Angiotensin II Receptor Subtypes: Their Distribution Signaling Pathways, and Physiological Functions

Authors: Hitoshi Miyazaki, Junji Ohnishi, and Takeshi Shibata
Source: Zoological Science, 13(5) : 641-646
Published By: Zoological Society of Japan
URL: https://doi.org/10.2108/zsj.13.641
Angiotensin II Receptor Subtypes: Their Distribution, Signaling Pathways, and Physiological Functions

Hitoshi Miyazaki*, Junji Ohnishi1 and Takeshi Shibata

Institute of Applied Biochemistry, Gene Experiment Center, University of Tsukuba, Ibaraki 305, Japan
1Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060, Japan

ABSTRACT—Angiotensin II (Ang II) exhibits a variety of physiological actions, related mainly to the regulation of blood pressure and fluid osmolarity. Recent identification of the multiple types of the Ang II receptors raises the possibility that Ang II has other unknown functions. The Ang II type 1 receptor (AT\textsubscript{1}) mediates most of the known physiological functions of Ang II, whereas the type 2 receptor (AT\textsubscript{2})-mediated functions remain unclear. AT\textsubscript{2} is particularly interesting because it is expressed abundantly in fetal tissues and in cells undergoing apoptosis. AT\textsubscript{1} and AT\textsubscript{2} exhibit unique signaling pathways among the superfamily of seven membrane-spanning receptors: i.e. the coupling of AT\textsubscript{1} to the Janus kinase-signal transducers and activators of transcription pathway and the coupling of AT\textsubscript{2} to phosphatase activation. Also, the two subtypes induce several opposite intracellular events. AT\textsubscript{1} mediates activation of Ca2+ channels and inhibition of K+ channels, whereas AT\textsubscript{2} induces inhibition of Ca2+ channels and activation of K+ channels. Therefore, it is of great importance to compare the two receptor subtypes with respect to their distribution, signaling pathways, and physiological functions.

Angiotensin II (Ang II), an effector peptide in the renin-angiotensin system (RAS), exhibits a variety of biological actions, related mainly to the regulation of blood pressure and fluid osmolarity (Peach, 1977; Bottari et al., 1993). In recent years, Ang II has been drawing considerable attention because of the following reasons:

1) Involvement of Ang II in the development of cardiovascular diseases such as cardiac hypertrophy and atherosclerosis as well as hypertension (Powell et al., 1989; Paul and Ganten, 1992; Susac and Frohlich, 1993; Bottari et al., 1993). The RAS is now a major target for the development of the drugs aimed at preventing these diseases.

2) Identification of multiple Ang II receptor subtypes. Ang II receptors are separated into at least four subtypes, named AT\textsubscript{1}, AT\textsubscript{2}, AT\textsubscript{3}, and AT\textsubscript{4} (Miyazaki et al., 1988; Braszko et al., 1988; Sasaki et al., 1991; Murphy et al., 1991; Harding et al., 1992; Chaki and Inagami, 1993; Mukoyama et al., 1993; Kambayashi et al., 1993) although the designation AT\textsubscript{4} is not widely recognized. This finding is very important because the existence of receptor subtypes raises the possibility that the RAS has other novel physiological functions. The abundant expression of AT\textsubscript{2} in fetal tissues and in cells undergoing apoptosis is of particular interest (Pucell et al., 1991; Grady et al., 1991; Mukoyama et al., 1993; Kambayashi et al., 1993; Tanaka et al., 1995; Kakuchi et al., 1995; Kobayashi et al., 1995; Yamada et al., 1996).

3) The AT\textsubscript{1} receptor-induced direct activation of the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, known as the signaling pathway used by cytokine receptors such as those for interleukines and interferons (Marrero et al., 1995). This is the first example among the superfamily of seven membrane-spanning receptors.

Studies on AT\textsubscript{1} and AT\textsubscript{2} have been preceding those on other Ang II receptor subtypes as the cDNAs and genes for AT\textsubscript{1} and AT\textsubscript{2} have been cloned, and because of the development of their selective antagonists. Thus, this minireview aims to introduce the reader to the current topics concerning AT\textsubscript{1} and AT\textsubscript{2}, especially focusing on a comparison of the two receptor subtypes with respect to their distribution, signaling pathways, and physiological functions.

