>
</tr>
<tr>
<td>Vit A</td>
<td>17.07</td>
<td>U/g o RE/g</td>
</tr>
<tr>
<td>Vit D3</td>
<td>2.62</td>
<td>U/g</td>
</tr>
<tr>
<td>Vit E</td>
<td>165.94</td>
<td>U/kg</td>
</tr>
<tr>
<td>Ca:P</td>
<td>1.46</td>
<td>relación</td>
</tr>
</tbody>
</table>

Nota: El laboratorio sólo analiza los nutrientes enumerados.

rar aceptable el valor utilizado encontrado en la dieta en estudio.

Por otra parte se considera importante resaltar la relación Ca:P (1:1.5), que en la dieta estudiada coincidió con la relación generalmente recomendada. Los valores de sodio y potasio obtenidos en este trabajo fueron semejantes a los hallados en los estómagos de los tamanduás por Oyarzun et al. (1996). Las mayores diferencias encontradas con los valores de la naturaleza correspondieron a cobre (1.91 contra 28 ± 2.68 ppm), hierro (79.67 contra 2748 ± 775 ppm), selenio (0.07 contra 3.75 ± 2.75 ppm), zinc (25.57 contra 190 ± 22 ppm) y manganeso (0.00% contra 82 ± 21 ppm) siendo los primeros valores expresados los correspondientes al análisis de la dieta en estudio y los segundos los encontrados por Oyarzun et al. (1996). Estos bajos valores concuerdan con los obtenidos por Trusk et al. (1992) para el cobre, hierro y zinc en los zoológicos norteamericanos. Por lo expresado se deberá rever especialmente los valores de cobre, hierro, selenio, zinc y manganeso de la dieta estudiada.

Vitaminas
Los valores de vitamina A de la dieta en estudio son inferiores a los del DAK, pero superiores a los utilizados en los zoos norteamericanos (Tabla 7), mientras que los valores de vitamina D₃ son superiores a los valores encontrados en los demás zoológicos. Adicionalmente, los valores de ambas vitaminas son sensiblemente superiores a los niveles recomendados por Crawshaw y Oyarzun (1996) y superiores a los niveles encontrados en ejemplares silvestres. El valor de retinol hallado en los estómagos de los tamanduás silvestres fue en promedio 2.52 µg/g, lo que equivale a 7.5 UI/kg de vitamina A (factor de conversión: 0.3 µg de retinol = 1 UI). Por todo lo expresado arriba se deberá disminuir, o quitar totalmente, la suplementación con las vitaminas A y D₃.

La vitamina E está presente en la dieta evaluada con un valor que representa más del doble del nivel publicado por Oyarzun et al. (1996) para

<table>
<thead>
<tr>
<th>Categoría de Nutriente: Carbohidratos</th>
<th>Nutriente</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibra crude</td>
<td>0.57</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Carbohidratos solubles en agua</td>
<td>33.94</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categoría de Nutriente: Grasas</th>
<th>Nutriente</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ácido araquidónico</td>
<td>0.06</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Grasa crude</td>
<td>14.39</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Ácido linoleico</td>
<td>0.76</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Grasas saturadas</td>
<td>2.39</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categoría de Nutriente: Proteínas</th>
<th>Nutriente</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginina</td>
<td>1.14</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Proteína crude</td>
<td>27.31</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Cistina</td>
<td>0.25</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Histidina</td>
<td>0.65</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Leucina</td>
<td>1.39</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Lisina</td>
<td>1.45</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Metionina</td>
<td>0.40</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categoría de Nutriente: Vitaminas</th>
<th>Nutriente</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotina</td>
<td>0.12</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Colina</td>
<td>13.67</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Folacina</td>
<td>0.28</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Niacina</td>
<td>70.72</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Ácido pantoténico</td>
<td>7.40</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Riboflavina</td>
<td>2.68</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Tiamina</td>
<td>3.58</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Vit A</td>
<td>17.07</td>
<td>IU A/g o RE/g</td>
<td></td>
</tr>
<tr>
<td>Vit B₁₂</td>
<td>2.07</td>
<td>mcg/g</td>
<td></td>
</tr>
<tr>
<td>Vit B₆, piridoxina</td>
<td>5.78</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Vit C Ac, ascórbico</td>
<td>309.17</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>Vit D₃</td>
<td>2.62</td>
<td>IU Vit D₃/g</td>
<td></td>
</tr>
<tr>
<td>Vit E</td>
<td>24.29</td>
<td>IU Vit E</td>
<td></td>
</tr>
<tr>
<td>Vit K</td>
<td>68.33</td>
<td>mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categoría de Nutriente: Ceniza/Minerales</th>
<th>Nutriente</th>
<th>Cantidad</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceniza</td>
<td>2.84</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>Calcio</td>
<td>0.47</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Cobre</td>
<td>1.91</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Iodo</td>
<td>0.34</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Hierro</td>
<td>79.67</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Magnesio</td>
<td>309.52</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Manganeso</td>
<td>0.00</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Fósforo</td>
<td>0.32</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Potasio</td>
<td>0.50</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Selenio</td>
<td>0.07</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Sodio</td>
<td>0.12</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>25.57</td>
<td>ppm</td>
<td></td>
</tr>
</tbody>
</table>
ejemplares silvestres. Estos últimos autores hallaron 44.35 ± 11 µg/g de α tocoferol, lo que equivale, en promedio a 66.08 UI/kg de vitamina E activa (factor de conversión: 1 µg = 1.49 UI).

En la dieta evaluada se determinó la presencia de 309.17 mg/kg de ácido ascórbico, pero Oyarzun et al. (1996) no lo hallaron al estudiar los contenidos estomacales de los tamanduás silvestres.

No se hallaron valores de referencia para las vitaminas del complejo B en tamanduás silvestres. Los valores encontrados para dichas vitaminas en la dieta estudiada son considerablemente inferiores a los de la dieta del DAK, y hubo grandes variaciones con el estudio de Trusk et al. (1992).

Conclusión

Los estudios realizados hasta el momento no son suficientes como para llegar a conclusiones absolutas ni definitivas. Sin embargo la dieta en estudio demostró a lo largo de los años haber sido apropiada en su cometido. La composición bromatológica de la fórmula estudiada resultó semejante a la de otros zoológicos que tampoco reportaron trastornos nutricionales.

Los valores de proteínas de la dieta estudiada fueron semejantes a los publicados con anterioridad sobre las dietas de otras instituciones. El valor de grasa obtenido en la dieta en estudio fue similar al obtenido por Oyarzun et al. (1992) en el análisis de los contenidos estomacales de tamanduás silvestres. La dieta en estudio deberá ser mejorada en su contenido de energía bruta, el que es muy inferior a los valores de referencia. Del mismo modo se deberá suspender la suplementación con vitaminas A, D, E y ácido ascórbico.

Agradecimientos

Al personal del Jardín Zoológico de Rosario, especialmente a Gisela Sica y Fabián Gauto, por la dedicación y respeto puesto en el cuidado de los tamanduás. Al personal del Zoológico La Aurora, encargados del cuidado de Tammy (*Tamandua mexicana*) en especial al Sr. Orlando Rosales, Luis Martínez y Roberto Rabay. A la M. V. Lucía Llarín Amaya, por su constante apoyo y colaboración. A la Dra. Mariella Supergina, por sus aportes invaluables, sin los cuales esta publicación nunca se hubiese realizado.

Bibliografía

Crawshaw, G. J. y Oryazun, S. 1996. Vertebral hyperostosis in anteaters (*Tamandua tetradactyla* and *Tamandua mexicana*): Probable

NEWS

The Edentate Conservation Fund – Swift Grants for Field Research

The IUCN/SSC Edentate Specialist Group works to support edentate conservation by targeting resources to projects in habitat countries. Given the importance of timely and accurate data from the field, the ESG has established the Edentate Conservation Fund, a small-grants program meant to support short-term field projects. The application process will be streamlined to provide a quick turnaround and the rapid delivery of funds, allowing prospective researchers to begin their fieldwork within weeks of submitting a successful proposal. Although any qualified researcher may apply, the Fund has a preference for supporting projects designed and carried out by citizens of habitat countries.

The Edentate Conservation Fund will award grants between US$1000–3000 for projects investigating the ecology, behavior, distribution, genetics and/or demography of edentates, as well as the
impact of the wildlife trade and trafficking on wild populations. Exceptional proposals addressing captive breeding or other aspects of edentates in captivity will also be considered. The funds will be available to cover specific project costs, such as food, fuel, field supplies and laboratory analyses, but may not be applied to salaries, overhead, infrastructure or outsourced data analysis. Payments will be made directly to the principal investigator of a successful proposal; financial reports will be required, and any funds not directly applied to the specific project must be returned within one year of disbursement.

The Edentate Conservation Fund is administered by Gustavo Fonseca, Chair of the Edentate Specialist Group and Executive Vice President for Programs and Science at the Center for Applied Biodiversity Science at Conservation International. Projects submitted to the Fund should have one or more of the following characteristics:

1. a focus on threatened and endangered edentates living in their natural habitats;
2. direction and management by nationals from habitat countries, to help increase local capacity for implementing biodiversity conservation;
3. the ability to strengthen international networks of field-based edentate specialists and enhance their capacity to be successful conservationists; and/or
4. projects that result in publication of information on endangered edentate species in a format that is useful both to experts and the general public.

Projects should contribute to at least one, and preferably more, of the following themes:

1. enhancement of scientific understanding/knowledge of the target species/ecosystem;
2. improved protection of a key species, habitat, or protected area;
3. demonstration of economic benefit achieved through the conservation of a species and its habitat, as compared to the loss thereof;
4. increased public awareness or educational impact resulting from the project in question;
5. improved local capacity to carry out future conservation efforts through training or practical experience obtained through project participation; and/or
6. modification of inappropriate policies or legislation that previously led to species or habitat decline.

