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Abstract

Remote sensing is used to map the actual distribution of some invasive plant species, such as leafy spurge (Euphorbia esula L.),
whereas geospatial models are used to indicate the species’ potential distribution over a landscape. Geographic data layers were
acquired for Crook County, Wyoming, and the potential distribution of leafy spurge presence or absence were predicted with
the use of the Weed Invasion Susceptibility Prediction (WISP) model. Hyperspectral imagery and field data were acquired in
1999 over parts of the study area. Leafy spurge presence or absence was classified with the use of the Spectral Angle Mapper
with a 74% overall accuracy. However, the user accuracy was 93%, showing that where leafy spurge was indicated in the
image, leafy spurge was usually found at that location. With the use of Kappa analysis, there was no agreement between WISP
model predictions and either the field data or the classified hyperspectral image. Kappa analysis was then used to compare
predictions based on single geographic data layers, to increase the power to detect subtle relationships between independent
variables and leafy spurge distribution. The WISP model was revised for leafy spurge based on the remote-sensing analyses, and
only a few variables contributed to predictions of leafy spurge distribution. The revised model had significantly increased
accuracy, from 52.8% to 61.3% for the field data and from 30.4% to 80.3% for the hyperspectral image classification,
primarily by reducing the areas predicted to have potential for invasion. It is generally more cost effective to deal with the initial
stages of invasion by only a few plants, compared to an invasion that is large enough to be detected by remote sensing. By
reducing the potential area for monitoring, management of invasive plants could be performed more efficiently by field crews.

Resumen

La teledetección se utiliza para mapear la distribución efectiva de algunas especies de plantas invasoras tales como la Euphorbia
esula L., mientras que los modelos geoespaciales se utilizan para indicar la distribución potencial de esta especie en el paisaje. Se
obtuvieron capas de datos geográficos para el condado de Crook, Wyoming, y la distribución potencial de presencia o ausencia
de E. esula se predijo utilizando el modelo de Predicción de Susceptibilidad a la Invasión por Malezas (PSIM). Se obtuvieron
imágenes hiperespectrales y datos de campo de 1999 de porciones del área de estudio. Se clasificó la presencia o ausencia de
E.esula utilizando el Mapeador Espectral de Angulo con un 74% de exactitud general. Sin embargo, la exactitud del observador
fue del 93% demostrando que donde E.esula era indicada en el mapa, generalmente era encontrada en el terreno. El uso de la
Prueba de Kappa demostró la ausencia de correspondencia entre las predicciones del modelo PSIM y los datos de terreno o la
imagen hyperespectral clasificada. La Prueba de Kappa se utilizó luego para comparar predicciones basadas en capas
geográficas individuales con la finalidad de aumentar el poder de detección de relaciones sutiles entre las variables
independientes y la distribución de E. esula. Se realizó una revisión del modelo PSIM para ajustarlo a E. esula basado en el
análisis de teledetección, y solamente unas pocas variables contribuyeron a predecir la distribución de E. esula. La exactitud del
modelo revisado aumentó significativamente de 52.8% a 61.3% para datos de campo y de 30.4% a 80.3% para la clasificación
hiperespectral de imágenes, debido principalmente a la reducción de aéreas con potencial predicho de invasión. Generalmente es
más económico intervenir durante los estadı́os tempranos en los que la invasión consiste de unas pocas plantas comparado con
una invasión que es lo suficientemente grande como para ser detectada mediante teledetección. La reducción del área potencial
de monitoreo, permitirı́a a los equipos de campo realizar un manejo más eficiente de plantas invasoras.

