Effects of Macromolecule Synthesis Inhibitors on Light-Induced Phase Shift of the Circadian Rhythm in Melatonin Release from the Cultured Pineal Organ of a Teleost, Ayu (Plecoglossus altivelis)

Authors: Tomohiro Masuda, Masayuki Iigo, Kanta Mizusawa, and Katsumi Aida
Source: Zoological Science, 20(11) : 1405-1410
Published By: Zoological Society of Japan
URL: https://doi.org/10.2108/zsj.20.1405

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
Effects of Macromolecule Synthesis Inhibitors on Light-Induced Phase Shift of the Circadian Rhythm in Melatonin Release from the Cultured Pineal Organ of a Teleost, Ayu (Plecoglossus altivelis)

Tomohiro Masuda¹, Masayuki Iigo²,³*, Kanta Mizusawa¹,⁴, Katsumi Aida¹

¹Laboratory of Aquatic Animal Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
²Department of Anatomy, St. Marianna University School of Medicine, Miyamae, Kawasaki 216-8511, Japan
³Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, Tochigi 321-8505, Japan
⁴Department of Animal Sciences, Teikyo University of Science & Technology, 2525 Yatsusawa, Uenohara, Yamanashi 409-0193, Japan

ABSTRACT—Effects of macromolecule synthesis inhibitors on the light-induced phase shift of the circadian clock in the photoreceptive pineal organ of a teleost, ayu (Plecoglossus altivelis) were investigated using melatonin release as an indicator. A single light pulse during the early- and late-subjective night delayed and advanced the phase of the circadian rhythm in melatonin release, respectively. During the late subjective-night, protein synthesis inhibitor cycloheximide (CHX) delayed the rhythm while RNA synthesis inhibitor 5,6-dichlorobenzimidazole riboside (DRB) had little effect. Light-induced phase advance was diminished by the treatment of CHX but not by DRB. During the early subjective-night, DRB, CHX, light and combination of these (DRB+light, CHX+light) all phase-delayed the rhythm. There were no additive effects of light and DRB or CHX. These results indicate that macromolecule synthesis is somehow involved in generation of circadian oscillation, and that de novo protein synthesis is required for light-induced phase shift of the circadian clock in the ayu pineal organ.

Key words: pineal organ, circadian rhythm, melatonin, phase shift, macromolecule synthesis

INTRODUCTION

Physiological, behavioral and biochemical activities in most organisms exhibit a daily variation that is regulated by an internal circadian clock (Aschoff, 1981). In vertebrates, the circadian clocks are localized in the central structures such as the suprachiasmatic nucleus (SCN) of the hypothalamus, the retina, and the pineal organ (Takahashi et al., 1987; Klein et al., 1991; Cahill and Besharse, 1995; Falcón, 1999). Recent identification of circadian clock genes in mammals advances our knowledge on the molecular basis for the circadian clocks in the mammalian SCN (Dunlap, 1999; Young and Kay, 2001). In addition, molecular analyses have demonstrated that peripheral tissues also harbor circadian clocks (Schibler and Sassone-Corsi, 2002). Circadian clock genes have also been cloned from nonmammalian vertebrates such as Japanese quail, chicken, Xenopus and zebrafish (Yoshimura et al., 2000; Cahill, 2002; Fukada and Okano, 2002; Green, 2003) but the roles of these clock genes remains to be elucidated.

The teleostean pineal organ provides a useful model to analyze molecular mechanisms of the pineal circadian clock, especially that of photic entrainment, because a single pineal organ or a single pineal photoreceptor cell contains all the three essential components of a circadian system, i.e. the circadian oscillator, the photoreceptor responsible for photic entrainment, and melatonin synthesizing system as the output pathway (Falcón, 1999). Recently, we found that the pineal organ of a teleost, ayu (Plecoglossus altivelis) maintained in the superfusion culture exhibited a robust rhythm in melatonin release under constant darkness (DD) and that the melatonin secretion rhythm is entrainable to a given light-dark (LD) cycle (Iigo et al., 2003).
In addition, the rhythm could be phase shifted by a 6-hr light pulse according to a typical light-type phase response curve: the light pulses starting during the early and late subjective-night respectively induced phase–delay and phase-advance while the light pulse during the subjective-day was ineffective (Iigo et al., 2003b).

To elucidate the mechanism of photic entrainment of the circadian clock located in the photoreceptive pineal organ in fish, in the present study, we examined whether macromolecule synthesis is involved in light-induced phase shift of the circadian clock in the ayu pineal organ.

