A Comparison of Geomorphic Settings, Sediment Facies and Benthic Habitats of Two Carbonate Systems of Western Mediterranean Sea and South Western Australia: Implications for Coastal Management

Authors: Sira Tecchiato, Carla Buosi, Angelo Ibba, David A. Ryan, and Sandro De Muro

Source: Journal of Coastal Research, 75(sp1) : 562-566

Published By: Coastal Education and Research Foundation

URL: https://doi.org/10.2112/SI75-113.1
A Comparison of Geomorphic Settings, Sediment Facies and Benthic Habitats of Two Carbonate Systems of Western Mediterranean Sea and South Western Australia: Implications for Coastal Management

Sira Tecchiato†*, Carla Buosi‡, Angelo Ibba‡, David A. Ryan§ and Sandro De Muro¶

†Department of Applied Geology, Curtin University, Perth, Western Australia.
‡Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy.
§Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy.
¶Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy.

ABSTRACT

A similarity exists between the coastal areas of South Western Australia and South Sardinia (Italy-Western Mediterranean Sea), as temperate water carbonate sedimentation dominates the inner shelf at these locations. The seagrass carbonate factory regulates the deposition of modern bioclasts, and the distribution of seagrass meadows and accumulation of bioclasts is controlled by similar processes at the study sites. These biogenic components are mixed to quartz-feldspar sands producing significantly comparable sediment facies, which have been previously documented for Esperance Bay (South Western Australia) and off Porto Pino beaches (Sardinia). Whilst the geological settings of these areas show similar outcropping lithologies, the clastic component of these mixed biogenic and quartz-feldspar sand facies is transported by different agents in the Australian and Sardinian site. In this paper, the similarity between sediment facies is highlighted and their comparison has produced new insights into the processes regulating sediment accumulation in two hydrodynamically different embayments. The characteristics of seagrass beds and their link to the beach system are also compared and set within the context of Mediterranean and South Australian bioregions. These outcomes are relevant for beach management, as European and Australian environmental regulations are compared herein.

ADDITIONAL INDEX WORDS: Temperate carbonate factory, beach management, geomorphology, seagrass meadows, Esperance (Australia), Porto Pino (Sardinia).

INTRODUCTION

The carbonate sediment factory in temperate water environments is commonly associated with seagrass meadows (James and Bone, 2011). Seagrass meadows support abundant benthic biota, including numerous calcareous epiphytic organisms that contribute to the production of carbonate sediments. This modern biogenic sedimentation of temperate water carbonates has been previously documented for various sites in the western Mediterranean (De Falco et al., 2011; De Muro et al., 2013) and western Australia (Collins, 1988; Tecchiato et al., 2015). Two embayments located in south Western Australia and Sardinia show a similar mixed biogenic and siliciclastic sediment facies. Whilst the quartz component of these facies is derived from the erosion of similar outcropping lithologies, the modern biogenic fraction is seagrass derived. The compared areas respectively represent high-energy and low to moderate energy carbonate depositional environments. The comparison of mixed biogenic and siliciclastic sediment facies identified at the study sites have allowed an assessment of the sediment accumulation occurring in the two carbonate systems.

Both the Mediterranean and the south western Australian coast host a mix of tropical and temperate seagrasses, however the Australian meadows are more diverse and Posidonia is one of the most ancient endemic seagrass genera found in these regions (Short et al., 2007). Seagrasses are considered to play an important role in the coastal geomorphology of Mediterranean and Australian inner shelf (De Falco et al., 2011; Short, 2010). Waves are attenuated by greater friction across seagrass meadows, which have the capacity to reduce water flow and therefore increase sediment deposition and accumulation as well as beach stability (De Muro et al., 2008, 2010, 2013; Fonseca, 1989; Madsen et al., 2001). The accumulation of beach wrack or “banquettes” also supports the prevention of coastal erosion (Carruthers et al., 2007; De Muro and De Falco, 2015; Simeone et al., 2013) and seagrass derived sediment often supplies the beach system contributing to beach stability (Carruthers et al., 2007; Short, 2010; Tecchiato et al., 2015). Some of the processes driving the distribution of this benthic habitat is relevant to coastal management because the preservation of seagrass beds enhances beach stability.

DOE: 10.2112/SIF3-113.1 received 15 October 2015; accepted in revision 15 January 2015
*Corresponding author: S.Tecchiato@curtin.edu.au
©Coastal Education and Research Foundation, Inc. 2016
European (Habitat Directive – EC., 1992) and Australian legislations protect these key ecosystems. In the Mediterranean, the reason for the protection of this habitat is linked to a widespread decline of the extent of *P. oceanica* beds, particularly around urban centres and ports. Loss of seagrasses caused by mooring damage is common in the Mediterranean and was also described in Western Australia. However, this practice is not forbidden neither in Australia nor in Europe. Removal of seagrass “banquettes” also damages the beach environment, but in the Mediterranean only regional regulations exist for this matter. Whilst in Australia beach wrack is not commonly removed from the beach, in Sardinia the impact of trucks used to remove seagrass “banquettes” is significant. This traffic flattens the berm, modifies sand permeability and reduces organic sediment input to the shore (De Muro and De Falco, 2015; Simeone et al., 2013).

The aims of this paper include the comparison of (i) geomorphic settings and underlying geology; (ii) mixed biogenic and siliciclastic sediment facies; (iii) distribution of benthic habitats. Finally, this publication aims to (iv) identify the processes driving the distribution of seagrass meadows and (v) sediment accumulation. Subsequently, the implications of sedimentary processes for coastal management in similar environments is discussed.

