On the Taxonomical Status of Myotis abei YOSHIKURA, 1944 (Chiroptera, Vespertilionidae)

Author: Tsytsulina, Katerina

Source: Zoological Science, 21(9) : 963-966

Published By: Zoological Society of Japan

URL: https://doi.org/10.2108/zsj.21.963
On the Taxonomical Status of *Myotis abei* YOSHIKURA, 1944 (Chiroptera, Vespertilionidae)

Katerina Tsytsulina*

Laboratory of Genetic Diversity, Center for Advanced Science and Technology, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan

ABSTRACT—The type specimen of *Myotis abei* YOSHIKURA, 1944 was examined and compared with species of subgenera *Leuconoe* and *Selysius* from Japan and adjacent territories. The analysis of external characters and measurements indicated that *M. abei* should be recognised as a junior synonym of *Myotis daubentoni* (KUHL, 1817).

Key words: *Myotis abei*, *Myotis daubentoni*, Chiroptera, taxonomy, synonym

INTRODUCTION

The taxonomic status of several *Myotis* species has recently been revised (Benda and Tsytsulina, 2000; Tsytsulina, 2001), but the genus still includes taxa with doubtful status. One of these is *Myotis abei*, described by Yoshikura (1944) from south-east Sakhalin, Shiritori town (now Makarov). The species is known only from the type locality and a single type specimen. Originally, the specimen was deposited at the Yamashina Institute for Ornithology and Zoology (Tokyo), but was later moved to the National Science Museum in Tokyo (collection number M-5840 o.5371). The skull of the specimen was lost during the transfer and now the type is represented only by a dry skin specimen.

Yoshikura (1944) described *M. abei* as a form of ‘hohohige kaumori’, a whiskered bat in Japanese, and noted its similarity to *M. mystacinus gracios Ognev, 1927. Later he named it in English as Abe’s whiskered bat (Yoshikura, 1956), i.e. belonging to the subgenus *Selysius*. In the original description of the species, Yoshikura (1944) pointed out that the wing membrane was attached to the proximal part of metatarsus, as in *Myotis dasycneme*. It is recognised that the attachment of the wing membrane to the base of the first toe is a characteristic feature of the subgenus *Selysius*, whereas insertion to the metatarsus (*M. daubentoni, M. capaccini, M. dasycneme* and others) and tibia (*M. macrodactilus*) is a characteristic feature of the subgenus *Leuconoe* (e.g., Tate, 1941; Koopman, 1994). Nevertheless, subsequent taxonomic revisions placed *M. abei* in different sections within *Myotis*, and usually provided no comment on the reasons for such placements. Ellereman and Morriss-
In 2002, Pavlovin et al. included M. abei in the subgenus Leuconoe, but also noted that the taxonomic status and morphological features of M. abei were unclear and the species appeared to resemble M. daubentoni. The present study sought to clarify the position of the type specimen by comparing it with specimens of other Myotis.

MATERIALS AND METHODS

The type specimen of M. abei was examined and compared with 46 specimens of M. daubentoni, 52 M. macrodactylus, 24 M. pruinosus, 76 M. ikonnikovi, and 71 M. brandti gracilis from Japan and adjacent territories (Appendix 1). Myotis pruinosus was also included in the comparison as a representative of the subgenus Leuconoe, despite of distribution limited by Honshu, and also because of its small size. Measurements including forearm length, tibia and tarsus length, and condylo-basal cranial length were taken from adult specimens. Coloration was studied in all available specimens (i.e. irrespective of age).

RESULTS AND DISCUSSION

In small Myotis species the location of the wing membrane is an important diagnostic character for species identification. Within the considered species, the wing membrane is attached to the metatarsus in M. daubentoni, to the tibia in M. macrodactylus, and to base of the first toe in M. pruinosus, M. brandti and M. ikonnikovi. The type specimen of M. abei exhibits wing membrane articulation to the upper half of the metatarsus, but in close proximity to the metatarsal articulation. The size ratio of the tarsus and metatarsus is also used to characterise subgenera within Myotis. In the subgenus Leuconoe, the combined length of tarsus and metatarsus is equal to or greater than half of the tibia length, whereas in the subgenus Selysius it is less than half (Table 1). In the type specimen of M. abei this ratio is within the range of M. daubentoni (Table 1).