All proposals submitted to the ESG Conservation Fund should:

1. Include a descriptive title that includes the name(s) of the target species and the geographic location of the project (e.g., “Conservation of the silky anteater, Cyclopes didactylus, in the state of Amazonas, Brazil”).
2. Describe the main objectives of the project, its specific activities, how they will contribute to conservation of the target species and ecosystems, and how these are consistent with the Fund’s mission. This should be the main body of the application and should not exceed five double-spaced pages.
3. Provide an abstract/summary of approximately 300 words, which a) provides the background, b) gives the purpose of the project, c) indicates the methods, and d) indicates the chief outcome of the project.
4. Provide a map of the project area and relevant published references.
5. Specify the dollar amount of the grant requested, provide an itemized budget for the project, and confirm the total budget of the project, including funds being provided from other sources.
6. Provide the time frame and schedule for project implementation, including starting date and duration.
7. Describe the project personnel and their institutional affiliations (include a curriculum vitae of the principal investigator and identify personnel from any collaborating institutions).
8. Describe the specific outputs of the project, e.g., expected scientific publications, popular articles, conservation action plans, management plans, etc. Each project should have one or more outputs of this kind as one of its objectives.

9. Describe the collaborating institutions with which the applicant will be working in the project country, and include letters of support from them if at all possible. This is especially important for applicants who are not nationals from the country in which the work is to be conducted.

10. List three references that the Fund can contact about the project should it choose to do so. The list of references should include mailing addresses, phones, fax numbers, and e-mail addresses if available.

Typical grants range from US$1,000–$3,000. Please note that, should a grant be awarded, you will be responsible for providing the Fund with the following materials during the course of the project and at its conclusion:

1. A progress report no more than six months after receipt of the grant, if the project period is one year or less; a progress report no more than 12 months after receipt of the grant if the project period exceeds one year.
2. A final report no more than two months after completion of the project.
3. A full financial accounting of the project.
4. Five copies each of any scientific or popular publications, newspaper or magazine articles, or reports, action plans, etc., resulting from the project. Grant recipients are encouraged to publish at least some of their findings in *Edentata*, the newsletter of the IUCN/SSC Edentate Specialist Group.

Applications to the ESG Conservation Fund are considered throughout the year with no deadlines for submission. Proposals will be acknowledged within two weeks of receipt and funding decisions provided within no more than six weeks.

Proposals should be sent to: John M. Aguiar, IUCN/SSC Edentate Specialist Group Conservation Fund, Center for Applied Biodiversity Science, Conservation International, 1919 M Street, NW, Suite 600, Washington, DC 20036, USA. Inquiries regarding the application process should be sent to John Aguiar at <j.aguiar@conservation.org>.

El Fondo de Conservación de Edentados – Becas Rápidas para Investigaciones a Campo

La finalidad del Grupo de Especialistas en Edentados de la UICN/SSC (ESG) es apoyar la conservación de edentados mediante la adjudicación de recursos a proyectos que se realicen en países comprendidos en el área de distribución de los edentados. Dada la importancia de obtener datos de campo oportunos y precisos, el ESG estableció el Fondo de Conservación de Edentados, un programa de becas destinadas al apoyo de proyectos de campo de corto plazo. El proceso de solicitud será racionalizado para asegurar un rápido procesamiento y una rápida adjudicación de fondos, lo que permitirá a los potenciales investigadores, empezar sus investigaciones de campo pocas semanas después de haber presentado una propuesta exitosa. A pesar de que cualquier investigador pueda solicitar una beca del Fondo de Conservación de Edentados, este último dará preferencia a los proyectos diseñados y efectuados por ciudadanos de los países comprendidos en el área de distribución de los edentados.

El Fondo de Conservación de Edentados otorgará becas entre US$1000 y 3000 para proyectos que investiguen la ecología, comportamiento, distribución, genética y/o demografía de edentados, así como también el impacto del comercio y tráfico sobre las poblaciones silvestres. También serán consideradas propuestas excepcionales que abarcan la cría en cautiverio u otros aspectos del mantenimiento en cautiverio de edentados. Los fondos estarán disponibles para cubrir costes específicos del proyecto, como por ejemplo alimentación, combustible, insumos de campo y
análisis de laboratorio, pero no podrán ser uti-
lizados para sueldos, gastos generales, infraes-
tructura o externalización de análisis de datos. Los pagos se harán directamente al investigador principal de la propuesta exitosa; se requerirán informes financieros, y todos los fondos que no fuesen utilizados directamente para el desarrollo del proyecto específico, tendrán que ser devuel-
tos dentro de un año.

El Fondo de Conservación de Edentados está administrado por Gustavo Fonseca, presidente del Grupo de Especialistas en Edentados y vice-
presidente ejecutivo de Programas y Ciencia del Center for Applied Biodiversity Sciences de Con-
servation International. Los proyectos presentados al Fondo deberían tener una o más de las siguientes características:

1. Un enfoque en edentados amenazados o en peligro de extinción que habitan sus hábitats naturales;
2. Dirección y administración por ciudadanos de países comprendidos en el área de distribución de los edentados, para ayudar a aumentar la capacidad local para conservar la biodiversidad;
3. La capacidad de reforzar redes internacionales de especialistas en edentados que realizan estudios a campo, y de aumentar su capacidad de ser exitosos conservacio-
nistas; y/o
4. Proyectos que tienen como resultado la publicación de información sobre especies de edentados en peligro de extinción en un formato apropiado tanto para expertas como para el público en general.

Los proyectos deberían contribuir a por lo menos uno, y de preferencia a varios, de los siguientes temas:

1. Incrementar el conocimiento científico de la especie o del ecosistema bajo estudio;
2. Mejorar la protección de una especie clave, de su hábitat, o de un área prote-
gida que habita;
3. Demostrar un beneficio económico alcan-
zado mediante la conservación de una especie y su hábitat, comparado con su desaparición;
4. Aumentar la conciencia pública o el impacto educacional como resultado del proyecto en cuestión;
5. Mejorar la capacidad local para el desarro-
ollo de futuros esfuerzos de conservación mediante la capacitación o experiencia práctica obtenida a través de la participa-
ción en el proyecto en cuestión; y/o
6. Modificar políticas o leyes inapropiadas que anteriormente llevaban a la disminu-
ción de especies o hábitats.

Todas las propuestas presentadas al Fondo de Conservación de Edentados deberían:

1. Incluir un título descriptivo que incluye el nombre (los nombres) de la especie a estu-
diar y la ubicación geográfica del proyecto (por ejemplo “Conservación del oso hormiguero Cyclopes didactylus en el estado de Amazonas, Brasil”).
2. Describir los objetivos principales del proyecto, sus actividades específicas, cómo contribuirán a la conservación de la especie en cuestión y los ecosistemas que habita, y cómo éstos encuadran en la misión del Fondo. Esto debería ser la parte principal de la solicitud y no debería exceder cinco páginas con doble espa-
cio entre líneas.
3. Contener un resumen de aproximadamente 300 palabras, el cual a) des-
cribe el contexto, b) presenta el objetivo del proyecto, c) indica la metodología, y d) indica el principal resultado del proyecto.
4. Proporcionar un mapa del área de proyecto y referencias bibliográficas relevantes.
5. Especificar el monto solicitado en dólares, incluir un presupuesto deta-
llado del proyecto, y confirmar el pre-
supuesto total del proyecto, incluyendo
fondos que serán obtenidos de otras fuentes.

6. Proporcionar un cronograma, incluyendo fecha de inicio y de finalización del proyecto.

7. Describir el personal involucrado y a qué institución pertenece cada integrante (incluir un curriculum vitae del investigador principal e identificar el personal de las instituciones colaboradoras).

8. Describir los resultados específicos del proyecto, por ejemplo, publicaciones científicas, artículos para el público en general, planes de conservación, planes de manejo, etc. Cada proyecto debería tener como uno de sus objetivos, uno o más resultados como los arriba mencionados.

9. Describir las instituciones colaboradoras con las cuales el solicitante estará trabajando en el país de desarrollo del proyecto, y si posible, incluir cartas de apoyo de ellas. Esto es especialmente importante para solicitantes que no son ciudadanos del país en el cual desarrollarán su proyecto.

10. Enumerar tres referencias que el Fondo podrá contactar respecto al proyecto, si lo considera necesario. La lista de referencias debería incluir direcciones postales, números de teléfono y fax, y direcciones de email.

Generalmente, las becas otorgadas serán de US$1000 a 3000. Por favor, tenga en cuenta que, si se le otorga una beca, será responsable de proveer los siguientes materiales al Fondo durante el desarrollo del proyecto y a su finalización:

1. Un informe de avance de proyecto no más de seis meses posterior a la recepción de la beca, si la duración del proyecto no supera el año; un informe de avance no más de 12 meses posterior a la recepción de la beca, si la duración del proyecto supera un año.

2. Un informe final no más de dos meses posterior a la finalización del proyecto.

3. Un balance económico del proyecto.

4. Cinco copias de cualquier publicación científica o popular, artículos de periódico o revista, o de informes, planes de acción, etc., que resulten del proyecto. Se incita a los recipientes de las becas del Fondo a publicar por lo menos algunos de sus resultados en Edentata, la revista del Grupo de Especialistas en Edentados de la UICN/SSC.

Se aceptarán solicitudes al Fondo de Conservación de Edentados durante todo el año, sin fechas límite. Se acusará recibo dentro de dos semanas, y las decisiones serán comunicadas dentro de no más de seis semanas. Las solicitudes deberán ser enviadas a: John M. Aguiar, IUCN/SSC Edentate Specialist Group Conservation Fund, Center for Applied Biodiversity Science, Conservation International, 1919 M Street, NW, Suite 600, Washington, DC 20036, USA. Las consultas sobre el proceso de solicitud pueden ser enviadas a John Aguiar, a la dirección de email <j.aguiar@conservation.org>.