Key Words: AVIRIS, Euphorbia esula, hyperspectral remote sensing, Kappa analysis, leafy spurge, Weed Invasion
Susceptibility Prediction model

INTRODUCTION

Invasive species are a world-wide problem affecting mainte-
nance of biodiversity and production of food and fiber. In the

United States, annual economic losses from invasive species are
about $120 billion (Pimentel et al. 2005). Understanding the
potential geographic distribution of an invasive species is
important because regions that have not yet been infested
require different management strategies compared to regions
that are already infested (Rouget et al. 2004). An active area of
research is the development of potential distribution models,
both as a scientific methodology to understand species’ niches
(Jackson et al. 2009) and to predict changes in distribution with
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climate change (Pearson and Dawson 2003; Thuiller et al.
2008). Niche models require a different set of parameters for
each invasive species based on its specific ecological character-
istics (Peterson 2003; Austin 2007; Hoffman et al. 2008;
Stohlgren et al. 2010). A general problem with potential
distribution models is that these models are usually tested with
only species-presence data, which can result in model errors
(Fielding and Bell 1997; Engler et al. 2004; Tsoar et al. 2007).
Other studies have shown that using only species-presence data
can result in accurate distribution models (Evangelista et al.
2008, 2009; Kumar et al. 2009). On the other hand, species-
absence data can be unreliable because a given location can be
either unfavorable for the species occurrence or simply the
propagules for the species haven’t arrived yet at that location.

A major application of remote sensing is to map the actual
distribution of invasive species (Everitt et al. 2002; Underwood
et al. 2003; Lass et al. 2005). Remotely sensed imagery is often
used to provide variables for the prediction of invasive weed
distribution (Morisette et al. 2005; Rew et al. 2005).
Furthermore, remote sensing can be used to map the locations
of plant species that have spectral or phenological differences
from the co-occurring native vegetation, which then can be
used in lieu of field plots to develop potential geographic
distribution models (Bradley and Mustard 2006; Andrew and
Ustin 2008, 2009).

Leafy spurge (Euphorbia esula L.) is an invasive weed that
renders large amounts of rangeland unfit for horses or cattle
(Anderson et al. 2003). For four states, Wyoming, Montana,
North Dakota, and South Dakota, the direct economic losses
exceed $37 million annually and the indirect economic losses
are about $83 million annually (Leistritz et al. 2004). The
flower-bracts are distinctively yellow green (Hunt et al. 2004),
which can be remotely sensed either with high-spatial-
resolution sensors or imaging spectrometers/hyperspectral
sensors (Everitt et al. 1995; Anderson et al. 1996; Everitt et
al. 2002; Casady et al. 2005; Glenn et al. 2005). The success is
mixed for moderate-resolution, multispectral sensors such as
Landsat Thematic Mapper (Hunt and Parker Williams 2006;
Mladinich et al. 2006; Stitt et al. 2006; Mitchell and Glenn
2009). Therefore, the ability of remote sensing to detect leafy
spurge is probably dependent on high amounts of flower-bract
cover in a pixel (Hunt et al. 2007), which in turn may be related
to leafy spurge’s vegetative propagation via adventitious buds
on the root system (Messersmith et al. 1985).

Gillham et al. (2004) developed the Weed Invasion Suscep-
tibility Prediction (WISP) model, which uses simple thresholds
and categorical variables relating species occurrence to
geographic distribution in a landscape. Furthermore, the WISP
model was parametrized for leafy spurge with the use of only
presence data acquired in Wyoming’s Bighorn River Basin, and
model performance was assessed with the use of only producer
accuracy (Gillham et al. 2004). In this study, the WISP model
was used to predict the occurrence of leafy spurge at a new site,
Devils Tower National Monument in northeastern Wyoming.
Parker Williams and Hunt (2002, 2004) and Hunt et al. (2007)
determined the distribution of leafy spurge at Devils Tower
National monument with the use of imagery from NASA’s
Airborne Visible Infrared Imaging Spectrometer (AVIRIS;
Green et al. 1998). Over a landscape, the unreliability of
absence data may be ameliorated by acquiring a large number

of pixels. Similar landscape units that are potentially unfavor-
able will have relatively few occurrences of leafy spurge,
whereas for the similar landscape units that are potentially
favorable, some will have leafy spurge and some will not. Both
presence and absence data from remote sensing are then used to
test and then revise the WISP model.