Contrast is evident in the coloration of the dorsal and ventral pelage in the M. abei specimen, one of the features characteristic of M. daubentoni, whereas in the other considered species there is no such a contrast (Table 1). The type specimen of M. abei has brown dorsal fur, in clear contrast to the lighter fur on the ventral surface (as in M. daubentoni, Fig. 1). Yoshikura (1944, 1956) described the colour of the ventral pelage of the type specimen as ‘slaty black’, whereas it is evidently light grey on the type specimen. While fur colour can change during long storage in museums, it seems unlikely that a dry preserved specimen would change colour on one side only (the dorsal pelage remains dark).

In both publications concerning M. abei, Yoshikura (1944, 1956) noted that the type specimen was an adult male. However, it is evident that the specimen is a subadult since the wing epiphyses have not yet calcified (Fig. 1. C). Even as a subadult, the specimen has a forearm length within the range characteristic of M. daubentoni (Table 1). Only two samples of M. daubentoni from Sakhalin were included in our study, however detailed analysis of geographic variation in M. daubentoni in the Russian Far East was made by Tiunov (1997). He demonstrated that Daubentoni’s bats from Sakhalin belong to the subspecies M. daubentoni ussuriensis Ognev, 1927 and do not differ in their basic external and selected cranial measurements from M. d. ussuriensis from other localities (Tiunov, 1997). Furthermore, qualitative characters such as type of wing membrane insertion, pelage colour, and the tarsus-metatarsus ratio of Sakhalin’s M. daubentoni are within the characteristic range of M. daubentoni (M.P. Tiunov, personal communication, Table 1). Maeda (1985) analysed skull and external measurements in M. daubentoni in Hokkaido, Sakhalin, Iturup Is. and Korea and did not find any significant differences between sex and populations.

Table 1. Measurements and characteristic features of M. abei and 5 considered Myotis species.

<table>
<thead>
<tr>
<th>Characters</th>
<th>M. abei (Yoshikura, 1944, 1956)</th>
<th>M. abei type specimen</th>
<th>M. daubentoni</th>
<th>M. macrodactylus</th>
<th>M. pruinosus</th>
<th>M. ikonnikovi and M. brandti gracilis1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing membrane insertion</td>
<td>At proximal side of metatarsus</td>
<td>At proximal part of metatarsus</td>
<td>At metatarsus</td>
<td>At the lower part of tibia</td>
<td>At the base of the first toe</td>
<td>At the base of the first toe</td>
</tr>
<tr>
<td>Colour of back</td>
<td>Dark brown</td>
<td>Brown</td>
<td>Brown to bronze, often with a reddish tinge</td>
<td>Dark greyish brown</td>
<td>Dark greyish-brown to black with golden tips of hairs</td>
<td>Dark brown sometimes with golden tips of hairs</td>
</tr>
<tr>
<td>Colour of belly</td>
<td>Dark grey</td>
<td>Contrasting with back, silvery grey</td>
<td>Contrasting with back, silvery grey to white</td>
<td>Grey to dark grey</td>
<td>Silvery grey</td>
<td>Pale</td>
</tr>
<tr>
<td>Tarsus plus metatarsus cum unguis (ratio to tibia length)</td>
<td>About half as long as tibia (47%)2</td>
<td>About half of tibia length (55%)</td>
<td>More than half of the tibia length</td>
<td>Much more than half of tibia</td>
<td>More than half of the tibia length (62–65%)</td>
<td>Evidently less than half of tibia length (39–45%)</td>
</tr>
<tr>
<td>Forearm length (mm)3</td>
<td>34.5</td>
<td>33.5</td>
<td>33.5–40.0</td>
<td>35.5–41.5</td>
<td>30.5–34.0</td>
<td>30.0–33.5</td>
</tr>
<tr>
<td>Condylar-basal Length (mm)3</td>
<td>11.2</td>
<td>–</td>
<td>12.7–13.7</td>
<td>14.7–15.5</td>
<td>12.0–12.8</td>
<td>12.1–13.6</td>
</tr>
</tbody>
</table>

1 M. ikonnikovi and M. brandti gracilis as representatives of Selysius species share features, by which they differ from Leuconoe species. These two species differ from each other by other characters.

