Bacterial Symbionts of the Giant Jewel Stinkbug Eucorysses grandis (Hemiptera: Scutelleridae)

Authors: Nahomi Kaiwa, Takahiro Hosokawa, Yoshitomo Kikuchi, Naruo Nikoh, Xian Ying Meng, et. al.
Source: Zoological Science, 28(3) : 169-174
Published By: Zoological Society of Japan
URL: https://doi.org/10.2108/zsj.28.169
Bacterial Symbionts of the Giant Jewel Stinkbug *Eucorysses grandis* (Hemiptera: Scutelleridae)

Nahomi Kaiwa1,2, Takahiro Hosokawa2, Yoshitomo Kikuchi2, Naruo Nikoh3, Xian Ying Meng2, Nobutada Kimura2, Motomi Ito1 and Takema Fukatsu2*

1Department of General Systems Studies, Graduate School of Arts and Science, the University of Tokyo, Tokyo 153-8902, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
3Department of Liberal Arts, the Open University of Japan, Chiba 261-8586, Japan

Microbiological characterization of gut symbiotic bacteria in a limited number of stinkbugs of the families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae has shown symbiotic association with midgut bacteria to be common in phytophagous taxa of these heteropteran insects. Here we investigated the midgut bacterial symbiont of *Eucorysses grandis*, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified in insects from five different geographic origins. The bacterium was detected in 64 of 64 insects sampled from three host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the *Gammaproteobacteria*, neither closely related to the gut symbiont of another scutellerid stinkbug, *Cantao ocellatus*, nor to gut symbionts of other stinkbugs. Diagnostic PCR, in situ hybridization and electron microscopy demonstrated that the bacterium is located extracellularly, in the midgut fourth section, which possesses crypts. These results indicate that the primary gut symbionts have multiple evolutionary origins in the Scutelleridae. A *Sodalis*-allied facultative symbiont was also identified in some insects from natural populations. Biological aspects of the primary gut symbiont and the secondary *Sodalis*-allied symbiont are discussed.

Key words: *Eucorysses grandis*, Scutelleridae, gut symbiont, *Sodalis*, Gammaproteobacteria

INTRODUCTION

In the insect order Hemiptera, members of the suborder Heteroptera, commonly known as true bugs or stinkbugs, represent over 38,000 described species characterized by sucking mouthparts, half-membranous forewings, and incomplete metamorphosis (Schuh and Slater, 1995). In the Heteroptera, symbiotic associations with bacteria are common in plant-sucking taxa, particularly in stinkbugs of the infraorder Pentatomomorpha. These symbiotic species possess many sacs or tubular outgrowths, called crypts or caeca, in a posterior region of the midgut, wherein specific bacteria are harbored (Glasgow, 1914; Buchner, 1965). Aposymbiosis often results in retarded growth and high mortality in the insects (Abe et al., 1995; Fukatsu and Hosokawa, 2002; Hosokawa et al., 2006; Kikuchi et al., 2007; Kikuchi et al., 2009; Prado and Almeida, 2009b), indicating that the symbionts play a physiological role for the hosts. The symbionts are vertically transmitted across host generations by several post-hatch transmission mechanisms: (i) egg surface contamination in the Pentatomidae, Acanthosomatidae and Scutelleridae (Rosenkranz, 1939; Abe et al., 1995; Prado et al., 2006; Kikuchi et al., 2009; Prado and Almeida, 2009a; Kaiwa et al., 2010); (ii) coprophagy in the Cydnidae and Coreidae (Huber-Schneider, 1957; Schorr, 1957), or (iii) capsule transmission in the Plataspidae (Hosokawa et al., 2005), whereas a case of environmental acquisition has been reported from the Alydidae (Kikuchi et al., 2007). To date, the gut symbiotic bacteria of a limited number of the stinkbug families Acanthosomatidae, Plataspidae, Pentatomidae, Scutelleridae, Parastrachiidae, Alydidae and Pyrrhocoridae have been subjected to modern microbiological characterization (Kikuchi et al., 2005, 2009; Hosokawa et al., 2006, 2010; Kaltenpoth et al., 2009; Prado and Almeida, 2009a; Kaiwa et al., 2010).

Members of the family Scutelleridae, often referred to as jewel bugs or shield-backed bugs, are known for their vivid and beautiful body coloration (Schuh and Slater, 1995). The family includes some 80 genera and 450 species, and in Japan, at least seven genera and nine species have been recorded (Tomokuni et al., 1993). Early histological works described the presence of symbiotic bacteria in midgut
crypts of several scutellerid species (Glasgow, 1914; Kuskop, 1923; Rosenkranz, 1939). Since that time, however, the microbial nature of scutellerid symbionts has remained obscure. Recently, a gammaproteobacterial primary gut symbiont and a Sodalis-allied facultative symbiont were identified from the scutellerid stinkbug Cantao ocellatus (Kaiwa et al., 2010). However, it is uncertain whether these bacterial symbionts are commonly found in other scutellerid species.

