Phylogenetic Relationships among Asian species of Petaurista (Rodentia, Sciuridae), Inferred from Mitochondrial Cytochrome b Gene Sequences

Authors: Tatsuo Oshida, Liang-Kong Lin, Ryuichi Masuda, and Michihiro C. Yoshida
Source: Zoological Science, 17(1) : 123-128
Published By: Zoological Society of Japan
URL: https://doi.org/10.2108/zsj.17.123
Phylogenetic Relationships among Asian species of *Petaurista* (Rodentia, Sciuridae), Inferred from Mitochondrial Cytochrome *b* Gene Sequences

Tatsuo Oshida1*, Liang-Kong Lin2, Ryuichi Masuda1,3 and Michihiro C. Yoshida1,3

1 Chromosome Research Unit, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan, 
2 Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung Taiwan 407, R. O. C., and 
3 Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan

**ABSTRACT**—To elucidate the phylogenetic relationships among four species belonging to the genus *Petaurista* (*P. alborufus castaneus*, *P. alborufus lena*, *P. leucogenys leucogenys*, *P. leucogenys nikkonis*, *P. petaruria melanotus*, and *P. phillipensis grandis*), we investigated the partial sequences (1,068 bp) of the mitochondrial cytochrome *b* gene for these giant flying squirrels. Phylogenetic trees (NJ, MP, and ML trees) constructed from cytochrome *b* sequences indicated that *P. leucogenys* was grouped independently with other species, and that *P. phillipensis* was most closely related to *P. petaruria* with 99–100% bootstrap values. In addition, two subspecies of *P. alborufus* did not form a single clade: *P. alborufus castaneus* from China was most distantly related to the other species, whereas *P. alborufus lena* from Taiwan was closely related to *P. petaruria* and *P. phillipensis* with 82–90% bootstrap values. This result suggests that it is reasonable to regard *P. alborufus lena* as a distinct species from *P. alborufus castaneus*.

**INTRODUCTION**

Flying squirrels belonging to the genus *Petaurista* had been classified traditionally into five species: *P. alborufus*, *P. elegans*, *P. leucogenys*, *P. magnificus*, and *P. petaruria* (Corbet and Hill, 1980), each of which were intricately divided into various subspecies (Lekagul and McNeely, 1988). Recently, Corbet and Hill (1991, 1992) renewed the classification and recognized five additional species: *P. caniceps*, *P. nobilis*, *P. phillipensis*, *P. sybila*, and *P. xanthotis*, from five species classified previously (Corbet and Hill, 1980). Such classification disrupts phylogenetic study of the giant flying squirrels. Oshida et al. (1992) investigated the karyotaxonomy of *Petaurista* and concluded that *P. petaruria melanotus* was more closely related to *P. alborufus lena* than to *P. petaruria grandis* (*P. phillipensis grandis*). In addition, Oshida et al. (1996) examined the mitochondrial 12S ribosomal RNA sequences on *P. leucogenys* from Japan, *P. petaruria* from Laos (*P. petaruria melanotus*), and *P. petaruria* from Taiwan (*P. phillipensis grandis*), and reported that two subspecies of *P. petaruria* were closely related to each other and that *P. leucogenys* could have early diverged from *P. petaruria*.

Mitochondrial DNA (mtDNA) is a valuable molecule in investigating the phylogenetic relationships among populations, subspecies, and species. Features of mtDNA such as the maternal inheritance and rapid evolutionary rate advance the rapid geographic sorting of haplotypes in the absence of gene flow (Avise et al., 1984). Accordingly, using the information of mtDNA, we are able to infer the interspecific relationships, the intraspecific situations of population subdivision, and the genetic differentiation beyond the resolving ability of non-molecular approaches. In the present study, we determined partial sequences (1,068 base pairs: bp) of the mitochondrial cytochrome *b* gene for four species: *P. alborufus*, *P. leucogenys*, *P. petaruria*, and *P. phillipensis*, and discuss the phylogenetic relationships among them as well as the taxonomic status of *P. alborufus* from continental China and Taiwan.