2 In both Yoshikura’s publications (1944, 1956) it is not indicated whether metatarsus was measured with or without claws. Comparing to our measurements, Yoshikura’s measurement of foot (7.5 mm) seems to be with claws.

3 The given ranges based on adult specimens’ measurements.
In terms of cranial measurements, the condylo-basal length shown by Yoshikura (1944, 1956; which was not measured in the present study due to missing skull), is smaller and outside the size range of adult *M. daubentoni*. It is well known that skull grows slower than limb bones, i.e. it reaches its definitive size slowly than forearm (e.g. Swarthz, 1997), therefore the measurement of condylo-basal length in the subadult specimen of *M. abei* might be of little use. Taking the conflicting observations into consideration (age of the specimen, pelage coloration, the wing membrane insertion), we believe that the description of *M. abei* as a distinct species is a result of misidentification. The specimen preserved in the National Science Museum (Tokyo) and recognised as the type specimen of *M. abei* is actually *M. daubentoni*. Thus, *M. abei* should be considered as a junior synonym of *M. daubentoni*.

ACKNOWLEDGEMENTS

I am grateful to Prof. Ryuichi Masuda (Hokkaido University, Sapporo, Japan) for his kind translation of the *M. abei* description, to Dr. Mikhail P. Tiunov (Institute of Biology and Soil Science, Vladivostok, Russia) for the provision of information on Far Eastern bats, and to Dr. Hideki Endo (National Science Museum, Tokyo, Japan) for his help during my work with collections of National Science Museum, Tokyo. I thank Dr. Sergey Kruskop (Zoological Museum of Moscow State University, Moscow, Russia) and Dr. Dmitry Musolin (National Agricultural Center for Hokkaido Region, Sapporo, Japan) for their comments on the early version of the manuscript, and Dr. Kyle Armstrong (Kyoto University Museum, Kyoto, Japan) for comments and English correction. The study was supported by the JSPS Postdoctoral Fellowship for Foreign Researchers (Grant-in-Aid No. PD02201) and by the 21st Century COE Program on "Neo Science of Natural History" at Hokkaido University from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

Appendix 1

The list of examined Myotis specimens (species, region, number and sex, collection numbers). Collections acronyms are as follows: BM – Burke Museum of Natural History and Culture, University of Washington, USA; BPI – Institute of Biology and Soil Science, Vladivostok, Russia; KM – Nara Educational University, Nara, Japan; NSMT – National Science Museum in Tokyo, Japan; ZMMU – Zoological Museum of Moscow University, Moscow, Russia; ZIN – Zoological Institute of Russian Academy of Science, Saint Petersburg, Russia; KT – private collection of the author, HS – captured, measured and released during field surveys in 2003.

M. abei — Sakhalin, Russia (1 ♂): NSMT M 5840 o.5371.

M. daubentoni — Hokkaido, Japan (12 ♀, 10 ♂): NSMT 14794, 14797–98, 18438, 18440, 22526, 22529, 22531–33, 22534, 25335–42; KT J3, J6, J7; South Korea (1 ♂, 1 ♀): KT Ma1, Ma2; Russian Far East (6 ♀, 7 ♂): ZMMU 86494–96, 86503–06, 86508, 104343, 104344, 104358, 104359, 10362; South Siberia, Russia (2 ♀, 2 ♂, 6u): ZIN 64466, 64473–74, 64477, 33154, 33156, 61858, 103861–62, 154255.

M. macrodactylus — Honshu, Japan (9 ♀, 16 ♂, 2u): NSMT 18374, 18276–78, 20702–05, 22422–24, 22538–48, 23403–07; Hokkaido, Japan (14 ♀, 11 ♂): HS H-1-14, S-1-6, N-3-6; South Korea (1 ♀): KT Ma3.