In this study, we investigated the endosymbiotic microbiota of another scutellerid stinkbug, Eucorysses grandis (Fig. 1A). A gammaproteobacterial gut symbiont and a Sodalis-allied facultative symbiont were identified in E. grandis, as in C. ocellatus, but the gut symbiont was phylogenetically distinct from that of C. ocellatus, suggesting multiple evolutionary origins of the primary gut symbionts in the Scutelleridae.

MATERIALS AND METHODS

Insect materials

Table 1 shows collection data of E. grandis used in this study. Adult insects were collected at five localities in areas of southern Japan.

Dissection and DNA extraction

The first, second, third, and fourth sections of midgut, as well as ovaries and testes, were dissected from adult insects using a pair of fine forceps under a dissection microscope in a glass Petri dish filled with phosphate buffered saline (PBS; 137 mM NaCl/8.1 mM Na2HPO4/2.7 mM KCl/1.5 mM KH2PO4 [pH 7.5]). The dissected tissues were either immediately subjected to DNA extraction using NucleoSpin® Tissue kit (Macherey-Nagel), or preserved in acetone until use (Fukatsu, 1999).

DNA cloning and sequencing

A 1.5 kb segment of bacterial 16S rRNA gene was amplified with the primers 16SA1 (5′-AGA GTT TGA TCM TGG CTC AG-3′) and 16SB1 (5′-TAC GGY TAC CTT GTT ACG ACT T-3′) (Fukatsu and Nikoh, 1998). Polymerase chain reaction (PCR) was conducted with AmpliTaq GoldTaq DNA polymerase (Applied Biosystems) and the supplemented buffer system, following a temperature profile of 95°C for 10 min, followed by 35 cycles consisting of 95°C for 30 sec, 55°C for 1 min, and 72°C for 2 min. Cloning and sequencing of the amplified products were performed as previously described (Kaiwa et al., 2010).

Diagnostic PCR

The following specific primer sets were used for diagnostic PCR detection of 16S rRNA gene of the symbiotic bacteria: ookin162F (5′-GCT AAT ACC GCA TAA CGT CTT-3′) and 538A1R (5′-GCG ACC TGG TCA TCT TGC AT-3′)

Table 1. Samples of Eucorysses grandis used in this study.

<table>
<thead>
<tr>
<th>Collection locality</th>
<th>Collection date</th>
<th>Collector</th>
<th>Host plant</th>
<th>Gut symbiont</th>
<th>Sodalis symbiont</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakushima, Japan</td>
<td>November</td>
<td>Takema</td>
<td>Schefleriophylla</td>
<td>AB571334</td>
<td>AB571330</td>
<td></td>
</tr>
<tr>
<td>Kagoshima, Japan</td>
<td>2008</td>
<td>Fukatsu</td>
<td>octophylla</td>
<td></td>
<td></td>
<td>AB571333</td>
</tr>
<tr>
<td>Nishino-Omote, Japan</td>
<td>July</td>
<td>Takahiro</td>
<td>Vernicia</td>
<td></td>
<td></td>
<td>AB571332</td>
</tr>
<tr>
<td>Kagoshima, Japan</td>
<td>2009</td>
<td>Hosokawa</td>
<td>cordata</td>
<td></td>
<td></td>
<td>AB571331</td>
</tr>
<tr>
<td>Kashima, Japan</td>
<td>September</td>
<td>Fumitaka</td>
<td>Unknown</td>
<td></td>
<td></td>
<td>AB571335</td>
</tr>
<tr>
<td>Saga, Japan</td>
<td>2009</td>
<td>Kuchiki</td>
<td></td>
<td></td>
<td></td>
<td>AB571332</td>
</tr>
<tr>
<td>Minami-Boso, Japan</td>
<td>March</td>
<td>Takahiro</td>
<td>Pittosporum</td>
<td></td>
<td></td>
<td>AB571331</td>
</tr>
<tr>
<td>Chiba, Japan</td>
<td>2009</td>
<td>Hosokawa</td>
<td>tobira</td>
<td></td>
<td></td>
<td>AB571335</td>
</tr>
<tr>
<td>Tosa-Shimizu, Kochi, Japan</td>
<td>November</td>
<td>Takuya</td>
<td>Unknown</td>
<td></td>
<td></td>
<td>AB571332</td>
</tr>
</tbody>
</table>
Bacterial Symbionts of a Jewel Stinkbug