METHODS

Study Area
The original study was conducted as part of The Ecological
Area-Wide Management Leafy Spurge project (Anderson et al.
2003; Hodur et al. 2006). The study area was around Devils
Tower National Monument in Crook County, Wyoming,
between lat 44.4u and 44.6u N and long from 104.6u to 104.9u
W (Fig. 1). Elevations range from 1 219 m to 1 584 m and
vegetation is a mosaic of conifer woodlands, northern mixed-
grass prairie, riparian zones with deciduous shrubs and trees,
and sagebrush shrub lands. Leafy spurge is well established
throughout the area (Parker Williams and Hunt 2002, 2004).

There were two sets of field plots established for validation of
remotely sensed imagery. The first set were circular plots (46 m
in diameter; n 5 109) used for determining the amount of cover,
where all plots had some leafy spurge (Parker Williams and Hunt
2002). The second set were square plots (50 m on a side;
n 5 246) used for classification accuracy of spurge presence or
absence (Parker Williams and Hunt 2004). The positions of the
center point or corner points were obtained with a Rockwell
Precision Federal Global Positioning System (Rockwell Interna-
tional, Cedar Rapids, IA) with a positional accuracy of 5 m. The
two sets of plot data were acquired during June and July 1999
(Parker Williams and Hunt 2002, 2004) and were combined for
the accuracy assessment of WISP model.

Weed Invasion Susceptibility Prediction Model (WISP)
The WISP model uses a geographic information system (GIS) to
predict suitable areas for five invasive plant species with the use
of commonly available geospatial data layers and a look-up table
of parameters (Gillham et al. 2004). Vector data layers are
converted into raster formats. Pixels that are unsuitable for a
specific geospatial data layer are labeled with a zero and pixels
that are suitable are labeled with a one. Then, the sum of all zeros
and ones from the various data layers is calculated for each pixel.

Gillham et al. (2004) used expert opinion to determine the
model parameters for leafy spurge (Table 1). Furthermore,
because they used nine data layers, pixels with sums of eight
or nine were defined as having high susceptibility for invasion by
leafy spurge. The GIS data layers for the WISP model were
obtained from the Wyoming Geographic Information Science
Center, University of Wyoming (http://www.uwyo.edu/wygisc/).
The map scale of the data was 1:100 000, and the positional
accuracy was about 51 m. To match the resolution of the
remote-sensing data, the geospatial data layers were converted
into 20-m pixels.

Image Acquisition and Classification
NASA’s AVIRIS was flown in an ER2 aircraft at high altitude
(resulting in 20-m pixels) over the study area on 6 July 1999
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(Parker Williams and Hunt 2002, 2004). The AVIRIS data
were atmospherically corrected to land-surface reflectance with
the use of the Atmospheric Correction Now (ACORN) model
from ImSpec LLC (Seattle, Washington). Atmospheric spectral
transmittance was estimated in the ACORN model by using gas
and water vapor absorption bands (Gao et al. 1993, 2009).
Then the ACORN model output for each pixel was smoothed
with the use of the measured reflectance spectra of a large talus
field at the base of Devils Tower (Parker Williams and Hunt
2002). In 1999, high-altitude AVIRIS flights did not have
global positioning system and inertial motion sensor data

recorded with each scan line of data; hence, the three flight
lines were registered to a geospatially rectified SPOT 4 image
(20-m pixels) acquired on 11 July 2000. The root-mean-square
error between the AVIRIS and SPOT 4 images was 26 m.
However, inspection of the overlap between adjacent flight
lines showed that some areas were misregistered by up to eight
pixels (160 m), which occurred because atmospheric turbulence
affected the ER2 aircraft during the overflights.

Kruse et al. (1993) defined the spectral angle between two
reflectance spectra based on vector algebra:

cosH~R:T= Rk k Tk kð Þ [1]

where H is the spectral angle (degrees), R and T are the
reference and target spectra, the numerator is the dot product
of two vectors, and the denominator is the product of the
normalized vectors. A large field (7.2 ha in size, 182 pixels)
with approximately 100% cover of flowering leafy spurge
(ocular estimate) located just outside of Devils Tower National
Monument was selected as the training area for the reference
spectrum of leafy spurge. Classification with the use of the
spectral angle mapper (SAM) requires some threshold value of
H, so spectral angles less than the threshold are classified as
leafy spurge present and spectral angles greater than the
threshold are classified as leafy spurge absent. A low threshold
will increase the number of false negatives (errors of omission),
which will lower the producer accuracy, whereas a high
threshold will increase the number of false positives (errors of
commission), which will lower the user accuracy. The threshold
value of H was determined to be 3.5u, with the use of

Figure 1. Location of Crook County, Wyoming, and coverage of the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) overflights. The two
major rivers are the Little Missouri and the Belle Fourche. The location of Devils Tower National Monument is indicated with a dot.