Morphological and Genetic Variability in Maned Sloths, Bradypus torquatus (Xenarthra: Bradypodidae)

A research project on the morphological traits and genetic diversity of Bradypus torquatus, endemic to the Atlantic Forest, is being conducted as a collaborative study between the Laboratory of Biodiversity and Molecular Evolution (LBEM) at the Federal University of Minas Gerais and the MSc Program of Vertebrate Zoology at the Catholic University of Minas Gerais, both in Belo Horizonte, Minas Gerais, Brazil. This project focuses on the morphological, ecological and genetic aspects of this poorly known and endangered species, and aims to supply information to support measures for its conservation and management.

This study has targeted forest fragments where the largest populations of the species are expected to be found, in the Brazilian states of Bahia, Espírito
Santo and Rio de Janeiro. Morphological data have been collected from 62 wild-caught specimens, and genetic sequences have been derived from the mitochondrial control region (D-loop) from 45 adult animals. These samples represent one population from southeastern Bahia, two populations from south-central Espírito Santo – one from the lowlands and one from the highlands – and one population from Rio de Janeiro.

The morphological analysis indicates that adult *Bradypus torquatus* are the largest of their genus; adult females are significantly larger than males and may reach weights of 10 kg or more. The shape of the mane shows a previously undetected pattern of sexual dimorphism, in which the mane is more conspicuous in males than in females. Sexual dimorphism was also found in the structure of the external genitalia of reproductively active animals; these differences are extremely subtle and almost impossible to distinguish without a great deal of experience. We also detected significant differences in size between individuals from warmer and colder regions, suggesting that populations have adapted morphologically to the temperatures of their local environments. Examination of the animals captured, especially recaptured adults, has improved our understanding of their biological and reproductive parameters. Maned sloths appear to reach maturity at about three years of age, which is a relatively short time for animals of their size and low metabolic rate. (For details see Lara-Ruiz and Chiarello, in press.)

Concerning the genetic analysis (Lara-Ruiz, unpublished data), sequences from the mitochondrial control region showed low levels of within-population polymorphism, and indicated that most of the genetic diversity found in this species is due to differences between populations. Based on D-loop sequences, genetic distances calculated among populations from the different states were high (> 0.90), while the distance found between the two populations sampled from ES was less than 0.1. Accordingly, relations among haplotype lineages present a strong geographic agreement and a highly discontinuous divergence pattern. The observed patterns of low genetic variability and high genetic structuring – a lack of shared haplotypes between populations, indicating distinct genetic lineages – might result from historic barriers to gene flow and from the species’ reduced capacity for dispersal. However, they may also reflect other processes, such as severe population reductions and subsequent recovery (genetic bottlenecks) and the differentiation of remnant populations. These facts accentuate the importance of monitoring animals in their remaining habitat, and also highlight the genetic dangers posed by uninformed translocations between isolated lineages in different states. These results emphasize the need to thoroughly investigate patterns of genetic variability using nuclear markers (a study already in progress) – and if emerging patterns are confirmed, it will further emphasize the need for careful genetic management to promote the recovery and maintenance of the genetic diversity of the surviving populations.

Paula Lara-Ruiz, Fabrício R. dos Santos, Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Minas Gerais, Brazil, e-mail: <lara-ruiz@ufmg.br>, and Adriano G. Chiarello, Programa de Mestrado em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais (PUC), Av. Dom José Gaspar 500, Coração Eucarístico, Belo Horizonte 30535-610, Minas Gerais, Brazil.

References
Research on the Maned Sloth (*Bradypus torquatus*) in Bahia, Brazil

The maned sloth (*Bradypus torquatus*) is one of the two species of sloths found in the Brazilian Atlantic Forest, and the only one endemic to this highly disturbed biome. An ecological study of this species has been underway since January 2003 in the Ecoparque de Una, a Private Reserve owned by the Instituto de Estudos Sócio-Ambientais do Sul da Bahia (IESB) in Una, in the state of Bahia. The study is being conducted by Camila Cassano, as part of the requirements for a Master’s thesis at the State University of Santa Cruz in Ilhéus, Bahia. The research is being administered by IESB and is financed by the Fundação o Boticário de Proteção à Natureza and Conservação Internacional Brasil.

Three animals have been monitored with radio-telemetry in the primary forest of the Reserve for periods lasting from 12 to 24 months. A further two maned sloths are now being monitored using radio-telemetry in neighboring properties, which include secondary forest and a cocoa plantation shaded by forest canopy trees (*cabruca*). Data on home range and weekly path length have been collected for all the animals, and data on activity budget, daily path length and diet have been collected for ten hours/month using focal-animal sampling.

The home ranges of the maned sloths have varied from 3 to 5 ha. Leaves from trees of the families Moraceae, Bombacaceae, Myrtaceae, Myristicaceae and Fabaceae have been identified as components of the sloths’ diet. Observations on behavior and traveling have shown that the sloths are both diurnal and nocturnal, and spend more than 80% of their time resting. Our observations and reports from local people indicate that the sloths use secondary forests and *cabruca*. Monitoring will continue at least until mid-2006, particularly to examine the relative use of primary forest, secondary forest, and *cabruca*.

Camila Cassano, Instituto de Estudos Sócio-Ambientais no Sul da Bahia (IESB), Rua Major Homem Del Rey 147, Cidade Nova, Ilhéus 45650-000, Bahia, Brazil, and Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz (UESC), Rodovia Ilhéus-Itabuna Km 16, Ilhéus 45662-000, Bahia, Brazil.

Projeto Tamanduá: O Grupo de Trabalho pela Conservação do Tamanduá no Brasil

Da ordem Xenarthra, os tamanduás englobam três espécies no Brasil, sendo elas: tamanduá-bandeira (*Myrmecophaga tridactyla*), tamanduá-mirim (*Tamandua tetradactyla*) e o tamanduá (*Cyclopes didactylus*). São animais de hábitos crepusculares e noturnos, podendo ser encontrados em savanas, florestas úmidas e cerrados.

O conhecimento do manejo dessas espécies é de suma importância, uma vez que diante das exigências ambientais, nutricionais e comportamentais desta espécie, tem-se tornado difícil a reprodução no cativeiro. Vale salientar que segundo a lista das espécies ameaçadas de extinção, publicada pelo Ministério do Meio Ambiente no dia 27 de maio de 2003, encontra-se em destaque o *Myrmecophaga tridactyla*. Mediante este contexto, evidencia-se a importância do papel dos zoológicos como mantenedores de programas que tenham como objetivo principal a reprodução de espécies da nossa fauna, principalmente aquelas ameaçadas de extinção.

Justificativa:
Com o intuito de concentrar todas as informações disponíveis sobre as espécies de tamanduás, *in situ* e *ex situ*, de desenvolver um plano de ação para conservação das três espécies no Brasil, e de integrar as instituições brasileiras que desenvolvam trabalhos neste sentido, está sendo gerado o GCTB (Grupo de Trabalho pela Conservação do Tamanduá no Brasil), composto por profissionais que atuam na área de animais selvagens e com experiência no manejo das espécies em questão.

Neste entendimento, busca-se elaborar um trabalho que venha a ser desenvolvido a partir de uma
coletânea de dados obtidos em todo o país. Esse grupo terá sede na Fundação Parque Zoológico de São Paulo, pois está instituição é pioneira na conservação das espécies de tamanduás no Brasil. Entre outros êxitos, o FPZSP registrou os primeiros casos de nascimentos de tamanduá-bandeira e tamanduá-mirim em cativeiro no Brasil; tem sido responsável pelo maior plantel do Brasil de tamanduá-mirim e tamanduá-bandeira (Censo SZB) e o terceiro plantel de tamanduá-bandeira do mundo (ISIS); e apresenta na sua estrutura organizacional um quadro de profissionais renomados no manejo destas espécies, com publicações nacionais e internacionais.

Missão do GCTB:
Promover ações que favoreçam a conservação das espécies de tamanduás no Brasil.

Fundadores:
Os fundadores incluem Flávia Regina Miranda, do Fundação Parque Zoológico de São Paulo; Rodrigo Hidalgo Teixeira, do Zoo de Sorocaba, São Paulo; e Cátia Dejuste, do Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA).

Consultores internacionais:
Os consultores internacionais incluem Dr. Roberto Aguilar, Senior Veterinarian, Audubon Zoo – Audubon Nature Institute, New Orleans, Louisiana, USA; Marcela Uhart, Universidad Nacional Del Centro de la Provincia de Buenos Aires, Argentina e Field Veterinary Program, Wildlife Conservation Society; e Delio Orjuela, Médico Veterinário do Zoológico de Cali, Colômbia.

Os objetivos específicos do GCTB incluem:

- elaborar protocolos de manejo para conservação das espécies no Brasil;
- elaborar o studbook regional, catalogando todas as espécies existentes em cativeiro;
- realizar workshops, nacionais e internacionais, com ênfase na conservação das espécies;
- desenvolver pesquisa e educação ambiental;
- iniciar um controle genealógico dos animais, buscando reerguer a população em cativeiro;
- proporcionar parcerias com profissionais com experiência in situ, buscando uma melhoria no manejo ex situ;
- unir as instituições que possuam essas espécies em cativeiro;
- firmar parcerias internacionais em prol da conservação das espécies.

Para mais informações, favor entrar em contato com Flávia Miranda, Fundação Parque Zoológico de São Paulo, Av. Miguel Stefano 4241, São Paulo 04301-901, São Paulo, Brasil. E-mail <flaviamiranda@yahoo.com> ou <gctb@uol.com.br>.