**MATERIALS**

Flying squirrels examined in the present study are shown in Table 1. Classification of species and subspecies followed the description of Corbet and Hill (1991, 1992), Imaizumi (1960), and Lekagul and McNeely (1988). Two samples of *P. alborufus lena* and one individual of *P. phillipensis grandis* were captured in central Taiwan. Three individuals of *P. alborufus castaneus* imported from Hong-Kong to Japan in 1996 were commercially obtained. Muscle tissues of two individuals of *P. leucogenys leucogenys* were provided from Mr. Koichi Ikeda of the Fukuoka Prefecture Forest Research and Extension Center, Fukuoka, Japan, and Mr. Takehito Okayama of the Omog...
Table 1. Species of the genera Petaurista and Pteromys examined in this study

<table>
<thead>
<tr>
<th>Species name</th>
<th>Code</th>
<th>Common name</th>
<th>Collecting locality</th>
<th>Accession No. of sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petaurista alborufus castaneus</td>
<td>ALC1</td>
<td>Red and white giant flying squirrel</td>
<td>southern China</td>
<td>AB023898</td>
</tr>
<tr>
<td>Petaurista alborufus lena</td>
<td>ALL1</td>
<td>Nantou, Taiwan</td>
<td></td>
<td>AB023899</td>
</tr>
<tr>
<td>Petaurista leucogenys leucogenys</td>
<td>LEL1</td>
<td>Japanese giant flying squirrel</td>
<td>Ehime Pref., Japan</td>
<td>AB023900</td>
</tr>
<tr>
<td>Petaurista leucogenys nikkonis</td>
<td>LEN1</td>
<td>Wakayama Pref., Japan</td>
<td></td>
<td>AB023903</td>
</tr>
<tr>
<td>Petaurista petaurista melanotus</td>
<td>PEM1</td>
<td>Red giant flying squirrel</td>
<td>Laos</td>
<td>AB023905</td>
</tr>
<tr>
<td>Petaurista philippensis grandis</td>
<td>PHG</td>
<td>Indian giant flying squirrel</td>
<td>southern China</td>
<td>AB023907</td>
</tr>
<tr>
<td>Pteromys volans orii (out-group)</td>
<td>PVO</td>
<td>Russian (Siberian) flying squirrel</td>
<td>Hokkaido, Japan</td>
<td>AB023910</td>
</tr>
</tbody>
</table>

*Sequence data will appear in the DDBJ nucleotide sequence databases with accession numbers.

Methods

From homogenated muscle tissues, genomic DNAs were extracted according to the phenol/proteinase K/sodium dodecyl sulfate method of Sambrook et al. (1989). The other Petaurista specimens were commercially obtained. The outgroup taxon, Pteromys volans orii, was provided from the Noboribetsu Bear Park, Hokkaido, Japan.

RESULTS AND DISCUSSION

Phylogenetic relationships within the genus Petaurista

In this study, the partial sequences (1,068 bp) of cytochrome b gene were determined from 12 individuals of the genus Petaurista and one individual of the genus Pteromys as an out-group. Table 2 shows percentage sequence differ-

Table 2. Pairwise comparisons of cytochrome b nucleotide sequences (1,068 bp) between 13 flying squirrel species