Table 1. Original Weed Invasion Susceptibility Prediction (WISP) model
variables and parameter values for leafy spurge presence from Gillham et
al. (2004).

Variable Parameter values

Distance to water , 500 m

Distance to disturbance

(roads)

, 400 m

Aspect South, east, west

Slope , 36u

Elevation range 1 200–2 400 m

Precipitation . 200 mm

Soil texture class Loam, sandy loam, silt loam, clayey loam

Vegetation cover type Shrublands, grasslands, woodlands, riparian,

nonvegetated

Soil pH 6.8–8.4
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simulations from the scattering by arbitrarily inclined leaves
model and plot spectral reflectance data (Hunt et al. 2007).

Kappa Analysis
Cohen (1960, according to Congalton and Green 2009)
originally proposed Kappa analysis for testing categorical data.
The Kappa statistic (k̂) is defined:

k̂k~ Pc{Peð Þ= 1{Peð Þ [2]

where Pc is the percentage of correct predictions (overall
accuracy) and Pe is the percentage of correct predictions
attributable to chance, which is calculated from the false-
positive and false-negative errors (Congalton and Green 2009).
One important feature of Kappa analysis is that the variance of
k̂ can be estimated, so inference tests (Z statistic) can be used to
test hypotheses about differences among various classifications
(Congalton and Green 2009).

We used the AVIRIS SAM classification of leafy spurge
presence and absence to test the WISP model predictions pixel-
by-pixel over the landscape around Devils Tower National
Monument. However, with 808 557 pixels, there was too much
statistical power to accept the null hypothesis, possibly causing
a Type II error. Sims and Wright (2005) generally suggested
sample sizes up to about 1 600 in order to detect small
differences of k̂, so 1 000 pixels were selected at random for
calculating k̂ and its variance.

The significance of each WISP model variable was tested with
the use of the presence/absence predicted by that variable alone
with the AVIRIS SAM classification. For the variables distance to
water (defined as streams and rivers) and distance to disturbance
(defined as roads), we increased the threshold distance incre-
mentally to determine the value that maximized accuracy. New
parameters were selected to create a revised model, which was
then tested with the field data and AVIRIS classification.

RESULTS AND DISCUSSION

AVIRIS Image Classification
For the three AVIRIS flight lines, about 8% of the area was
classified as leafy spurge with the use of the Spectral Angle
Mapper (Fig. 2). Three classes of vegetation cover were
separated by the value of H: high vegetation cover with leafy
spurge, high vegetation cover without leafy spurge, and low
vegetation cover without leafy spurge. The SAM classification
of the AVIRIS data was only 74% accurate, the user accuracy
was 93%, and the Kappa statistic was highly significant
(Table 2). The high user accuracy indicated that where leafy
spurge was by the classified image, it was usually found at that
location. Nonflowering leafy spurge has spectral reflectances
similar to that of other green vegetation (Hunt et al. 2004), so
some of the errors in overall accuracy (Table 2) were probably
due to variation in the cover of flowering of leafy spurge
(Parker Williams and Hunt 2002).

The SAM classification results were not as good as
previously reported with a classification based on mixture
tuned matched filtering, which uses two subsets of the same
AVIRIS and ground data (Parker Williams and Hunt 2002,
2004). Mixture tuned matched filtering separates a single
spectral class from an image by comparing the reference and
pixel spectra with respect to the variance calculated from all
pixels. Because the entire AVIRIS data set was used in this
analysis, there were probably many more spectral classes; thus
the variance was much larger (J. W. Boardman, personal
communication, May 2004), with the result that the classifi-
cation of leafy spurge was not significantly better than chance
(Z 5 0.75). However, the SAM classification was significantly
better (Z . 3.0) than alternative supervised methods such as
Mahalanobis distance and maximum likelihood (data not
shown).