Project Anteaters in Brazil

Three species of anteaters are found in Brazil: the giant anteater (*Myrmecophaga tridactyla*), the lesser anteater (*Tamandua tetradactyla*) and the silky anteater (*Cyclopes pygmaeus*). Crepuscular and nocturnal, they may be found in savannas, cerrado and humid forests. Understanding how to manage these species in captivity is of great importance, owing to their special nutritional, environmental and behavioral needs, and the difficulties encountered with their captive reproduction. It is worth pointing out that on the list of endangered species published by the Brazilian Ministry of the Environment on 27 May, 2003, *Myrmecophaga tridactyla* stands out. This context makes clear the important role which zoos play in maintaining programs which have as their fundamental objective the reproduction of these representatives of Brazil’s mammalian fauna, especially those threatened with extinction.

Justification

With the intention of pooling all available information on tamanduás, both in situ and ex situ – as well as to develop an action plan for the conservation of these three species in Brazil, and to bring together those Brazilian institutions which have developed projects along these lines – we have
created Project Anteaters (Grupo de Trabalho pela Conservação do Tamanduá no Brasil), composed of professionals who work with wild animals and who have experience in the management and husbandry of the species in question.

Therefore we plan to develop a project meant to coordinate data obtained from across the country. This group will be based in the São Paulo Zoo (Fundação Parque Zoológico de São Paulo), as this institution has been a pioneer in the conservation of Brazilian anteaters. Among other successes, the São Paulo Zoo registered the first captive births of giant and lesser anteaters in Brazil; the Zoo maintains the largest collection of these species in the country, and the third-largest collection of giant anteaters in the world. The Zoo has a team of professionals on staff who are well-known for their experience with captive management of these species, with national and international publications.

The Mission of Project Anteaters
To promote actions which support the conservation of Brazilian anteaters.

Founders
The founders of Project Anteaters include Flávia Regina Miranda, of the São Paulo Zoo; Rodrigo Hidalgo Teixeira, of the Sorocaba Zoo, São Paulo; and Cátia Dejuste, of the Brazilian environmental agency Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA).

International Consultants
The international consultants include Dr. Roberto Aguilar, Senior Veterinarian, Audubon Zoo – Audubon Nature Institute, New Orleans, Louisiana, USA; Marcela Uhart, of the Universidad Nacional Del Centro de la Provincia de Buenos Aires, Argentina and the Field Veterinary Program of the Wildlife Conservation Society; and Delio Orjuela, Medical Veterinarian of the Zoological Park in Cali, Colômbia.

The specific objectives of Project Anteaters include:

- develop management protocols for the conservation of Brazilian anteaters;
- develop a regional studbook cataloguing all individuals now in captivity;
- present national and international workshops with an emphasis on the conservation of these species;
- develop projects on research and environmental education;
- initiate a program of controlled breeding for the captive animals, in order to re-establish the captive population;
- develop partnerships with wildlife professionals who have in situ experience, with the goal of improving ex situ management;
- unite the institutions which maintain these species in captivity; and
- establish international partnerships towards the conservation of these species.

For more information, please contact Flávia Miranda, Fundação Parque Zoológico de São Paulo, Av. Miguel Stefano 4241, São Paulo 04301-901, São Paulo, Brasil. E-mail <flaviamiranda@yahoo.com> or <gctb@uol.com.br>.

Four New Protected Areas in Brazil Cover Nearly 500,000 Hectares

On 3 June, 2004, the Brazilian Minister of the Environment, Marina Silva, announced the creation of four new protected areas – two National Forests and two Extractive Reserves in the states of Paraná (Piraí do Sul National Forest of 124.8 ha in the region of Campos Gerais), Paraíba (Restinga do Cabedelo of 103 ha; mangroves and coastal restinga vegetation), Maranhão (Cururupu Extractive Reserve of 185,000 ha; marine resources – mangroves and coastal swamps) and Amazonas (Capanã Grande Extractive Reserve of 304,000 ha; municipality of Manicoré, Rio Madeira). Capanã Grande is one of the protected areas foreseen in the ARPA (Amazon Region Protected Areas) programme of the World Wide Fund for Nature (WWF), Brazil, which is working towards the creation of 50 million ha of new...
protected areas in the Amazon over the next 10 years. Eighteen million ha are planned for the first phase of the program (2002–2006) which is supported by the Global Environment Facility (GEF) of the World Bank, the KfW Bankengruppe, and the Brazilian government. At the government ceremony creating these reserves, representatives of the state governments of Acre, Amazonas, Mato Grosso, Pará, Rondônia and Tocantins signed cooperative agreements regarding the implementation of the ARPA.

Serra do Itajaí – A New National Park in the Brazilian Atlantic Forest

The Brazilian government published a decree on 7 June, 2004 creating the Serra do Itajaí National Park of 57,000 ha in the east of the state of Santa Catarina. The Itajaí valley was one of the 80 priority areas for the creation of parks and reserves in the Atlantic Forest identified during a workshop held in August 1999 in Atibaia, São Paulo: “Evaluation and Priority Actions for the Conservation of Biodiversity in the Atlantic Forest and Southern Grasslands”, organized by Conservation International do Brasil in collaboration with the Fundação SOS Mata Atlântica, IPÊ – Instituto de Pesquisas Ecológicas, Fundação Biodiversitas, Secretaria do Meio Ambiente do Estado de São Paulo – SEMAD/SP, and the Instituto Estadual de Florestas – IEF/MG, under the general coordination of the Ministry of the Environment (MMA).

The initial proposal for the park, prepared by staff and researchers from the Brazilian Institute for the Environment (IBAMA), the Federal University of Santa Catarina, the Regional University of Blumenau (FURB), and the Santa Catarina State Environmental Secretariat, was sent to the MMA by the State Council for the Atlantic Forest Biosphere Reserve (Conselho Estadual da Reserva da Biosfera da Mata Atlântica) in 2002. The park includes parts of nine municipalities – Ascurra, Apuí, Blumenau, Botuverá, Gaspar, Guabiraba, Indaial, Presidente Nereu and Vidal Ramos – and covers headwaters and springs vital for the region. The Itajaí valley has one of the largest remaining tracts of Atlantic Forest in southern Brazil, and researchers from the Regional University of Blumenau have found that the park protects 78% of the mammals, 38% of the birds and 47% of the trees and shrubs known to occur in the state. *Source: Instituto Socioambiental, São Paulo. Website: <http://www.socioambiental.org>.*

International Foundation for Science Research Grants

The International Foundation for Science (IFS) is a research council with international operations whose mission is to build the scientific capacity of developing countries for the sustainable management of biological and water resources. IFS believes that the interests of both science and development are best served by promoting and nurturing the research efforts of promising young science graduates who have the potential to become leading scientists in their countries. Since 1974, IFS has provided support to more than 3500 Grantees in over one hundred developing countries in Africa, Asia, the Pacific, Latin America and the Caribbean.

The IFS Granting Programme is open for project proposals from young scientists from developing countries who meet the eligibility criteria and who conduct research on the sustainable management of biological resources. Proposed projects must be related to the sustainable use of the biological and/or water resource base. IFS is specifically targeting scientists in countries with developing science and technology infrastructures. Research grants are awarded up to a maximum value of US$12,000 for a period of one to three years, and may be renewed twice. They are intended for the purchase of equipment, expendable supplies, and literature. Details of IFS awards can be found on the IFS website at <http://www.ifs.se/programme/granting_programme.asp>.

Biodiversidade Ganha Rede

No dia 5 de outubro de 2004, foi lançada oficialmente a rede ‘speciesLink’ criada pelo Centro
de Referência em Informação Ambiental (Cria), Diretor Presidente Vanderlei Perez Canhos. Integrada ao Sistema de Informação Ambiental do Programa Biota/FAPESP (SinBiota), a rede, que deverá permitir a integração dinâmica de dados sobre a biodiversidade paulista, começa além das fronteiras do Estado: a coleção do Jardim Botânico do Rio de Janeiro já está integrada ao sistema.

O sistema permite a integração de diferentes grupos taxonômicos por meio de bancos de dados distribuídos e protocolos de comunicação. Com isso, será possível ligar, no futuro, as coleções biológicas a outras redes de informação do país e do exterior, por meio de softwares livres. A nova estrutura envolve registros de microrganismos, ácaros, insetos, répteis, mamíferos, peixes e tipos de madeira. A rede compartilhará informações de coleções das três universidades paulistas e de nove institutos de pesquisa, além do Jardim Botânico Fluminense. O speciesLink deverá ser utilizado como embrião para o desenvolvimento de uma rede brasileira de coleções científicas.

“Com o objetivo de acomodar a biodiversidade tanto sob o ponto de vista geográfico como taxonômico, a expectativa é que o sistema tenha 750 mil registros até 2006”, prevê Canhos. A ideia é que esses aplicativos possam ajudar na resolução de problemas como proteção de espécies ameaçadas, mudanças climáticas e planejamento de áreas de conservação.

“Com o avanço das ferramentas de análise, síntese e visualização dos dados, as coleções que ficarem de fora de uma plataforma como o speciesLink tenderão a ficar menos competitivas e menos visíveis para a comunidade científica”, disse Canhos.

O mecanismo físico que viabiliza o novo sistema foi estruturado a partir de servidores que permitem a integração de informações por meio da Rede ANSP (Academic Network at São Paulo), a conexão de internet avançada do Estado de São Paulo e também um programa da FAPESP. Mais informações: <http://splink.cria.org.br>. Fonte: Thiago Romero, Agência de Notícias da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), 6 de outubro de 2004.

The Tahuamanu Biological Station

The Tahuamanu Biological Station of the Amazonian University of Pando (Pando, Bolivia) is sited in an area of primary and secondary terra firme forest, typical of Western Amazonia in both flora and fauna. River floodplains and bamboo forests provide additional habitat for specialized taxa. The fauna is representative of the region, and at least eight species of edentate are present in the region, including Priodontes maximus (Alverson et al., 2000). Aquatic biodiversity is especially rich in this region, one of the most diverse of the Amazon Basin.