In situ hybridization

An Alexa555-labeled oligonucleotide probe EUB338 (5′-GCT GCC TCG AGG AGT AGT-3′) for specific detection of a 1.5 kb segment from the insect mitochondrial 16S rRNA was amplified with the primers MtrA1 (5′-CGA GTC GAC ARC CAT GC-3′) (Kaiwara et al., 2010) for specific detection of a 0.62 kb segment from the Sodalis-allied symbiont. The PCR temperature profile was 95°C for 10 min, followed by 35 cycles of 95°C for 30 sec, 55°C for 1 min, and 72°C for 1 min. To confirm the quality of the DNA samples, a 1.5 kb fragment of the insect mitochondrial 16S rRNA gene was amplified with the primers MtrA1 (5′-TCT ACG AGA CTC AAG CCT GT-3′) and MtrB1 (5′-TCT TAA TYC AAC ATC TGA GTC GCA A-3′) (Fukatsu et al., 2001).

Electron microscopy

Midgut crypts were dissected from adult females in 0.1 M phosphate buffer (pH 7.4) containing 2.5% glutaraldehyde, prefixed in the fixative at 4°C overnight, and post-fixed in the phosphate buffer containing 2% osmium tetroxide at 4°C for 60 min. After dehydration through an ethanol series, the materials were embedded in Spurr resin (Nisshin-EM). Ultrathin sections (thickness, 80 nm) were made on an ultramicrotome (Nisshin-EM). Ultrathin sections were mounted on collodion-coated copper meshes, stained with uranyl acetate and lead citrate, and observed under an transmission electron microscope (model H-7000, Hitachi).

Molecular phylogenetic and evolutionary analyses

A multiple alignment of nucleotide sequences was generated using the program Clustal W (Thompson et al., 1994), and the final alignment was corrected manually. Phylogenetic analyses were conducted by maximum likelihood and maximum parsimony methods. The best-fit substitution model was selected by using the program MrModeltest v2.1 (J. A. Nylander, 2004; http://www.ebc.uu.se/systoo/staff/ nylander.html). A maximum likelihood phylogeny, with 100 bootstrap resamplings, was estimated using the program phyl ML 3.0 (Guindon et al., 2005) under the GTR model. A maximum parsimony phylogeny, with 1,000 bootstrap resamplings, was estimated using the program phylo_win (Galtier, 1996). A relative rate test, based on genetic distances estimated under the Kimura’s two-parameter model, was conducted by maximum likelihood (ML) tree inference from a total of 1,005 unambiguously aligned nucleotide sequences. A maximum likelihood (ML) tree inferred from a total of 1,005 unambiguously aligned nucleotide sites is shown, whereas a maximum parsimony (MP) analysis gave substantially the same topology (data not shown). Bootstrap values higher than 50% are indicated at the nodes in the order ML/MP. Asterisks indicate support values lower than 50%. Sequence accession numbers and AT contents of the nucleotide sequences are in brackets and parentheses, respectively. As for insect endosymbionts, the name of the host insect is also indicated in parentheses. P-symbiont, primary symbiont; S-symbiont, secondary symbiont.

Fig. 2. Phylogenetic placement of the symbiotic bacteria from E. grandis on the basis of 16S rRNA gene sequences. A maximumlikelihood (ML) tree inferred from a total of 1,005 unambiguously aligned nucleotide sites is shown, whereas a maximum parsimony (MP) analysis gave substantially the same topology (data not shown). Bootstrap values higher than 50% are indicated at the nodes in the order ML/MP. Asterisks indicate support values lower than 50%. Sequence accession numbers and AT contents of the nucleotide sequences are in brackets and parentheses, respectively. As for insect endosymbionts, the name of the host insect is also indicated in parentheses. P-symbiont, primary symbiont; S-symbiont, secondary symbiont.

Table 2. Infection frequencies of the gut symbiont and the Sodalis-allied symbiont in natural populations of Eucorysses grandis.

<table>
<thead>
<tr>
<th>Population</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakushima</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Kashima</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Minami-Boso</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

1Nishino-Omote and Tosa-Shimizu populations were excluded because only a few insects were obtained from each population.
2DNA samples from dissected midgut were analyzed.
3DNA samples from dissected gonads were analyzed.

Downloaded From: https://bioone.org/journals/Zoological-Science on 26 Sep 2019
Terms of Use: https://bioone.org/terms-of-use
A recent study reported that the scutellerid stinkbug *C. ocellatus* possesses a gammaproteobacterial primary gut symbiont and a *Sodalis*-allied secondary symbiont (Kaiwa et al., 2010). This symbiotic configuration may appear similar to that of *E. grandis*, although the biological role of the symbiont for the host, if any, is unknown. In addition to the gut symbiont, a bacteriome-associated symbiont of a pigeon louse, and a bacteriocyte-associated symbiont of a tsetse fly *Sodalis glossinidius*, the bacteriome-associated symbiont of grain weevils, the symbiont of a louse fly, the bacteriocyte-associated symbiont of a pigeon louse, and a secondary symbiont of a chestnut weevil.