WISP Model Results
For Crook County, about 57% of the area was predicted to
have high susceptibility to invasion by leafy spurge with the use
of the original WISP model (Fig. 3). Accuracy assessment using
the field plots in the study area (n 5 354) resulted in an overall
accuracy of 53%, which was not significantly different from

Figure 2. Spectral angle mapper (SAM) classification for three Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) flight lines acquired on 6
July 1999. The spectral angles were divided into three classes: leafy
spurge present (red), high vegetation cover with leafy spurge absent
(cyan), and low vegetation cover with leafy spurge absent (violet).

Table 2. Accuracy assessment of the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) Spectral Angle Mapper (SAM) classification of
leafy spurge presence/absence with the use of the plot data of Parker
Williams and Hunt (2002, 2004).

AVIRIS classes

Field data

Present Absent

Present 139 10

Absent 83 122

Total 5 354

Overall accuracy 5 (139 + 122)/354 5 0.737

Producer accuracy 5 139/(139 + 83) 5 0.626

User accuracy 5 139/(139 + 10) 5 0.933

Pe 5 [(222 3 149) + (205 3 132)]/(354)2 5 0.480

Kappa (k̂) 5 (0.737 – 0.480)/(1.0 – 0.480) 5 0.495

Z 5 10.62
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random chance (Table 3). The producer accuracy was 72%,
which is somewhat lower than the producer accuracy
determined by Gillham et al. (2004). In that study, the WISP
model was validated in the Worland District of the Bureau of
Land Management, located in Wyoming’s Bighorn River Basin.
Various state and local agencies collected leafy spurge presence
data with global positioning system location (n 5 6461).

Testing the WISP model predictions using the AVIRIS data
for the study area resulted in an overall accuracy of 30%,
which also was not significantly different from random chance
(Table 3). Producer accuracy is similar to that for the field data;
however, the user accuracy was only 11%, indicating that the
original WISP model could not be used to predict potential
habitat for leafy spurge.

WISP Model Evaluation and Modification
Presence or absence of leafy spurge was predicted for each data
layer, which was then compared to the AVIRIS SAM
classification with the use of Kappa analysis. Based on the
parameters of the WISP model, leafy spurge was expected to
occur on loamy soil textures; however, loamy soils had a
significant negative association with leafy spurge (Table 4).
Furthermore, leafy spurge was expected to occur on east-,
west-, and south-facing slopes, but there was no significant
association with aspect. Also, leafy spurge was expected to
occur in grassland and shrub land cover types, which was not
found (Table 4). Contrary to expectations, leafy spurge
occurrence was significantly associated with clay and silty clay
loam soil textures, and riparian and woodland land cover
classes (Table 4). Other data layers had little or no variation
over the study area precipitation, soil pH, elevation, and
maximum slope, so these variables could not be tested for
association with leafy spurge. Distance to disturbance (roads)

was negatively associated with the occurrence of leafy spurge
for all threshold distances from 25 m to 1 000 m (data not
shown).

Distance to water was inversely related to leafy spurge
susceptibility as expected, with areas close to water having
higher occurrence of leafy spurge. The threshold distance to
water was varied incrementally from 20 m to 1 000 m (Fig. 4).
As the threshold value of distance increased, the k̂k reached a
maximum at 100 m. At a threshold distance of 200 m, k̂k had
the highest level of significance even though the value of k̂k was
lower (Fig. 4). As the threshold distance to water increased,
more total area was predicted to have potential for leafy spurge
to occur, up to a distance of 1 000 m, where 98% of the area
was predicted to be susceptible (Fig. 4). Also shown on Fig. 4 is
the producer accuracy from the AVIRIS SAM classification; as
the total area increased from thresholds from 20 m to 400 m,
the producer accuracy was larger than the fractional area. At
larger thresholds, the producer accuracy was about equal to the
fractional area (Fig. 4), and the result was high producer
accuracies for model prediction simply because of random
chance.