A number of studies have been conducted at the site over the last decade, including long-term field projects on several mammal species. Census data have also been collected for large mammals, birds, fish, reptiles and amphibians as well as local flora. The station is well-suited for teaching field courses, and prior topics include primate conservation and ecology, herpetology, field methods, dendrology and more.

The Tahuamanu Biological Station is one kilometer from the north bank of the Río Tahuamanu and 60 km southwest of Cobija, the capital city of Pando; the station is three hours by road from Cobija’s international airport. Located within a trinational frontier, the Biological Station is only a short distance from both the Brazilian and Peruvian borders.

Researchers intending to carry out fieldwork and sampling protocols will require permits from the Bolivian Department of National Biodiversity Management (DGB), which also provides CITES permits. To obtain a permit, scientists must sign a research agreement with a local institution, which the Centro de Investigación y Preservación de la Amazonia (CIPA) can easily provide, in addition to assistance with processing...
permit applications. CIPA also offers academic and logistical assistance to researchers, including the arrangement of transportation to and from the field site.

The Station has shared and private cabins, a partially equipped kitchen, a dining area, and teaching and storage facilities. The presence of local guides and a full-time caretaker ensures safe and comfortable living and working conditions for researchers and the presentation of field courses. Over 25 km of trails in an extensive grid system allows for easy viewing of animals. With advance notice, road and river transportation can also be provided through CIPA at the University of Pando. For more information about the Biological Station, please contact Sandra Suárez at <sqs6596@nyu.edu> or Centro de Investigación y Preservación de la Amazonia (CIPA), Universidad Amazónica de Pando, Avenida Crnl. Cornejo, Cobija, Depto. de Pando, Bolivia, Tel.: 591-3-842-2135 ext. 112, <cipauap@hotmail.com> or <estacion_tahuamanu@yahoo.com>.

The Tahuamanu Biological Station is operated through the cooperation of the Universidad Amazónica de Pando, CIPA, the Field Museum and the Gordon and Betty Moore Foundation.

TABLE 1. Edentate species recorded from the vicinity of the Tahuamanu Biological Station. From Alverson et al., 2000.

<table>
<thead>
<tr>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabassous unicinctus</td>
</tr>
<tr>
<td>Choloepus hoffmanni</td>
</tr>
<tr>
<td>Cyclopes didactylus</td>
</tr>
<tr>
<td>Dasypus kappleri</td>
</tr>
<tr>
<td>Dasypus novemcinctus</td>
</tr>
<tr>
<td>Myrmecophaga tridactyla</td>
</tr>
<tr>
<td>Priodontes maximus</td>
</tr>
<tr>
<td>Tamandua tetradactyla</td>
</tr>
</tbody>
</table>

Reference
Conservation of the Atlantic Forest in São Paulo – A Rolex Award for Laury Cullen Jr.

Laury Cullen Jr., Research Coordinator at IPÊ – Instituto de Pesquisas Ecológicas, based in Nazaré Paulista, São Paulo, is a recipient of The Rolex Awards for Enterprise, promoted by Rolex S.A. The award was announced on 29 September 2004, in Paris. Key behind this award was his project “Transforming Farmers into Conservationists to Preserve the Atlantic Forest and its Fauna.” Over the last nine years, Laury Cullen Jr. has focused on protecting the forest fragments remaining in the west of the state of São Paulo, working with small farmers and landowners, and demonstrating techniques and systems in agroforestry which promote the recovery of degraded soils besides the preservation and recovery of the forest fragments and their fauna. He is currently planning to increase the number and extent of forest corridors in the region, while simultaneously helping to promote the economic well-being of at least 400 farmers. IPÊ was founded in 1992 specifically for the conservation of the black lion tamarin, *Leontopithecus chrysopygus*, one of the many species which will benefit directly from the forest restoration resulting from Cullen Jr.’s project. He is currently researching for his doctoral thesis at the Durrell Institute for Conservation and Ecology (DICE) of the University of Kent, UK. The deadline for registration for ‘The Rolex Awards for Enterprise 2006’ is 31 May 2005. Websites: <www.rolexawards.com>, <http://www.wpti.org/ipé.htm>.

ISIS Zoological Information Management System (ZIMS) Project

The International Species Information System (ISIS), in cooperation with other representatives of the zoological community, is designing the next generation of software for the data management needs of zoos and aquariums worldwide. The Zoological Information Management System (ZIMS) will replace the current ISIS software to provide a more accurate and comprehensive database of animal inventories. More than 500 animal-care experts from zoos, aquariums and related organizations worldwide will participate in the project. ISIS works closely with the International Animal Data Information Systems Committee (IADISC).

ZIMS will allow users to see collections of animal data in real time, and will enhance local care and international conservation efforts by providing faster and better access to species information. When complete, ZIMS will be available in three models; each institution can choose the model that is best suited to their needs. The models include:

ZIMS ASP model:
Functioning like an online bank or airline reservation system, this application allows users to conduct transactions through a dedicated website. This version is suitable for small to medium zoos and aquaria with few users and fast internet connections.

ZIMS locally-hosted model:
This model works like a ticketing or finance system, in that ZIMS will “talk” to other applications. This model assumes that the institution is medium to large in size with in-house IT expertise available. You should use this model if your institution has legal requirements to keep a copy of your own data on your own servers.

ZIMS stand-alone model:
This is a single-computer version for the institution that has limited internet connectivity, only one or two people using the system and no IT expertise available. Training members on ZIMS is expected to take place in 2006.

The ZIMS Project is one of the largest, international web-based projects of its kind. ZIMS will serve as the central repository for accurate and comprehensive information on two million animals in more than 70 countries. For more information on ZIMS visit the ISIS website at <http://www.isis.org> or the ZIMS project site at <http://www.zims.org>.
A Website for Giant Anteaters

The Online Anteater is a site dedicated to the giant anteater (*Myrmecophaga tridactyla*). Nicely organized, the site includes sections on habitat, diet, breeding, biology, behavior and history. Also included is an extensive list of links to other sites with information on giant anteaters, such as fact sheets, zoological institutions housing anteaters and articles and news. This is an excellent site for educators wishing to gather basic information and some fun facts about the giant anteater. The site can be viewed at <http://www.maiaw.com/anteater>. For questions or comments, contact Maia Weinstock at <maia@alumni.brown.edu>.

RECENT PUBLICATIONS

Threatened Edentates in Southern Brazil – Red Data Books for the States of Paraná and Rio Grande do Sul

The Instituto Ambiental do Paraná has published the *Livro Vermelho da Fauna Ameaçada no Estado do Paraná*, in cooperation with the Government of Paraná and the Secretaria de Estado do Meio Ambiente e Recursos Hídricos (SEMA). Edited by Sandra Bos Mikich and Renato Silveira Bérnils, this 700-page volume provides the most recent assessment of the conservation status of well over three hundred threatened and indeterminate species in the Brazilian state of Paraná. Detailed entries, each with its own map, cover 56 species of mammals, 167 birds, 13 reptiles, 25 amphibians, 50 fishes, 18 bees and 15 butterflies, for a total of 344 species designated as threatened, Near Threatened or Data Deficient. Of all the species known to occur in Paraná, 32% of the mammals are considered threatened, 28% of the reptiles and amphibians, 22% of birds, and 5% or less of fishes, bees and butterflies.

Of the 176 mammal species verified from Paraná, nine are edentates, three of which are treated in the *Livro Vermelho*: *Bradypus variegatus* (RE), *Cabassous tatouay* (DD) and *Myrmecophaga tridactyla* (CR). The three-toed sloth is known there from a single record in 1946, and the species was probably extirpated decades ago, owing to its need for primary forest and its extreme sensitivity to habitat alteration. Both the giant anteater and the naked-tailed armadillo still survive in Paraná, but they are threatened by agricultural expansion and habitat loss, including wildfires and controlled burns known together as *queimadas*. They often fall victim to domestic dogs and highway strikes, and they are heavily persecuted by local people for threats both real and imagined. As a first step in addressing their decline, the *Livro Vermelho* of Paraná recommends research projects to understand their basic biology, ecology and remaining distribution.

The Paraná volume follows the publication, in 2003, of an equally comprehensive survey for Brazil’s southernmost state: the *Livro Vermelho da Fauna Ameaçada de Extinção no Rio Grande do Sul*, edited by Carla S. Fontana, Glayson A. Bencke and Roberto E. Reis, and published by Edipucrs, the university press of the Pontifícia Universidade Católica do Rio Grande do Sul. This volume received support from a variety of foundations and NGOs, including Conservation International do Brasil and the Fundação O Boticário de Proteção à Natureza. The assessments detailed in the *Livro Vermelho*, resulting from more than three years of work by dozens of specialists, were codified in state law by Decreto Estadual nº 41.672, promulgated on 11 June 2002 and signed by then-governor Olívio Dutra.

The *Livro Vermelho* of Rio Grande do Sul provides information on 261 species in five threat categories, including 33 mammals, 128 birds, 27 reptiles and amphibians, 28 fishes, 18 insects, 17 molluscs, 7 crustaceans and 3 sponges. Of the nine edentates originally known from the state – the same nine that occur in Paraná – three are listed as threatened: *Cabassous tatouay* (DD), *Myrmecophaga tridactyla* (CR) and *Tamandua tetradactyla* (VU). Both anteater species have suffered from the widespread loss of habitat,
both for themselves and for the social insects they feed on, owing to agricultural expansion and the *queimadas*. As in Paraná, domestic dogs and highway mortality are taking their toll, and local people kill giant anteaters on sight for their supposed ferocity. To counter these threats, the *Livro Vermelho* suggests several courses of action, beginning with field studies to supply baseline biological and ecological information for each of these species. Other recommendations include programs of environmental awareness, the creation of protected areas around specific habitat complexes, and statewide surveys for surviving populations – in particular of *Myrmecophaga tridactyla*.