Molecular evolutionary aspects of the bacterial symbionts from *E. grandis*

The 16S rRNA sequences of the gut symbiont and the *Sodalis*-allied symbiont exhibited AT contents of 45.3% and 44.7%, respectively, which were not different from AT contents of other phylogenetically-related free-living gammaproteobacteria at around 45% (Fig. 2). The evolutionary rates of the 16S rRNA gene sequences in the gut symbiont and the *Sodalis*-allied symbiont were not significantly different from the evolutionary rates in phylogenetically-related free-living gammaproteobacteria (Table 3).

DISCUSSION

We demonstrated that *E. grandis* harbors a specific gammaproteobacterial symbiont in the cavity of the midgut crypts (Fig. 1; Fig. 2). The 100% infection frequencies in natural populations (Table 2) suggest that the gut symbiont is the primary obligate symbiont of *E. grandis*, although the biological role of the symbiont for the host, if any, is unknown. In addition to the gut symbiont, a *Sodalis*-allied symbiont was identified from gonad of *E. grandis*. The partial infection frequencies in natural populations (Table 2) indicate that the *Sodalis*-allied symbiont is a secondary, facultative symbiont of *E. grandis*.

A recent study reported that the scutellerid stinkbug *C. ocellatus* possesses a gammaproteobacterial primary gut symbiont and a *Sodalis*-allied secondary symbiont (Kaiwa et al., 2010). This symbiotic configuration may appear similar to that of *E. grandis*. However, molecular phylogenetic analysis clearly showed that the gut symbiont of *E. grandis* is phylogenetically distinct from that of *C. ocellatus* (Fig. 2), indicating that the primary gut symbionts of scutellerid stink-
bugs are not monophyletic, but of multiple evolutionary origins.

Previous studies have identified gammaproteobacterial midgut symbionts from diverse stinkbugs of the pentatomomorphan families Acanthosomatidae, Plattaspidae, and Pentatomiidae. Although these symbionts are commonly localized in the same symbiotic organ, the midgut fourth section with crypts, their microbiological affiliations are different: *Rosenkranzia clausaccus* in the Acanthosomatidae (Kikuchi et al., 2009), *Ishikawaeilla capsulata* in the Plattaspidae (Hosokawa et al., 2006), and unnamed gammaproteobacterial lineages in the Pentatomiidae (Prado and Almeida, 2009a). In the Acanthosomatidae and Plattaspidae, the gut symbionts are respectively monophyletic and co-associate with the host insects, reflecting strict host-symbiont co-evolution over evolutionary time (Hosokawa et al., 2006; Kikuchi et al., 2009). By contrast, the gut symbionts are polyphylectic in the Pentatomiidae, suggesting occasional lateral transfers and/or replacements of the symbionts (Prado and Almeida, 2009a). The situation in the Scutelleridae turned out to be similar to the situation in the Pentatomiidae, and not to that in the Acanthosomatidae/Plattaspidae.

With limited information on only two species, *C. ocellatus* and *E. grandis*, the diversity of the gut symbionts in the Scutelleridae warrants future study. It should be noted that the gut symbiont of *C. ocellatus* exhibits AT-biased nucleotide composition and accelerated molecular evolution (Kaiwa et al., 2010), whereas the gut symbiont of *E. grandis* does not (Fig. 2; Table 3). Given that these peculiar genetic traits are often associated with long-lasting intimate symbiotic associations (Wernegreen, 2002), it may be that the evolutionary origin of the gut symbiont of *E. grandis* is more recent than that of *C. ocellatus*.

It is notable that, although symbiotic bacteria have been examined in only two scutellurid stinkbugs, *Sodalis*-allied secondary symbionts were identified in both cases. For a long time, *Sodalis glossinisius* and allied symbionts have been known only from tsetse flies and grain weevils (Dale and Maudlin, 1999; Heddi and Nardon, 2005). However, recent studies have uncovered an unexpected prevalence of *Sodalis*-allied symbionts among diverse insects including a louse fly (Novakova and Hypsa, 2007), a pigeon louse (*Saccass-Fukatsu K, Yoshizawa K, Dale C, Clayton DH (2007) Bacterial endosymbiont of the slender pigeon louse, *Columbicola columbæ*, allied to endosymbionts of grain weevils and betise flies. Appl Environ Microb 73: 6660–6668)


Kikuchi Y, Meng XY, Fukatsu T (2005) Gut symbiotic bacteria of the genus *Burkholderia* in the broad-headed bugs *Riptortus*

(Received August 9, 2010 / Accepted September 11, 2010)