MATERIALS AND METHODS

Experimental fish, flow-through culture and radioimmunoassay

Ayu (1.6–23.0 g in body weight) were obtained from Chiba Prefectural Fish Farming Center (Katsuura, Chiba, Japan) or Teganuma Fishing Center (Shonan, Chiba, Japan). They were kept in freshwater tanks under natural light conditions at 20°C. The pineal organ was dissected and individually superfused as previously described (Iigo et al., 1998, 2003a, b). All the pineal glands were maintained at 20°C under LD 12:12 (lights on 06:00–18:00 hr, approximately 1,500 lx) for the first day and then kept in DD for additional 5 days except for the light pulse-treated groups (see below). The flow rate of the medium was set at 0.5 ml/hr. Melatonin contents in perfusates collected at 3-hr intervals were determined by the radioimmunoassay using 2-[125I]iodomelatonin (2200 Ci/mmol, New England Nuclear, Boston, MA) and the rabbit anti-melatonin serum (HAC-AA92-03RP86, kindly supplied by Prof. K. Wakabayashi, Gunma University) as described (Iigo et al., 1998, 2003a). Although the body weight of ayu used differed significantly, this did not affect melatonin secretory profiles after normalization of the data (see Iigo et al., 2003a).

Treatment with a light pulse and RNA and protein synthesis inhibitors

During the late subjective-night in the first cycle under DD, 5,6-dichlorobenzimidazole riboside (DRB, an RNA synthesis inhibitor; 100 µM, Sigma, St. Louis, MO), cycloheximide (CHX, a protein synthesis inhibitor; 142 µM, Sigma) or vehicle (dimethylsulfoxide, DMSO; 1% in final concentration in the medium) was perfused for 6-hr (00:00–06:00 hr; Zeitgeber Time [ZT] 18-24; ZT0=light on; ZT12=light off) with or without a light pulse (01:00–06:00 hr; ZT19-24; 1500 lx at the surface of the culture chamber). A dim red light was used to exchange the medium containing drugs. The concentrations of the drugs were determined according to the results of the preliminary experiments using different doses of DRB or CHX and to the concentrations used in previous studies (Ohi and Takahashi, 1991; Mizusawa et al., 2001).

Data analysis

In order to facilitate comparison of rhythms from pineals producing different overall levels of melatonin, melatonin release was normalized relative to the average release during the first day under LD. For measurement of phase shift, the rhythms were smoothed by a three-point running average and the interpolated times of half-rise and half-fall of melatonin rhythm peak were determined (the data depicted in Figs. 1 and 2 are not smoothed). Then midpoint phase reference was calculated by averaging the times for the half-rise and half-fall (Robertson and Takahashi, 1988; Cahill and Besharse, 1991). In this study, the 4th midpoint corresponding to the third cycle in DD was used as the phase reference point to calculate phase shift compared with the vehicle-treated control kept in DD. Immediate phase shift is known to be qualitatively similar to the steady state phase shift (Pittendrigh, 1981). The amplitude of phase...
shift was analyzed by one-way analysis of variance followed by Newman-Keuls multiple comparison test.

RESULTS

Effects of RNA and protein synthesis inhibitors on circadian rhythms in melatonin release from the ayu pineal organ

Effects of DRB and CHX on light-induced phase shift of the circadian rhythm in melatonin release from the ayu pineal organ are shown in Figs. 1, 2 and 3. During the late-subjective night, CHX (ZT18-24) and light (ZT19-24) pulses significantly delayed (P<0.001) and advanced (P<0.05) the phase of the melatonin secretion rhythm, respectively. DRB (ZT18-24) had no effects. Light-induced phase advance was diminished by the treatment of CHX but not by DRB (Figs. 1 and 3A).

During the early subjective-night, DRB (ZT12-18), CHX (ZT12-18), light pulse (ZT13-18) and combination of these (DRB+light, CHX+light) all phase delayed the rhythm significantly (P<0.001) (Figs. 2 and 3B). There were no additive effects of DRB or CHX and light pulses.

Effects of inhibitors on RNA and protein synthesis in the ayu pineal organ

The effects of DRB on RNA synthesis and those of CHX on protein synthesis were exhibited in Table 1. [3H]Uridine incorporated to the pineal total RNA in the control groups (vehicle-DD) were 14623±1428 and 14260±3091 cpm/pineal (mean±SE, n=3–5) for ZT18-24 and ZT12-18, respectively. [35S]Cysteine/methionine incorporated into the pineal protein in the control groups were 79740±9286 and 73529±9848 cpm/pineal for ZT18-24 and ZT12-18, respectively. There were no significant variations in overall synthesis of RNA and protein at the two circadian phases examined. A light pulse itself did not induce significant changes in RNA and protein synthesis at the two circadian phases examined. Regardless of the presence or absence of a light pulse, DRB inhibited RNA synthesis to ~30% of the control and CHX inhibited protein synthesis to ~20% of the control with no significant inhibition by the vehicle treatment. Thus, RNA and protein synthesis is indeed inhibited by the treatments of inhibitors in the present study.
DISCUSSION

The present study demonstrated that de novo protein synthesis but not RNA synthesis is required for the phase advance of the ayu pineal circadian clock induced by a light pulse initiated during late subjective-night: treatment with CHX but not DRB diminished the light-induced phase-advance. On the contrary, we could not confirm whether the phase-delay induced by a light pulse initiated during early subjective-night involves de novo RNA and protein synthesis because all the treatments (light, DRB, CHX, DRB+light, and CHX+light) phase-delayed the circadian rhythm in melatonin release from the ayu pineal organ. However, it should be noted that effects of light and DRB or CHX were not additive even in the early subjective-night. These results suggest the involvement of de novo protein synthesis in the light-induced phase-delay of the circadian clock in the ayu pineal organ as well.