These two volumes from Paraná and Rio Grande do Sul are the most recent additions to a small series of regional assessments produced by individual states in Brazil. Paraná was the first state to do so, in 1995, at which time their list included 21 species of mammals (Brazil, Paraná, SEMA, 1995). Three years later the states of Minas Gerais, Rio de Janeiro and São Paulo also released summaries of threatened species within their borders (Machado *et al*., 1998; Bergallo *et al*., 1998; Brazil, São Paulo, SMA, 1998), listing 40, 43 and 41 species of threatened mammals respectively. All together these five states, concentrated in the industrialized and heavily impacted southeast of Brazil, remain the only states to have produced current, comprehensive assessments of threatened species. We hope that other Brazilian states will join this continuing process, and provide summaries of equal scope and value for other regions in Brazil.

Threatened Edentates in Paraná

Bradypus variegatus - RE

On the basis of a single record from Londrina in 1946, the three-toed sloth is included among the fauna of Paraná as regionally extinct. The species is closely tied to primary forest, and is sensitive to even slight disturbance or changes in its environment; it most likely has gone extinct in Paraná owing to changes in forest type and overall habitat loss. No recommendations are made.

Myrmecophaga tridactyla - CR

The giant anteater’s original distribution in Paraná is unknown, and now it is found mainly in remnant patches of cerrado and campos naturais. In recent years only a few sightings have been made from a handful of protected areas; no population estimates can be made, but it has already vanished from one state park and its presence is uncertain in others. Giant anteaters are able to survive in ranchlands and pasture if ants and termites are present, but otherwise they will disappear as well. The primary threats to this species in Paraná, as elsewhere, are the extensive expansion of agriculture, subsistence hunting by humans and attacks by domestic dogs. Its population is also impacted by widespread burnings and highway mortality. No conservation measures are currently in place, but the *Livro Vermelho* recommends an urgent program to map the current extent of the species.

TABLE 1. Regional classifications for edentates in Paraná and Rio Grande do Sul.

<table>
<thead>
<tr>
<th></th>
<th>Status*</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraná</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradypus variegatus</td>
<td>RE</td>
<td>Habitat loss and disturbance</td>
</tr>
<tr>
<td>Cabassous tatouay</td>
<td>DD</td>
<td>Habitat destruction; fires; persecution</td>
</tr>
<tr>
<td>Myrmecophaga tridactyla</td>
<td>CR</td>
<td>Agricultural expansion; fires; hunting; domestic dogs; highway mortality</td>
</tr>
<tr>
<td>Rio Grande do Sul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabassous tatouay</td>
<td>DD</td>
<td>Not specified</td>
</tr>
<tr>
<td>Myrmecophaga tridactyla</td>
<td>CR</td>
<td>Agricultural expansion; fires; persecution; highway mortality</td>
</tr>
<tr>
<td>Tamandua tetradactyla</td>
<td>VU</td>
<td>Agricultural expansion; fires; domestic dogs; highway mortality</td>
</tr>
</tbody>
</table>

* DD = Data Deficient, VU = Vulnerable, CR = Critically Endangered, and RE = Regionally Extinct.
in Paraná and monitor individuals in the wild, along with other ecological projects and habitat protection in general.

Cabassous tatouay - DD

Although relatively common from Bahia to Rio Grande do Sul, this species is little-known and rarely verified from Paraná. Presumably its range once included the entire state; today it survives in a variety of habitats, from humid forests to open and altered areas. The main threats are uncontrolled burnings and habitat destruction. *C. tatouay* is also heavily hunted in cultivated areas for the damage done to fields by the excavation of its burrows, which are occupied in sequence and then abandoned. The only recommendations are for research projects on its distribution, ecology and biology.

Threatened Edentates in Rio Grande do Sul

Tamandua tetradactyla - VU

In Rio Grande do Sul, historical records suggest the lesser anteater once occurred throughout the state. It is still widespread, although restricted mainly to the central and southern regions. It is absent from the northeast, where they are most likely extinct. Although capable of living in a wide range of habitats, in Rio Grande do Sul the lesser anteater prefers forested areas to savanna, and lives close to water whenever possible. Its populations have declined along with their habitat, which has been degraded and fragmented by agriculture and widespread burnings. Domestic dogs have become a major predator, along with occasional killings by humans for no particular reason, and highway mortality is also a serious concern. The **Livro Vermelho** recommends long-term field studies on their diet, activity patterns, population density, home-range size and preferred habitats – an indication of how much basic information is still wanton for this species.

Myrmecophaga tridactyla - CR

Giant anteaters were already rare a century ago in Rio Grande do Sul, and by now they may already be ecologically extinct in the state. Never common anywhere across their immense range – which at one time may have reached from Argentina to Belize – there is little evidence they survive in Rio Grande do Sul, aside from a single individual found dead on a highway in 1999. Able to survive in a tremendous variety of landscapes, from humid tropical forest to dry steppes and savannas, they nonetheless require gallery forests for access to water and sleeping trees. On account of their aggressive self-defense when threatened, giant anteaters garnered a reputation for ferocity among the gauchos, and they are still often shot on sight as “dangerous” animals – although they are rarely if ever eaten once killed. The tremendous loss of habitat due to agriculture must have had direct effects on their population, but has also caused a great decline in the standing crop of the social insects on which they survive. In the Cerrado, the most common cause of individual death is from fires, although highway mortality is also a danger. The **Livro Vermelho** suggests three primary actions: to locate any individuals or populations still surviving in the state; to create conservation units around forests associated with native grasslands, in order to provide natural refuges; and to educate local people about the inoffensive nature and serious decline of giant anteaters in their state.

Cabassous tatouay - DD

There is no recent information on the status of this species in Rio Grande do Sul; there are old records, but no surveys are underway. The **Livro Vermelho** suggests *C. tatouay* may be declining in the west and southwest of the state, but gives no reasons for this decline nor recommendations for conservation action.

John M. Aguiar, Center for Applied Biodiversity Science, Conservation International, 1919 M Street NW, Suite 600, Washington, DC 20036, USA. E-mail: <j.aguiar@conservation.org>.

References

A Map of the Brazilian Amazon

The Instituto Socioambiental (ISA), São Paulo, has published a new map of the Brazilian Amazon (Amazônia Legal) covering 500.6 million ha in the states of Amazonas, Pará, Acre, Roraima, Rondônia, Mato Grosso, Tocantins, Amapá, and part of Maranhão. “Amazônia Brasileira 2004”, at a scale of 1:4,000,000, is 100 x 70 cm, and maps vegetation types, deforestation and human impacts in the region. There is also a list of the 236 protected areas and 400 Indigenous lands, parks and reserves of the region, part of a database maintained by the Instituto Socioambiental which indicates a total of 60.5 million ha of the Brazilian Amazon in protected areas, corresponding to 12% of the region (excluding c.14 million ha overlapping with Indigenous lands). Indigenous lands cover 104.3 million ha, or about 20% of the region. The list includes the name, category, area and the legal act which created each park and reserve, and the juridical/administrative status of, and names of the tribes in, each of the Indigenous lands. The data come from the Protected Areas Monitoring Programme (Programa de Monitoramento de Áreas Protegidas) of the Instituto Socioambiental, and have been plotted on maps drawn up by the Brazilian Institute for Geography and Statistics (Instituto Brasileiro de Geografia e Estatística – IBGE), Rio de Janeiro. The database of the “Global Land Cover 2000” of the Joint Research Centre (JRC) of the European Commission was used to identify areas which have been deforested and impacted. The map is available at the Socioambiental website, <http://www.socioambiental.org>, for R$15.00 + postage.

Lundiana – Uma Revista de Biodiversidade

The Instituto Socioambiental (ISA), São Paulo, has published a new map of the Brazilian Amazon (Amazônia Legal) covering 500.6 million ha in the states of Amazonas, Pará, Acre, Roraima, Rondônia, Mato Grosso, Tocantins, Amapá, and part of Maranhão. “Amazônia Brasileira 2004”, at a scale of 1:4,000,000, is 100 x 70 cm, and maps vegetation types, deforestation and human impacts in the region. There is also a list of the 236 protected areas and 400 Indigenous lands, parks and reserves of the region, part of a database maintained by the Instituto Socioambiental which indicates a total of 60.5 million ha of the Brazilian Amazon in protected areas, corresponding to 12% of the region (excluding c.14 million ha overlapping with Indigenous lands). Indigenous lands cover 104.3 million ha, or about 20% of the region. The list includes the name, category, area and the legal act which created each park and reserve, and the juridical/administrative status of, and names of the tribes in, each of the Indigenous lands. The data come from the Protected Areas Monitoring Programme (Programa de Monitoramento de Áreas Protegidas) of the Instituto Socioambiental, and have been plotted on maps drawn up by the Brazilian Institute for Geography and Statistics (Instituto Brasileiro de Geografia e Estatística – IBGE), Rio de Janeiro. The database of the “Global Land Cover 2000” of the Joint Research Centre (JRC) of the European Commission was used to identify areas which have been deforested and impacted. The map is available at the Socioambiental website, <http://www.socioambiental.org>, for R$15.00 + postage.