If a large area is predicted to be susceptible, then the
producer accuracy will be high even if model accuracy is not
significant. Producer accuracies of 100% can be obtained by
predicting the entire study area as susceptible to leafy spurge,
which could provide some insight to its biology, but then the
model would not be useful for prediction. Therefore, the
problem with presence-only data for potential distribution
models is the possibility that model parameters are determined
without respect to total area predicted to be susceptible.

The WISP model was revised with the use of the results of the
Kappa analyses. Three of the nine GIS data layers were used in
the revised model; the new model parameters were 1) distance

Figure 3. Weed Invasion Susceptibility Prediction (WISP) model
predictions for leafy spurge in Crook County, Wyoming, with the use of
the original model developed by Gillham et al. (2004). Data layers include
elevation, slope, aspect, precipitation, soil texture, soil pH, distance to
streams and rivers, distance to roads or other disturbed areas, and land-
cover class. Susceptibility to leafy spurge invasion is the sum of favorable
factors for each data layer, so a sum of 8 or 9 factors indicates high
susceptibility for leafy spurge (dark gray or red) and sums , 8 indicate
low susceptibility for leafy spurge (light gray or cyan).

Table 3. Accuracy assessment of Weed Invasion Susceptibility
Prediction (WISP) model predictions for leafy spurge in Crook County,
Wyoming, compared to field data and the classified Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) image.

WISP predictions

Data

Present Absent

Field data

Present 160 105

Absent 62 27

Overall accuracy 5 0.528

Producer accuracy 5 0.721

User accuracy 5 0.604

k̂5 2 0.080

Z 5 2 1.36

AVIRIS

Present 67 627 532 015

Absent 30 364 178 551

Overall accuracy 5 0.304

Producer accuracy 5 0.690

User accuracy 5 0.113

k̂5 2 0.0181

Z 5 2 0.8641

1Based on 1 000 randomly selected pixels.
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to water # 200 m, 2) riparian/woodland land cover, and 3) clay
or silty clay loam soil textures. A sum of three was used to
identify susceptible pixels. The area of Crook County estimated
to be susceptible to leafy spurge was reduced from 43% to 13%
(Fig. 5). A few new areas were predicted to be susceptible to
leafy spurge compared to the original WISP model.

For both the field data and AVIRIS SAM classification, the
revised model had lower producer accuracies and much higher
overall accuracies, which were highly significant (Table 5).
With the AVIRIS SAM classification, the revised model had a
very low user accuracy of 22%, because there were a large
number of pixels where the revised model predicted leafy
spurge but the classification indicated leafy spurge was not
present (Table 5). These areas could actually have leafy spurge,
but the cover of leafy spurge was not high enough to be
detected in the AVIRIS SAM classification (Table 2). Also, not
all areas that were potentially susceptible for leafy spurge
would actually have leafy spurge. Ranchers and farmers in the
area have been applying herbicides and biological control
methods to reduce the amount of leafy spurge in some areas.
Therefore, the low user accuracy of the revised model could be
in part attributed to the unreliability of absence data. Use of
remote sensing imagery was important for WISP model revision
because the large number of pixels allowed associations
between leafy spurge and geographic data layers to be detected
even when leafy spurge did not occupy all of the potential area.

On the other hand, there were about 3 times more pixels
classified as leafy spurge in the areas predicted not to be
susceptible to leafy spurge, i.e., low producer accuracy
(Table 5). These are errors either by the revised WISP model
or the geographic data layers. For example, there was a
negative association between loamy soil texture and pixels
classified as leafy spurge; however, there were some pixels
classified as leafy spurge that occurred on loamy soils. Possibly,
plants of other species may have had higher productivity on
loamy soils, which reduced the cover leafy spurge and created
an apparent negative association. This hypothesis may be tested
during a drought year, when the deep root system of leafy
spurge would increase its relative competitive ability.