<table>
<thead>
<tr>
<th></th>
<th>ALC1</th>
<th>ALC2</th>
<th>ALC3</th>
<th>ALL1</th>
<th>LEL1</th>
<th>LEL2</th>
<th>LEN1</th>
<th>LEN2</th>
<th>PEM1</th>
<th>PEM2</th>
<th>PHG</th>
<th>PVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
<td>16.8</td>
<td>13.9</td>
<td>14.3</td>
<td>13.7</td>
<td>13.9</td>
<td>13.9</td>
<td>21.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALC2</td>
<td>3 / 0</td>
<td>0.4</td>
<td>16.9</td>
<td>14.6</td>
<td>14.6</td>
<td>14.6</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>21.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALC3</td>
<td>1 / 0</td>
<td>4 / 0</td>
<td>16.8</td>
<td>14.4</td>
<td>14.4</td>
<td>14.3</td>
<td>14.3</td>
<td>14.0</td>
<td>14.0</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL1</td>
<td>135 / 20</td>
<td>136 / 20</td>
<td>136 / 20</td>
<td>1.2</td>
<td>14.7</td>
<td>15.3</td>
<td>15.0</td>
<td>15.2</td>
<td>12.1</td>
<td>12.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEL1</td>
<td>111 / 21</td>
<td>114 / 21</td>
<td>112 / 21</td>
<td>19 / 19</td>
<td>139 / 20</td>
<td>1.0</td>
<td>1.4</td>
<td>1.5</td>
<td>14.5</td>
<td>20.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEN1</td>
<td>112 / 21</td>
<td>117 / 21</td>
<td>115 / 21</td>
<td>112 / 21</td>
<td>116 / 22</td>
<td>9 / 2</td>
<td>1.3</td>
<td>1.4</td>
<td>14.5</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEN2</td>
<td>113 / 21</td>
<td>116 / 22</td>
<td>122 / 21</td>
<td>117 / 21</td>
<td>115 / 21</td>
<td>15 / 1</td>
<td>13 / 1</td>
<td>0.7</td>
<td>14.4</td>
<td>20.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM1</td>
<td>108 / 22</td>
<td>110 / 22</td>
<td>109 / 22</td>
<td>104 / 12</td>
<td>106 / 13</td>
<td>116 / 21</td>
<td>114 / 23</td>
<td>114 / 22</td>
<td>117 / 22</td>
<td>118 / 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM2</td>
<td>112 / 23</td>
<td>112 / 22</td>
<td>111 / 22</td>
<td>102 / 12</td>
<td>104 / 13</td>
<td>116 / 21</td>
<td>114 / 23</td>
<td>114 / 22</td>
<td>117 / 22</td>
<td>118 / 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHG</td>
<td>112 / 20</td>
<td>114 / 20</td>
<td>113 / 20</td>
<td>113 / 12</td>
<td>113 / 13</td>
<td>117 / 21</td>
<td>119 / 21</td>
<td>115 / 22</td>
<td>118 / 22</td>
<td>118 / 22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data above the diagonal represent percentage differences between species. Data below the diagonal are the numbers of nucleotide substitutions (transitions/transversions).
Table 3. Pairwise comparisons of the transversional substitution at the third codon positions of cytochrome b gene between 12 specimens of Petaurista

<table>
<thead>
<tr>
<th></th>
<th>ALC1</th>
<th>ALC2</th>
<th>ALC3</th>
<th>ALL1</th>
<th>ALL2</th>
<th>LEL1</th>
<th>LEL2</th>
<th>LEN1</th>
<th>LEN2</th>
<th>PEM1</th>
<th>PEM2</th>
<th>PHG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALC1</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.8</td>
<td>4.8</td>
<td>5.6</td>
<td>5.6</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>ALC2</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.8</td>
<td>4.8</td>
<td>5.6</td>
<td>5.6</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>ALC3</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.8</td>
<td>4.8</td>
<td>5.6</td>
<td>5.6</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>ALL1</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>5.1</td>
<td>5.1</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>ALL2</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
<td>0.3</td>
<td>5.3</td>
<td>5.3</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>LEN1</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>2</td>
<td>0.3</td>
<td>5.3</td>
<td>5.3</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>LEN2</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>2</td>
<td>0.3</td>
<td>5.3</td>
<td>5.3</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>PEM1</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>11</td>
<td>12</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEM2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>11</td>
<td>12</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>0</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHG</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data above the diagonal represent transversional percentage differences between specimens. Data below the diagonal are the numbers of transversions.

ences and numbers of transversions and transitions obtained from pairwise comparison. In addition, to estimate divergence between species, the transversional substitutions at the third codon positions were obtained by pairwise comparison (Table 3). Phylogenetic trees reconstructed using the NJ and the MP methods indicated essentially the same branching patterns (Figs. 1a and b); the first dichotomy isolated *P. alborufus castaneus* from the other flying squirrels and then *P. leucogenys* split from a clade formed by *P. alborufus lena*, *P. philippensis*, and *P. petaurista*. Consequently, the giant flying squirrels analyzed in the present study formed three groups: *P. alborufus castaneus*, *P. leucogenys*, and the other species or subspecies (82–90% bootstrap values). Although the branching order in the phylogenetic tree constructed with the ML method (Fig. 1c) was different from those of NJ and MP trees, three groups recognized in NJ and MP trees were obviously observed in ML tree (82-100% bootstrap values). However, the bootstrap values to support the branching orders of three groups were not high: 34% in NJ tree (Fig. 1a), 75% in MP tree (Fig. 1b), and 43% in ML tree (Fig. 1c). Owing to these low bootstrap values and the branching order differences between NJ and MP trees and ML tree, their phylogenetic relationships were not obvious in the present study.