Lundiana – Uma Revista de Biodiversidade

A revista Lundiana está completando, em 2004, seu terceiro ano de publicação em sua nova fase, como revista de Biodiversidade. Ao longo deste tempo, ela publicou 59 artigos em Botânica, Ecologia e Zoologia, escritos por autores de todas as regiões do Brasil e de 10 países das três Américas, da Europa e Austrália. Lundiana tem se mostrado uma boa alternativa para publicação de artigos relacionados à biodiversidade, pelas seguintes razões: 1. Alta qualidade gráfica (papel de alta qualidade; diagramação moderna e atraente; impressão de altíssima qualidade); 2. Publicação rápida (em média, menos de 11 meses); 3. Indexação na maioria dos mais importantes indexadores internacionais nas diversas áreas das ciências naturais; 4. Espaço ilimitado para publicação; 5. Publicação gratuita; 6. 25 separatas inteiramente grátis e 7. Publicação de fotos coloridas sem custo adicional. Esses fatores têm levado a um aumento contínuo do fluxo de manuscritos submetidos à nossa revista. Com isto, já estamos considerando a possibilidade de passarmos a publicar três em vez de dois números por ano, a partir de 2005. Ajudem-nos a manter nossa revista em sua rota ascendente de qualidade e sucesso: Assine Lundiana. Os valores das assinaturas são: Estudantes (graduação e pós-graduação): R$25,00; Profissionais: R$35,00. Para assinar, você pode procurar diretamente o Prof.
BOOKS AND ARTICLES

Books

Los Mamíferos de la Argentina, y la Región Austral de Sudamérica, by Aníbal Parera, with photographs by Francisco Erize. 2002. Editorial El Ateneo, Buenos Aires. 454pp. ISBN 950-02-8536-3 (hardback), US$59.30. This superb book presents an overview of the mammal fauna of Argentina, illustrated with careful line drawings and excellent photographs. An accomplished conservationist, Parera has selected 108 native species from 13 orders to represent the full diversity of Argentine mammals. Each family, when possible, is represented by at least one species, and for those orders with exceptional diversity – notably bats and rodents – there is at least one example of each major feeding guild or ecomorph. In addition, owing to their broad interest and visual appeal, there is a particular focus on the ungulates, edentates and carnivores. The sec-
tion on edentates in particular is quite remarkable; the photographs must be among the best ever published for edentates, especially of such rare and camera-shy creatures as the fairy armadillo and giant armadillo. Each species profiled in the book is given a thorough dossier, including body measurements and description, habitat preferences and geographic distribution – with excellent range maps – and behavior, ecology and conservation status. Parera has also assembled a formidable bibliography of research on Argentinian mammals, many citations of which are not well known in North America. The edentates profiled in the text include Dasypus novemcinctus, Euphractus sexcinctus, Chaetophractus villosus, Zaedyus pichi, Tolyctes matacus, Priodontes maximus, Chlamyphorus truncatus, Myrmecophaga tridactyla and Tamandua tetradactyla, with additional photographs of other edentates from southern South America. Aside from its value as a compilation of Argentine mammalogy, this book is a wonder to page through, and – rare among books in this field – would be just as appropriate for a child who delights in mammals as for the adult who studies them. Available from the publisher’s website at <http://www.elateneo.com>.

Los Mamíferos de la Argentina, y la Región Austral de Sudamérica, by Aníbal Parera, con fotografías de Francisco Erize. 2002. Editorial El Ateneo, Buenos Aires. 454 pp. ISBN 950-02-8536-3 (edición de tapas duras), precio US$59.30. Este excelente libro da una vista general de los mamíferos argentinos y sus países vecinos, con minuciosos dibujos y excelentes fotografías. El conservacionista Parera eligió 108 especies autóctonas de 12 órdenes para representar la gran diversidad de mamíferos argentinos. Cada familia, si posible, está representada por al menos una especie, y de los órdenes de mayor diversidad – particularmente, murciélagos y roedores – figura por lo menos un ejemplo de los distintos ecotipos. El libro incluye un enfoque especial en los ungulados, edentados y carnívoros por el gran atractivo visual de estos taxones y el amplio interés que despiertan en el público. El capítulo sobre edentados es simplemente extraordinario; las fotografías de edentados deben ser de las mejores que ya fueron publicadas, especialmente las de especies tan raras y difíciles de fotografiar como el pichiciego (Chlamyphorus truncatus) y el tatú carreta (Priodontes maximus). Cada especie incluida en el libro está presentada mediante una extensa ficha, la cual incluye medidas corporales y una descripción de las preferencias de hábitat, distribución geográfica – incluyendo excelentes mapas de distribución – comportamiento, ecología y estado de conservación. Parera también recopiló una muy amplia bibliografía sobre investigaciones científicas realizadas sobre mamíferos argentinos; muchos trabajos incluidos en su lista son poco conocidos en América del Norte. Los edentados presentados en el texto incluyen Dasypus novemcinctus, Euphractus sexcinctus, Chaetophractus villosus, Zaedyus pichi, Tolyctes matacus, Priodontes maximus, Chlamyphorus truncatus, Myrmecophaga tridactyla, y Tamandua tetradactyla, con fotografías adicionales de otros edentados del sur de Sudamérica. Además de su gran valor como compilación sobre la mastozoología argentina, este libro es una maravilla que vale la pena hojear. Y como rareza entre los libros sobre esta temática, se lo podría recomendar tanto a un niño al que le gustan los mamíferos como a un adulto que los estudia. Disponible en el sitio de internet de la editora, en <http://www.elateneo.com>.

Articles

Chiarello, A. G., Chivers, D. J., Bassi, C., Maciel, M. A. F., Moreira, L. S. and Bazzlo, M. 2004. A translocation experiment for the conser-

Schimming, B. C. and Fernandes de Abreu, M. A. 2001. Systematization of the arteries in...

MEETINGS

2004

2005

Biodiversity: Science and Governance: Today’s Choice for Tomorrow’s Life, 24–28 January, 2005, Paris, France. Hosted by the Ministry of Research, with additional coordination by the Institut Français de la Biodiversité, the conference is part of the ongoing global effort to curb the loss of biodiversity by 2010 and ensure the long term conservation and sustainable use of biological diversity. The conference will focus on changes in biodiversity, assessment tools and methodologies; the social impact of change, particularly concerning the exploitation of and trade in renewable resources, agriculture, fisheries, forestry; and biodiversity governance in the context of the 2010 target and the Millennium Development Goals, with an emphasis on legal, economic and political aspects. For a comprehensive overview of the meeting, visit the website at <http://www.recherche.gouv.fr/biodiv2005paris/en/index.htm>.

2005 CTFS Symposium: Forest Dynamics Research Around the Globe, 4–5 June, 2005, STRI, Panama. Co-hosted by the Center for Tropical Forest Science and the Smithsonian Tropical Research Institute (STRI), this two-day symposium will highlight recent findings from individual Forest Dynamics Plots of the CTFS network as well as other tropical forests addressing similar topics. Presentations will address the origin and maintenance of species diversity, the comparative biology of forest communities, global change, climate change, and biomass changes, and natural forest management, reforestation and more. For more information, please contact Marla Diaz at <diazm@si.edu>.
19th Annual Meeting of the Society for Conservation Biology, 15–19 July, 2005, Brasília, Brazil. The meeting will be held at the Universidade de Brasília, Brasília, Brazil, with the central theme of “Conservation Biology: Capacitation and Practice in a Globalized World.” The chair of the meeting will be Miguel Marini from the Zoology Department of the Universidade de Brasília. The organizing committee will be composed of professors from the Zoology Department, members of the Austral and Neotropical America Section of SCB, and other researchers, mostly from Brazil and other Latin American countries. For inquiries, please contact: SCB 2005 Local Organizing Committee, Departamento de Zoologia, IB, Universidade de Brasília, 70910-900 Brasília, DF, Brasil, telefax: + 55 61 307-3366, E-mail: <2005@conbio.org>, website: <http://www.conservationbiology.org/2005>.

Association of Tropical Biology and Conservation – 2005 Annual Meeting, 23–29 July 2005, Uberlândia, Brazil. The venue will be the Uberlândia Convention Center. For more information write to the Chair of the Organizing Committee, Kleber del-Claro, Laboratório de Ecologia Comportamental e Interações, Universidade Federal de Uberlândia, Caixa Postal 593, Uberlândia 38400-902, Minas Gerais, Brazil, e-mail <delclaro@ufu.br> or <atbc2005@inbio.ufu.br>.

29th International Ethological Conference, 20–27 August, 2005, Budapest, Hungary. The aim for this conference is to encourage interdisciplinary discussion among representatives of all areas of behavioral biology. The conference will be hosted at the Eötvös University Convention Center on the banks of the Danube. Deadline for early registration and abstract acceptance: 1 March 2005. Final deadline for abstract acceptance: 1 May, 2005. Late registration until 1 June 2005. For more information, write to: IEC2005, Department of Ethology, Eötvös University, 1117 Budapest, Hungary, or subscribe to the e-mail newsletter at <IEC2005-subscribe@yahoogroups.com>.

Measuring Behavior 2005 – 5th International Conference on Methods and Techniques in Behavioral Research, 30 August – 2 September, 2005, Wageningen, The Netherlands. Measuring Behavior will offer an attractive mix of presentations, demonstrations, discussions, meetings and much more (see <http://www.noldus.com/mb2005/program/index.html> for details). Proceedings of the 2002 meeting are available at <http://www.noldus.com/events/mb2002/index.html>. Deadline for proposals of Symposia and SIGs: 1 December 2004. All presentations will deal with innovative methods and techniques in behavioral research. Topics include: behavior recording in the laboratory and field; automatic behavior recognition and pattern classification; sensor technology and biotelemetry; behavior and physiology; vocalizations, speech, gestures and facial expressions; analyzing behavior and movement; new animal models and measurement methodologies; measuring human-system interaction; innovation in teaching behavior research methods. For more information, contact Prof. Dr. Louise E. M. Vet, Program Chair, Measuring Behavior 2005, Conference Secretariat, P.O. Box 268, 6700 AG Wageningen, The Netherlands, Tel: +31-317-497677, Fax: +31-317-424496, e-mail: <mb2005@noldus.nl>. Website: <http://www.noldus.com/mb2005>.