ANG II IN THE RENIN-ANGIOTENSIN SYSTEM AND ANG II RECEPTOR SUBTYPES

As illustrated in Fig. 1, renin, an aspartyl proteinase, acts on its specific substrate, angiotensinogen, to produce the decapeptide angiotensin I. Under the influence of the
converting enzyme, angiotensin I, in turn, is converted into the octapeptide Ang II. Ang II elicits a number of physiological functions by binding to its specific receptors on the surface of target tissues. Ang II receptors are now separated into at least four subtypes, designated AT$_1$, AT$_2$, AT$_3$, and AT$_4$ (Miyazaki et al., 1988; Braszko et al., 1988; Sasaki et al., 1991; Murphy et al., 1991; Harding et al., 1992; Chaki and Inagami, 1993; Mukoyama et al., 1993; Kambayashi et al., 1993) although the designation AT$_5$ is not widely recognized.

The AT$_1$ and AT$_2$ receptors are easily distinguished based upon the binding characteristics of respective subtype-selective antagonists, such as Dup753 for AT$_1$ and PD123319 for AT$_2$ (Bottari et al., 1993). These subtypes also react differently to the sulfhydryl reagent dithiothreitol (DTT) and the nonhydrolyzable GTP analogue guanosine 5’-3-O-(thio) triphosphate (GTP$_\gamma$S). In fact, we identified novel Ang II receptors in the bovine ovary eight years ago, corresponding to AT$_3$ according to the present nomenclature, based upon their sensitivity to DTT (Miyazaki et al., 1988): e.g. DTT increased the Ang II binding affinity for AT$_3$, whereas the reagent reversely reduced the affinity for AT$_1$. The reagent GTP$_\gamma$S attenuates Ang II binding to AT$_1$, but does not affect Ang II binding to AT$_2$.

The AT$_3$ receptor, identified in differentiated Neuro-2A cells, does not have an affinity for either AT$_1$ or AT$_2$-selective antagonists (Chaki and Inagami, 1993). In contrast to these subtypes, AT$_4$ exhibits a high affinity for the hexapeptide fragment Ang II(3-8), AIV, but not for Ang II (Braszko et al., 1988; Harding et al., 1992). In addition, the heptapeptide Ang II(1-7) may have its own specific receptor, which is distinct from AT$_1$, AT$_2$, AT$_3$, and AT$_4$. Although these multiple populations of Ang II receptors exist, AT$_1$ mediates most, if not all, of the well-known functions of Ang II, such as smooth muscle contraction, stimulation of aldosterone release from the adrenal cortex, stimulation of the heart rate and cardiac contractility, and inhibition of renin release from the renal cortex (Bottari et al., 1993). In contrast, the physiological functions of the other Ang II receptor subtypes have not yet been determined.

DISTRIBUTION OF AT$_1$ AND AT$_2$

The AT$_1$ receptor is widely distributed in tissues that are mainly related to the maintenance of blood pressure, and electrolyte and fluid homeostasis, in both adult and fetal tissues (Balla et al., 1991; Bottari et al., 1993). In addition to the tissues described above (vasculature, adrenal cortex, heart, and kidney cortex), this subtype is present in other tissues including the brain (such as hypothalamus and subfornical organ), anterior and posterior pituitaries, liver, testis, and ovary. On the other hand, AT$_2$ exhibits widespread and abundant expression in fetal tissues including the skin, tongue, brain, intestine, stomach, kidney, and connective tissue (Grady et al., 1991; Millan et al., 1991; Viswanathan and Saavedra, 1992; Bottari et al., 1993; Mukoyama et al., 1993; Kambayashi et al., 1993; Kakuchi et al., 1995). In these tissues AT$_2$ is mainly located in the undifferentiated mesenchyme; e.g. the mesenchyme of the submucosal layers of the intestine and stomach, and the mesenchyme near the nephrogenic area of superficial cortex in the kidney. The existence of AT$_2$ is detected by day 11 and reaches a maximum between day 19-21 in fetuses. Interestingly, its expression decreases dramatically and rapidly after birth.