**Phylogeny of Petaurista alborufus**

*P. alborufus* from southern China, Taiwan, Burma, and Thailand had been divided into seven subspecies: *barroni* (Kloss, 1916; Ellerman and Morrison-Scott, 1951), *castaneus* (Thomas, 1923), *candidula* (Wroughton, 1911; Ellerman and Morrison-Scott, 1951), *lena* (Thomas, 1907), *leucocophalus* (Hilzheimer, 1905), *ochraspis* (Thomas, 1923), and *taylori* (Thomas, 1914; Ellerman and Morrison-Scott, 1951). However, Corbet and Hill (1992) have recognized only four variations as subspecies of *P. alborufus*: *castaneus*, *lena*, *leucocophalus*, and *ochraspis*. In the present study, it is noteworthy that *P. alborufus castaneus* was distantly related to *P. alborufus lena* (Fig. 1). Based on pelage characteristics, *P. alborufus lena* was once treated as a distinct species *P. pectoralis* (Swinhoe, 1870). In addition, Corbet and Hill (1992) also suggested that *P. alborufus lena* is distinct enough to merit specific rank. Phylogenetic trees (Fig. 1) obtained in the present study did not conflict with the phylogenetic position of the form *lena* proposed by Swinhoe (1870) and Corbet and Hill (1992). Assuming that *castaneus* distributed in the mainland is a representative subspecies of *P. alborufus*, *lena* living only in Taiwan may be regarded to be distinct from *P. alborufus*. Moreover, *P. alborufus lena* was closely related to the clade of *P. petaurista* and *P. philippensis* with high bootstrap values (82% in NJ tree of Fig. 1a, 90% in MP tree of Fig. 1b, and 82% in ML tree of Fig. 1c). Based on the morphological characteristics such as externals and dental forms, Corbet and Hill (1992) regarded three subspecies (*barroni*, *candidula*, and *taylori*) of *P. alborufus* as *P. petaurista*. *P. alborufus* has often been confused with *P. petaurista* owing to the complicated morphological variation of these species. Based on the chromosomal characteristics, Oshida et al. (1992) have reported that *P. alborufus lena* was more closely related to *P. petaurista melanotus* than to *P. petaurista grandis* (*P. philippensis grandis*). The present molecular findings support their view.

Hsu (1990) reported that the Taiwan island rose from the sea floor on the Eurasian Continent approximately 4.0 Myr ago. Moreover, based on the faunistic and geological analyses, Kano (1940) and Liu and Ding (1984) concluded that the Taiwan island had been connected with the Eurasian Continent at least twice due to the glacial eustacy, initially during the Pliocene and subsequently during the Pleistocene. It is likely that the multiple faunistic exchanges between the Taiwan island and the Eurasian Continent had occurred through these connections. Lin and Lin (1983) explained the complicated zoogeography of Taiwanese mammals as follows: from a paleoenvironmental point of view, the first mammal group which immigrated from the Eurasian Continent to the Taiwan island during the glacial period of the Pliocene had adapted themselves to the cold environment. However, after the glacial period, to avoid the environment being warm, they had to move to the high elevation areas of Taiwan. Subsequently, the mammal group which immigrated to the island during the
Glacial periods of the Pleistocene had succeeded in expanding their ranges throughout the low elevation areas of Taiwan.

*P. alborufus lena* inhabits areas with elevation of 1,200 to 3,750 meters above sea level (Chang, 1985). In contrast, the distribution area of *P. philippensis grandis* living in Taiwan widely ranges from 700 to 2,600 meters above sea level (Chang, 1985). Accepting the hypothesis of Lin and Lin (1983), it is likely that the incursion of *P. alborufus lena* was earlier than that of *P. philippensis grandis*. In the present study, by using the available divergence rate estimated from the mammalian cytochrome *b* genes (Irwin et al., 1991) and our data

---

**Fig. 1.** Phylogenetic trees constructed by (a) the neighbor-joining (NJ), (b) the maximum parsimony (MP), and (c) the maximum likelihood (ML) methods based on the cytochrome *b* nucleotide sequences. Scale bars for the NJ and the ML trees represent branch length in terms of nucleotide substitutions per site. Numbers above branches indicate bootstrap values (%) derived from 1,000 replications for NJ and MP trees and 100 replications for ML tree.
Molecular phylogeny of *Petaurista* (Table 3), the divergence between *P. alborufus lena* and *P. petaurista melanotus* and that between *P. alborufus lena* and *P. philippensis grandis* were estimated to have occurred approximately 6.2–6.8 Myr ago and 7.4–7.8 Myr ago, respectively. It seems reasonable to suppose that, after the deviation from the lineages of *P. petaurista* and *P. philippensis* in the Eurasian Continent during the late Miocene, *P. alborufus lena* immigrated to Taiwan island and adapted itself to the alpine region in Taiwan. *P. alborufus lena* might have evolved independently from other *Petaurista* species due to the geographic isolation. Thus, our results support that this giant flying squirrel should be treated as a distinct species, as described originally by Swinhoe (1870) and Thomas (1907).