2005 Annual Meeting of the Conservation Breeding Specialist Group, 29 September – 1 October, 2005, Syracuse, New York, USA. Beginning with a late-afternoon ice-breaker on Wednesday, the meeting will run through Saturday, ending with an afternoon and dinner at the Rosamond Gifford Zoo. Regional network meetings will take place on Tuesday, 27 September, and a Steering Committee meeting on Wednesday, 28 September. Accommodations are at the Genesee Grande Hotel (http://www.geneseegrande.com), which
ofers a variety of rooms and rates. The deadline for registration is 1 August, 2005; for more information, email a request to <2005cbsg@cbsg.org> or visit their website at <http://www.cbsg.org>.

60th World Association of Zoos and Aquariums Annual Conference, 2–6 October, 2005, New York, New York, USA. The 60th WAZA Annual Conference will be hosted by the Wildlife Conservation Society and held at the Marriott Marquis hotel. The theme of the meeting will be “Wildlife Conservation: A Global Imperative for Zoos and Aquariums.” Additional information will be made available on the conference website at <http://waza2005.org>.

III Congresso Brasileiro de Mastozoologia, 12 a 16 de outubro de 2005, realizado por a Sociedade Brasileira de Mastozoologia (SBMz) e a Universidade Federal do Espírito Santo (UFES), no SESC Praia Formosa em Aracruz, Espírito Santo. O evento reunirá pesquisadores, profissionais e estudantes com o objetivo de apresentar, analisar e discutir trabalhos científicos, descobertas e tendências no estudo dos mamíferos. O tema dessa edição é “Diversidade e Conservação de Mamíferos,” que será abordado sob diversos aspectos durante o evento, que contará com a participação de especialistas ligados a instituições de ensino e pesquisa nacionais e estrangeiras, bem como outros profissionais que atuam em órgãos governamentais, na iniciativa privada e em organizações não-governamentais. Somente serão aceitas inscrições pela internet. Poderá ser realizada a inscrição online do congresso até o dia 31 de maio, e o envio dos resumos podem ser feitos até o dia 30 de Junho de 2005. Mais informações: <http://www.cbmz.com.br>.

Counting Critters: Estimating Animal Abundance and Distance Sampling, 17–21 October 2005, Disney’s Animal Kingdom, Orlando, Florida, USA. This five-day workshop will introduce participants to the most important methods of estimating animal abundance in a rigorous but accessible way. In the first half of the workshop, we cover plot sampling, distance sampling, mark-recapture and removal methods. We explain the common key statistical concepts underlying the methods, use custom-written simulation software to understand how the methods work, and discuss which method to use when. In the second half, we focus on distance sampling in more detail. We discuss practical issues such as use of the software Distance, field methods and survey design. The workshop is aimed at anyone who needs to estimate wildlife density or abundance, and is taught by leading researchers from the Centre for Research into Ecological and Environmental Modelling at the University of St Andrews, Scotland. Registration for this workshop is now open. Since all of our previous workshops in the USA have been oversubscribed, we encourage everyone interested to register as soon as possible. For more details, please see <http://www.ruwpa.st-and.ac.uk/counting.critters/> or contact Rhona Rodger, Workshop Organizer, CREEM, University of St Andrews, The Observatory, St. Andrews, Scotland KY169LZ, tel:+44 1334 461842, fax: +44 1334 461800, e-mail:<rhona@mcs.st-and.ac.uk>.

A Website for the ESG

The Edentate Specialist Group will soon have a website of its own, thanks to the continuing efforts of Jennifer Pervola-Fermin. Scheduled to appear in August of 2005, the ESG website will provide up-to-date information on edentates and those who study them, including news, funding opportunities, conference announcements and contact information for active researchers, as well as back issues of Edentata available in PDF. Please visit <www.edentate.org> to access the full spectrum of edentate information, and feel free to send any questions, comments or suggestions to Jennifer at <jlfermin@edentate.org>.
Imagine vast flocks of migratory birds, millions of wings across the sun.

Wildbeest migrations on the plains of Africa, reaching across the horizon.

Flashing schools of herring, so dense the ocean seems alive.

Brilliant monarch butterflies draping forest groves, living leaves of every autumn hue.

Wildlife Spectacles is the fourth publication by Conservation International and Agrupacion Sierra Madre to be sponsored by CEMEX, an international cement company that has become a conservation leader in the corporate community. Wildlife Spectacles follows the successful three-volume set of Megadiversity, Hotspots and Wilderness, and continues their tradition of presenting critical conservation issues in an accessible and visually striking format.

Con 36 capítulos de algunos de los científicos más reconocidos en el mundo que trabajan sobre biodiversidad, Espectáculos de Vida Silvestre se embarca en el reto de identificar a estas especies y los lugares en donde éstas convergen. Espectáculos de Vida Silvestre busca estimular investigación futura sobre los peligros que estas especies enfrentan actualmente —y descubrir las formas en las que podamos asegurar su sobrevivencia. Los autores esperan que este libro estimule a los entusiastas de la vida silvestre alrededor del mundo para involucrarse en la causa de la conservación de la biodiversidad, y apreciar la maravilla simple de la vida silvestre en su máximo esplendor.
Wildlife Spectacles
Mail and Fax Order Form

Price: $50.00 (includes UPS Ground shipping within the continental United States). Orders requiring faster service than UPS Ground will be charged $50.00 plus all shipping costs.

Overnight shipping, wholesale orders, shipping outside of the continental United States, and/or Spanish versions, please call Jill Lucena at (202) 912-1208.

Please complete the following form and mail or fax to:
Jill Lucena
Conservation International
1919 M Street NW, Suite 600
Washington, DC 20036 USA

Phone: (202) 912-1208
Fax: (202) 912-1026
E-mail: j.lucena@conservation.org

Please allow 2–3 weeks for delivery.

First name: __________________________ Last Name: __________________________

Company: __

Mailing address: ___

City: __________________________ State: ________ Zip: __________________________

Telephone: __________________________ Fax: _________________________________

E-mail: __________________________

Title: Wildlife Spectacles (hardcover)

Quantity: ________ x $50.00 / per copy (US dollars) Total: $ __________

($50.00 price per copy includes UPS Ground shipping within continental US). Overnight shipping, shipping outside of the continental US, wholesale orders, and/or Spanish versions, please call Jill Lucena at (202) 912-1208.

☐ Payment enclosed (check or money order payable to Conservation International in US dollars)

Please charge my credit card: ☐ VISA° ☐ Mastercard°

Name as it appears on card: __

Card number: ___

Expiration date: __________

Signature: __________________________
NOTES TO CONTRIBUTORS

Scope
Edentata, the newsletter of the Edentate Specialist Group, aims to provide a basis for conservation information relating to edentates. We welcome texts on any aspect of edentate conservation, including articles, thesis abstracts, news items, recent events, recent publications, and the like.

Submission
Please send all submissions in English, Portuguese or Spanish to: John Aguiar, Center for Applied Biodiversity Science, Conservation International, 1919 M St. NW, Suite 600, Washington, DC 20036, USA, Tel: (202) 912-1000, Fax: (202) 912-0772, e-mail: <j.aguiar@conservation.org>.

Contributions
Manuscripts may be in English, Portuguese or Spanish, and should be double-spaced and accompanied by the text and any tables and/or figures on diskette for PC compatible text-editors (MS-Word, WordPerfect, Excel, and Access), and/or emailed to <j.aguiar@conservation.org>. Hard copies should be supplied for all figures (illustrations and maps) and tables. The full name and address of each contributing author should be included. Please avoid abbreviations and acronyms without the name in full. Authors whose first language is not English should please have their texts carefully reviewed by a native English speaker.

Articles
A broad range of topics is welcomed and encouraged, including but not limited to: Taxonomy, Systematics, Genetics (when relevant to systematics), Biogeography, Ecology, Conservation, and Behavior. Texts should not exceed 20 pages in length (double-spaced and including the references). For longer articles please include an abstract in English and an optional one in Portuguese or Spanish. Please limit the number of tables and figures to six, excepting cases where fundamental to the text.

Figures and Maps
Articles may include small high-quality black-and-white photographs, figures, maps, and tables. Image resolution should be 300 dpi or higher in any of the following electronic file formats: .jpg, .tiff, .eps, .pdf, .psd, or .ai. We also accept original artwork, photos, or slides to scan and return to the owner. Please contact Kim Meek at (202) 912-1379 or via e-mail at <k.meek@conservation.org> if you have any questions regarding file formats or images.

News Items
Please send any information on projects, field sites, courses, recent publications, awards, events, etc.

References
Examples of house style may be found throughout this newsletter. Please refer to these examples when citing references:

Edentata is produced in collaboration with the Center for Applied Biodiversity Science at Conservation International, 1919 M St. NW, Suite 600, Washington DC, 20036, USA.
The 2004 Edentate Species Assessment Workshop

1 Introduction
 Gustavo A. B. da Fonseca and John M. Aguiar

3 Species Summaries and Species Discussions
 John M. Aguiar

Articles

27 The First Hand-Rearing of Larger Hairy Armadillos (Chaetophractus villosus) at the Temaikèn Foundation
 María Julieta Olocco Diz and Ana Duggan

30 Crianza en Cautiverio de Perezoso de Dos Dedos (Choloepus didactylus)
 Lizette Bermúdez Larrazábal

37 Diet of the Yellow Armadillo, Euphractus sexcinctus, in South-Central Brazil
 Júlio C. Dalponte and José A. Tavares-Filho

41 Bathing Behavior of Giant Anteaters (Myrmecophaga tridactyla)
 Louise H. Emmons, Roly Peña Flores, Sixto Angulo Alpirre and Matthew J. Swarner

43 Evaluación de una Dieta para Tamanduás (Tamandua spp.) Utilizada en el Jardín Zoológico de Rosario, Argentina y el Zoológico La Aurora, Guatemala
 Guillermo Pérez Jimeno y Gustavo González González

50 News

63 Recent Publications

72 Meetings