AT$_2$ is also present in adult tissues such as the adrenal, brain, ovary, and skin. In the ovary and skin its expression is strictly regulated. We recently examined quantitative changes in AT$_2$ during differentiation and apoptosis of rat ovarian granulosa cells, which are abundant in follicles (Ohnishi et al., 1994; Tanaka et al., 1995). The AT$_2$ content was very low and did not change in the presence of follicle-stimulating hormone (FSH), a differentiation factor for these cells, but was dramatically increased in FSH-free media in a time-dependent manner (Fig. 2A). The cells cultured without FSH underwent internucleosomal DNA fragmentation characteristic of apoptosis (Fig. 2B). In addition to this in vitro experiment, we also confirmed that the AT$_2$ content was markedly increased at both the mRNA and protein levels during the development of apoptosis of granulosa cells in vivo by treating immature rats with pregnant mare serum gonadotropin (PMSG) (unpublished data); this treatment is known to induce follicle atresia involving apoptosis. These findings suggest that AT$_2$ is transiently expressed and modulates the onset and/or progression of ovarian follicle atresia during estrous cycles in adults.

Enhancement of the AT$_2$ content was also observed in other tissues after birth. The AT$_2$ expression was shown to be significantly enhanced in the rat skin during experimental wound healing (Viswanathan and Saavedra, 1992). We also...
found, in the hypertrophied hearts of Tsukuba hypertensive mice, which carry the human genes for renin and angiotensinogen, that the AT$_2$ content was markedly increased at the protein level but not at the mRNA level compared to normal mice (Fujii et al., 1995).

THE SIGNALING PATHWAYS OF AT$_1$ AND AT$_2$

Both AT$_1$ and AT$_2$ belong to the superfamily of seven membrane-spanning receptors. The AT$_1$ receptor associates with the Gq and Gi families of GTP-binding proteins (G protein), whereas AT$_2$, in part, couples with the Gi family (Ohnishi et al., 1992; Bottari et al., 1992; Kang et al., 1994, 1995; Shibata et al., 1996). Figure 3 illustrates the signaling pathways used by each receptor subtype.

Ang II binding to AT$_1$ leads to the activation of phospholipase C$_\beta$ (PLC$_\beta$) with a subsequent increase in the intracellular Ca$^{2+}$ concentrations ([Ca$^{2+}$]), and the inhibition of adenylate cyclase activity. In recent years, growth factors such as vasopressin, bombesin, and endothelin, which interact with G-protein coupled receptors, have been shown to induce the rapid tyrosine phosphorylation of various substrates involved in cell proliferation in a manner similar to tyrosine kinase-coupled receptors such as epidermal growth factor (EGF) and platelet derived growth factor (PDGF) receptors (Zachary et al., 1991). Several investigators demonstrated that Ang II also exhibits a cell growth promoting activity, and stimulates the tyrosine phosphorylation of proteins such as PLCγ1, Src, focal adhesion kinase (FAK), paxillin, and Src homologous and collagen (SHC) via AT$_1$, in different kinds of cells including vascular smooth muscle cells, cardiac fibroblast cells, and liver epithelial cells (Huckle et al., 1992; Marrero et al., 1994; Schorb et al., 1994; Leduc and Meloche, 1995). When we introduced the recombinant AT$_1$ into NIH3T3 (a mouse fibroblast cell line) and PC12 cells (a rat pheochromocytoma cell line), which exhibited no and extremely low Ang II binding activity, respectively, these transfected cells underwent Ang II-dependent DNA synthesis. These findings suggest that AT$_1$ primarily has a cell growth promoting activity. However, at present, the Ang II-evoked pathway leading to tyrosine phosphorylation is not completely understood.