Effects of protein synthesis inhibitors on the light-induced phase shift of the circadian clock were reported in the molluscan eye (Raju et al., 1990) and Neurospora (Johnson and Nakashima, 1990). Protein synthesis inhibitors appeared to inhibit or block phase shifts produced by light, indicating that the light pulse phase shifts the circadian clock via activation of translation of a specific protein(s). This is also the case with the ayu pineal organ since general protein synthesis was not affected by a light pulse (see Table 1). Identification of the protein(s) induced by the light pulse will help to elucidate the mechanism by which the light pulse phase-shifts the circadian clock in these circadian systems including the ayu pineal organ.

In the mammalian SCN, light pulses during the subjective-night are known to induce transcription of specific clock genes such as Per1 and Per2 (Albrecht et al., 1997; Shigeyoshi et al., 1997) and photic induction of these genes are crucial for the phase shift to occur (Akiyama et al., 1999). The situation in the ayu pineal is slightly different with the mammalian SCN. This might come from the differences in the location of the photoreceptors responsible for the phase shift.

The present study also demonstrated that DRB and CHX induced phase-shift of the circadian rhythm in melato-

Table 1. Effects of inhibitors for RNA synthesis (DRB) and protein synthesis (CHX) on [3H]uridine and [35S]cysteine/methionine incorporation into the pineal organ in vitro.

<table>
<thead>
<tr>
<th>Time of day</th>
<th>Lighting conditions</th>
<th>[3H]Uridine</th>
<th>[35S]Cysteine/methionine</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZT18-24</td>
<td>DD</td>
<td>100.0±9.8</td>
<td>24.2±1.8**</td>
</tr>
<tr>
<td></td>
<td>Light pulse (ZT19-24)</td>
<td>120.6±16.9</td>
<td>35.1±6.6**</td>
</tr>
<tr>
<td>ZT12-18</td>
<td>DD</td>
<td>100.0±21.7</td>
<td>28.8±6.3*</td>
</tr>
<tr>
<td></td>
<td>Light pulse (ZT13-18)</td>
<td>92.9±10.2</td>
<td>34.6±8.2*</td>
</tr>
</tbody>
</table>

The pineal organs (5 pineals/well for RNA and 10 pineals/well for protein) maintained in static culture under LD for 1 day were exposed to DD. Then during the late subjective-night in the 1st cycle in DD or the early subjective night in the second cycle in DD, drug and/or light pulses were applied to the culture. [3H]Uridine incorporation to RNA and [35S]cysteine/methionine incorporation into protein were determined and expressed as the relative value (%) to the respective vehicle (VEH)-treated control groups kept under DD. Values shown are the means±SEM (n=3). *P<0.05; **P<0.01; ***P<0.001 compared with the respective control.
nin release from the ayu pineal organ, indicating that macromolecule synthesis is involved in the generation of circadian oscillation of the ayu pineal clock. This is consistent with the results obtained in other circadian systems such as the mammalian SCN (Inouye et al., 1988), avian pineal (Takahashi et al., 1989; Murakami et al., 1995), molluscan eye (Raju et al., 1990, 1991), Neurospora (Johnson and Nakashima, 1990), and cricket optic lobe (Tomoki, 2000). This is also consistent with the recent molecular data that described circadian expression of circadian clock genes and its products in the SCN (Dunlap, 1999; Field et al., 2000: Young and Kay, 2001). From the present limited study, it is too early to conclude that specific mRNA and proteins are produced during the restricted circadian phase in the ayu pineal organ. To resolve this question, we are currently trying to draw phase response curves for DRB and CHX at 8 different circadian phases during a circadian cycle. In addition, we are now trying to characterize circadian clock genes expressed in the ayu pineal organ. This may help to elucidate molecular mechanisms of the circadian clock located in the photosensitive pineal organ in fish.

In conclusion, the present study demonstrated the importance of macromolecule synthesis for photic entrainment of the circadian clock in the ayu pineal organ. Further studies including molecular characterization of clock genes will be required to elucidate the molecular basis of the circadian clock located in the photoreceptive pineal organ of fish.

ACKNOWLEDGMENTS

The authors are grateful to Chiba Prefectural Fish Farming and Teganuma Fishing Center for providing ayu. We also thank Prof. K. Wakabayashi, Gunma University, for providing antisera. This study was in part supported by Special Coordination Fund and by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and JSPS. T.M. and K.M. were supported individually by JSPS Research Fellowships for Young Scientists.

REFERENCES

Mizusawa K, Iigo M, Masuda T, Aida K (2001) Inhibition of RNA synthesis differentially affects in vitro melatonin release from the pineal organs of ayu (Plecoglossus altivelis) and rainbow trout (Oncorhynchus mykiss). Neurosci Lett 309: 72–76
Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91: 1043–1053

(Received April 24, 2003 / Accepted August 21, 2003)