The WISP model is a simple version of a potential
distribution model in which the probability of occurrence is
either 0 or 1. In reality, the probabilities vary between 0 and 1,
perhaps with loamy soil textures having a lower probability
than clayey soil textures. Advanced potential distribution
models use various algorithms to determine the probability of
occurrence for an invasive plant’s ecological niche (Guisan and
Zimmermann 2000; Peterson 2003; Guisan and Thuiller 2005;
Austin 2007; Stohlgren et al. 2010). Another general type of
potential distribution models are climatic envelope models
(Sutherst 2003; Morisette et al. 2005), in which climate or
remote sensing variables associated with current invasive plant
distributions are used to predict potential distribution globally.
One of the potential applications of climatic envelope models is
predicting the effects of climatic change (Pearson and Dawson
2003; Thuiller et al. 2008). The original WISP model
incorporated a few ideas from climatic envelope models (i.e.,
precipitation, Table 1), but there was little spatial variation in
climatic variables at the county level.

A problem with invasive-species models is the possibility that
the models are overtuned to specific locations, increasing
agreement between data and model predictions at one location,
but sacrificing applicability to other locations. Remotely sensed
images, particularly from imaging spectrometers/hyperspectral
sensors (Andrew and Ustin 2009), can be acquired at different
locations and used to test model performance. However, not all
invasive plant species can be detected with remote sensing, and
those species that could be detected at some sites may not be
detectable at other sites even with imaging spectrometer/
hyperspectral data (Andrew and Ustin 2008). The positive and
negative associations between geographic variables and classi-
fications of species presence or absence by remote sensing may
provide insight into the ecology of those invasive plants that are
detectable, which could then be applied to other invasive species.

Table 4. Associations between geospatial class and classified Airborne
Visible Infrared Imaging Spectrometer (AVIRIS) imagery for three
geographic variables with the use of Kappa analysis.

Variable Class k̂1 Z 1

Soil texture Loam 20.084 22.368

Clay loam 20.006 20.101

Silt loam 0.002 20.052

Clay 0.071 1.972

Silty clay loam 0.084 1.746

Aspect East 20.009 20.236

South 20.020 20.576

West 20.006 20.139

North 0.036 0.941

Land cover Grassland 20.056 21.177

Shrubland 20.085 23.939

Riparian 0.209 4.022

Woodland 0.122 2.856
1Based on 1 000 randomly selected pixels.

Figure 4. Variation in Weed Invasion Susceptibility Prediction (WISP)
model accuracy for changes in the threshold distance parameter for the
data layer, distance to water. Distances to water less than the threshold
are predicted to be leafy spurge present and distances greater than the
threshold are predicted to be leafy spurge absent. As the distance to
water increases, more area is predicted to be susceptible. Producer
accuracy is a measure of false negative errors.
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MANAGEMENT IMPLICATIONS

Imaging spectroscopy/hyperspectral remote sensing has com-
pelling advantages when the target is spectrally distinct from
the background, such as the yellow-green flower bracts of leafy
spurge (Hunt et al. 2007). There are several different aircraft-

borne hyperspectral sensors (besides AVIRIS), and plans are in
place for a new generation of satellites deploying hyperspectral
sensors (Schaepman et al. 2009). Schaepman et al. (2009)
suggest one of the roles of hyperspectral imagery is to serve as a
tool to scale field observations to larger scales, a task currently
performed with the use of moderate-resolution multispectral
satellites (Mladinich et al. 2006). Although software for
atmospheric correction and image processing is available,
analysis of hyperspectral data requires a high degree of
expertise that is not routinely available to land managers. GIS
and geographic data layers are routinely available. The results
from this study suggest that remote sensing data should be used
to test models of potential geographic distribution of invasive
species at different locations, and make the GIS models
available for land management.

It is generally less expensive to manage an invasive plant
species when there are just a few individual plants. Because the
cover of a few plants is well below the threshold for detection
by remote sensing at moderate spatial resolution, it will still be
necessary to look for new infestations of invasive plants by field
crews or by very-large-scale aerial photography (Blumenthal et
al. 2007). With validated potential distribution models, areas
that are more likely to have leafy spurge can be monitored more
frequently and areas that are less likely to have leafy spurge can
be monitored less frequently, increasing the efficiency of field
crews.
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