One of the major recent topics in the field of intracellular signaling pathways as well as the RAS is the finding that AT$_1$ may directly stimulate the JAK-STAT pathway used by cytokine receptors (Marrero et al., 1995). That is, Ang II binding to AT$_1$ induced the rapid tyrosine phosphorylation of JAK2 and Tyk2, and their activation, resulting in the tyrosine phosphorylation of the JAK family substrates STAT1 and STAT2, in rat aortic smooth muscle cells. In addition, JAK2 co-precipitates with AT$_1$, suggesting that AT$_1$ may directly interact with JAK2 like cytokine receptors bind to JAK family proteins.

The signaling pathway of AT$_2$ is still far from being completely understood, although its cDNA and gene have recently been cloned. Table 1 compares AT$_2$-induced intracellular events with those of AT$_1$. Interestingly, each receptor subtype induces opposite events. For example, AT$_2$ activates protein tyrosine kinases (e.g. FAK and JAK) and serine/threonine kinases (e.g. protein kinase C and calcium/calmodulin kinase II) (Huckle et al., 1992; Bottari et al., 1993; Marrero et al., 1994; Schorb et al., 1994; Leduc and Meloche, 1995; Marrero et al., 1995), whereas AT$_2$ activates protein tyrosine phosphatase and serine/threonine phosphatase
Fig. 3. AT₁- and AT₂-mediated intracellular signaling pathways. AT₁, angiotensin II type 1 receptor; AT₂, angiotensin II type 2 receptor; AC, adenylate cyclase; PLCβ, phospholipase Cβ; PLCγ, phospholipase Cγ; IP₃, inositol-1,4,5-triphosphate; DG, diacylglycerol; CaMK, calcium/calmodulin dependent protein kinase; PTPase, phosphotyrosine phosphatase; PP2A, phosphoprotein phosphatase 2A.

Table 1. AT₁ and AT₂ induced activation and inhibition of signaling factors

<table>
<thead>
<tr>
<th></th>
<th>AT₁</th>
<th>AT₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>activation</td>
<td>Phospholipase C, Ser/Thr kinase (PKC, Ca²⁺/CaM kinase II)</td>
<td>Tyr phosphatase, Ser/Thr phosphatase (PP2A)</td>
</tr>
<tr>
<td>inhibition</td>
<td>K⁺ channel</td>
<td>Ca²⁺ channel (T-type)</td>
</tr>
<tr>
<td>Adenylate cyclase</td>
<td>Guanylate cyclase</td>
<td></td>
</tr>
</tbody>
</table>

(Bottari et al., 1992; Kang et al., 1994, 1995; Buisson et al., 1995). Also, AT₁ activates Ca²⁺ channels (L-type and T-type) and inhibits K⁺ channels, whereas AT₂ inhibits Ca²⁺ channels (T-type) and activates K⁺ channels (the delayed rectifier K⁺ current) (Ohnishi et al., 1992; Bottari et al., 1993; Kang et al., 1994, 1995; Buisson et al., 1995). Activation of K⁺ channels through AT₂ is known to be mediated by Gi proteins and serine/threonine phosphatase (PP2A), although the pathways that connect PP2A with Gi and K⁺ channels remain unclear (Kang et al., 1994, 1995). Activation of AT₂ inhibits T-type Ca²⁺ channels via protein tyrosine phosphatase (Buisson et al., 1995). In this pathway G proteins other than Gi and Go seem to be involved in because activation of the channels was blocked by guanosine 5′-O-2-(thio)diphosphate (GDPβS) but not by pertussis toxin. These findings indicate the presence of multiple signaling pathways mediated by AT₂.

As AT₁ and AT₂ have opposite effects, we speculate that AT₂ may inhibit cell growth. In fact, AT₂ inhibited proliferation of bFGF-stimulated coronary endothelial cells (Stoll et al., 1995). In our study, when the recombinant AT₂ was introduced into NIH3T3 and PC12 cells, which exhibited no and extremely low Ang II binding activity, respectively, these transfected cells underwent Ang II-dependent inhibition of serum-induced DNA synthesis. These data suggest that AT₂ primarily has an anti-proliferative activity. To date, among the superfamily of seven membrane-spanning receptors only the dopamine D₃ and somatostatin type 1 and type 2 receptors as well as AT₂ are known to have an anti-proliferative effect (Florio et al., 1992; Buscail et al., 1994).