**Phylogeny of Petaurista leucogenys**

*P. leucogenys* is indigenous to the Japanese main islands except for Hokkaido (Corbet and Hill, 1991). Although Corbet and Hill (1980) described that *P. leucogenys* is distributed on the Japanese islands and central China, recently they changed the classification and newly treated the *leucogenys* population of central China as a distinct species *P. xanthotis* (Corbet and Hill, 1991, 1992). Based on the poor information about the pelage, Imaizumi (1960) classified *leucogenys* into three subspecies: *leucogenys*, *nikkonis*, and *ores*, although this classification of subspecies has not been generally accepted. In the present study, *leucogenys* clearly formed a single clade with high bootstrap values (100% in NJ, MP and ML trees). Meanwhile, the divergence time estimated from our data (Table 3) was approximately 10.2–10.6 Myr ago between *leucogenys* and *petaurista*, 8.4–9.0 Myr ago between *leucogenys* and *philippensis*, 9.0–10.2 Myr ago between *leucogenys* and *alborufus lena*, and 9.0–9.6 Myr ago between *leucogenys* and *alborufus castaneus*. Although it is hard to determine which species is most closely related to *leucogenys*, this species could be an independent lineage in the genus *Petaurista* at least in the late Miocene. Based on the fossil records, Kawamura (1988, 1990) and Kawamura et al. (1989) showed that *leucogenys* immigrated from the Eurasian Continent to the Japanese islands through the land bridges around the early to the middle Pleistocene, and that this species had been isolated due to the separation of the Japanese islands from the Eurasian Continent in the Pleistocene. Accepting Kawamura’s hypothesis, our results suggest that an ancestral stock of *leucogenys* had diverged from the other *Petaurista* species within the Eurasian Continent prior to its immigration to Japan.

**Phylogeny of Petaurista petaurista and P. philippensis**

*P. petaurista melanotus* and *P. philippensis grandis* formed a single clade with high bootstrap values (100% in NJ and MP trees and 99% in ML tree, Fig. 1). *P. petaurista*, which is one of the most dominant species in the genus *Petaurista*, is distributed throughout southern parts of the Eurasian Continent and Southeast Asia (Corbet and Hill, 1980; Lekagul and McNeely, 1988). On the other hand, *philippensis* had been treated as a subspecies of *P. petaurista* until Corbet and Hill (1991, 1992) established it as a distinct species. A Taiwanese form (*P. philippensis grandis*) examined here was previously considered as *P. petaurista grandis* by Swinhoe (1870). Based on sequence data of the 12S rRNA gene, Oshida et al. (1996) reported that the genetic distance between *philippensis grandis* (*petaurista from Taiwan*) and *petaurista melanotus* (*petaurista from Laos*) was almost parallel to intraspecific differences within *leucogenys*. Cytochrome b data in the present study supported that, although the genetic distance between *philippensis grandis* and *petaurista melanotus* corresponded to approximately twice of intraspecific differences within *leucogenys* (Fig. 1a), *philippensis* is most closely related to *petaurista*.

**ACKNOWLEDGMENTS**

We would like to thank Mr. L. S. Tzen, Mr. K. Ikeda (Fukuoka Prefecture Forest Research and Extension Center), Mr. T. Okayama (Omogo Mountain Museum), and Dr. K. Gouda and Dr. M. Satoh (Noboribetsu Bear Park) for supplying specimens. We thank Dr. T. Tanaka-Ueno (Kyoto University) for invaluable suggestion on the phylogenetic analysis. This study was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture.

**REFERENCES**


Hsu V (1990) Seismicity and tectonics of a continent-island arc collision zone at the island of Taiwan. J Geophysical Res 95 (B4):
Thomas O (1914) Scientific results from the mammal survey VIII. J Bombay Nat Hist Soc 23: 197–205
(Received June 4, 1999 / Accepted August 9, 1999)

4725–4734
Kano T (1940) Zoogeographic Studies of Tsugitaka Mountains of Formosa. Institute Ethnogeographical Researchers, Tokyo, pp 1–145

---