PHYSIOLOGICAL FUNCTIONS OF AT₁ AND AT₂

As described above, in vitro, AT₁ exhibits a cell proliferative activity, whereas AT₂ shows an anti-proliferation activity. The cell proliferative activity of AT₁ is thought to be involved in neointima formation in the injured rat arterial wall, which occurs due to the proliferation of smooth muscle cells (Powell et al., 1989; Paul and Ganten, 1992). This is because AT₁-selective antagonists and converting enzyme inhibitors
effectively inhibit the proliferation of these cells and attenuate neointima formation. Also, Ang II stimulates cardiomyocyte hypertrophy and cardiac fibroblast hyperplasia via the cell growth promoting activity of this receptor under pathological conditions (Susic and Frohlich, 1993; Paul and Ganten, 1992). On the other hand, to date, there is no direct evidence that Ang II acts as an anti-proliferative factor through AT₂ in vivo. However, it has recently been shown that overexpression of AT₂ induced by transfection of an AT₂ expression vector into the balloon-injured rat carotid artery attenuated neointima formation (Nakajima et al., 1995). This data suggests the possibility that AT₂ may mediate anti-proliferative effects under physiological or patho-physiological conditions. In addition, the abundant expression of AT₂ during fetal and neonatal development prompted us to speculate that this subtype may contribute to not only cell growth regulation but also to cell differentiation.

The AT₁ receptor is known to mediate blood pressure maintenance. The contribution of AT₁ to this role was confirmed using AT₁-deficient mice that display chronic hypotension (Sugaya et al., 1995). Based upon the opposite characteristics of AT₁ and AT₂, one would speculate that AT₂ may induce an opposite effect on the regulation of blood pressure. As expected, very recently, AT₂-deficient mice have been indicated to have significantly higher blood pressure and increased sensitivity to the presser action of Ang II (Hein et al., 1995; Ichiki et al., 1995). Therefore, AT₂ was found to mediate a depressor effect and antagonize the AT₁-induced pressor action of Ang II. Indeed, AT₂ is present in the vasculature at low levels and abundantly expressed in the adrenal cortex, both of which play a crucial role in the regulation of blood pressure. Moreover, these mutant mice exhibited attenuated exploratory behavior and had a lower body temperature, indicating the novel AT₂-mediated functions of the RAS in the central nervous system.

We suggested that AT₂ may modulate the onset and/or progression of ovarian follicle atresia involving apoptosis during estrus cycles (Tanaka et al., 1995). The relation of this receptor to apoptosis has recently been demonstrated in vitro using PC12W (a substrain of the PC12 cell line) and R3T3 cells (a mouse fibroblast cell line) (Yamada et al., 1996). In this experiment nerve growth factor (NGF) inhibited apoptosis of PC12W cells induced by the removal of serum from the medium. Addition of Ang II overrode the anti-apoptotic effect of NGF via AT₂. The receptor also stimulated apoptosis of R3T3 cells induced by the removal of serum. Morphologic analysis by in situ hybridization indicated that the sites of the AT₂ expression overlapped closely with that of a specific group of cells undergoing apoptosis following nephrogenesis in the fetal kidney (Kakuchi et al., 1995). These findings demonstrated that this receptor subtype may be involved in apoptosis in vivo in adult and fetal tissues.

Identification of the multiple types of the Ang II receptors raises the possibility that the RAS has other unknown physiological functions. It is of great importance to clarify this issue in the field of clinical science as well as basic science, because the RAS is involved in several cardiovascular diseases. Moreover, AT₁ and AT₂ exhibit unique signaling pathways among the superfamily of seven membrane-spanning receptors: i.e. the coupling of AT₁ to the JAK-STAT pathway and the coupling of AT₂ to phosphatase activation. Therefore, elucidation of the signaling events induced by these two types of Ang II receptors will lead to understanding novel signaling pathways mediated by seven membrane-spanning receptors.

REFERENCES

Huckle WR, Dy RC, Eap HS (1992) Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci USA 89: 8837–8841
Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A,

(Received June 6, 1996 / Accepted July 24, 1996)