Regional settings

The comparison of geomorphic settings, temperate water carbonate sedimentation and distribution of benthic habitats carried out in this research is based on data collected at the following sites: Porto Pino (south-western Sardinia, central-southern Mediterranean Sea, Figure 1) and Esperance Bay (South Western Australia, Figure 2). The selection of these sites was based on environmental similarity and on data availability including previously published literature (De Muro et al., 2015a; Ryan et al., 2007).

Physical environment – Porto Pino (IT)

Porto Pino beach is a NW–SE oriented embayment located in south western Sardinia (Figure 1). The coastal area extends for a total length of 5 km and is mainly exposed to winds and waves from the SW and NW (De Muro et al., 2015a). A seasonal stream in the central sector of Porto Pino beach supplies quartz-rich sand to the bay.

In this area the continental shelf is relatively wide for the Sardinia region (over 20 km), as it is part of a passive margin. Paleozoic deposits (rhyolitic and dacitic volcanites, and leucogranites) outcrop in the SE and E sectors of the study site. Mesozoic outcropping (fossiliferous dolostones and bioclastic limestones) and Quaternary deposits are also locally present outcropping at Punta Tonnara in the NW sector of the embayment.

Physical environment – Esperance (AU)

Esperance Bay is a ~20 km long southwest facing embayment in southern Western Australia (Figure 2), located along a stable passive continental margin. A couple of island groups from the Recherche Archipelago are in the bay, and represent outcrops of Middle Proterozoic granites, gneisses and migmattites (Ryan et al., 2007). The embayment consists of flat lying Cenozoic limestones and is bordered by sand barriers and granitic rocky headlands (Sanderson et al., 2000).

Climate and hydrodynamics – Porto Pino (IT)

Sardinia is characterized by a Mediterranean climate with warm to hot, dry summers and mild to cool, wet winters. The temperature of Porto Pino beach varies from 10.5°C in winter...
and 24.5°C in summer with rainfall concentrated in the winter season with an annual average of 85 mm.

The Porto Pino embayment is microtidal and wave-dominated. The prevailing winds are NNW and NW, the latter more intense than the former. The winds from SW, SSW and S affect the dynamics of the surf zone and are intense in winter. The W winds are directly related to storms from the NW and occasionally reach high intensity, also modifying the surf zone. The southern continental shelf of Sardinia is subject to extreme wave energy compared to the surrounding regions of the Mediterranean Sea, with >3.0 m wave heights and >7 s swell waves. De Muro et al. (2015a) described three main coastal currents (longshore and rip) which control sediment transport along a SE-NW axis. These currents regulate the beach morphology which varies from longshore bar and trough to transverse bar and rip.

Climate and hydrodynamics – Esperance (AU)

Southwestern Australia is characterised by a semi-arid Mediterranean climate with temperatures averaging 8 to 26°C seasonally. Rainfall is limited to the winter season and fluvial discharge to the ocean is very low. Whilst in summer winds from SE prevail, in winter storms from SW dominate (Sanderson et al., 2000). The southern continental shelf region is subject to extreme wave energy with >2.5 m wave heights and >12 s swell waves. This region is storm dominated as tropical fronts meet cooler Southern Ocean waters. Esperance Bay is microtidal and is affected by strong, relatively consistent swells from the SW. These swells can be reinforced by wind generated waves, and produce a net eastward oriented littoral drift along the south coast. This current regulates the onshore coastal geomorphology (Kendrick et al., 2005).

METHODS

This research is based on the analysis of unpublished data only for the Porto Pino area. The data described in this paper include: (a) geomorphology data based on multibeam and single beam bathymetry, (b) sediment data including grainsize, carbonate content and petrology, (c) benthic habitat mapping based on sidescan sonar, satellite images, scuba diving and underwater video data. Further details on the methodologies used in these analyses can be found in De Muro et al. (2015a), Kendrick et al. (2005) and Ryan et al. (2007).

RESULTS

The following sections highlight the nearshore geomorphology, sediment facies and benthic habitats of the selected study sites: Porto Pino (south-west Sardinia, Italy) and Esperance Bay (South Western Australia).

Geomorphology - Porto Pino (IT)

The seabed off the promontory of Punta Tonnara is rocky (sandstones and limestones) and off Porto Pino reaches 50 m depth ~6 km offshore (Figure 1). Two beach rock ridge systems parallel to the present shoreline and rocky outcrops occur at -5 m and -40 m respectively. These features are the only distinctive geomorphic element of the study area.

Geomorphology - Esperance (AU)

The seabed off Esperance Bay gradually slopes towards the southwest reaching 50 m depth ~10 km offshore (Figure 2). The seafloor shoals in areas adjacent to islands and bedrock reefs. Important geomorphic features of the bay are high profile reefs consisting of granitic outcrops, and low profile reefs which comprise northwest to southeast trending limestone outcrops (Ryan et al., 2007). Bare sand areas are mostly planar, blanket like deposits which occur throughout the inner bay and on the lee side of islands. Small patches of subaqueous dunes (sensu Ashley, 1990) are located further offshore (Ryan et al., 2007).

Benthic habitat distribution - Porto Pino (IT)

Three main benthic habitats and substrate types were identified off Porto Pino: (1) uncolonised sandy substrate, (2) rocky outcrops, and (3) P. oceanica meadows (De Muro et al., 2015a). The distribution of these habitats is depth consistent and shore parallel. Some “intermattes” (unvegetated areas inside the meadow) were observed in the central and NW sectors of the beach, and rocky substrates are situated near the coastline in the NW and SE sectors (De Muro et al., 2015a).

Benthic habitat distribution – Esperance (AU)

Seagrass beds with common Posidonia and Amphibolis species were mapped between -5 and -30 m depth within 5 km of the shoreline throughout the embayment and are particularly extensive on the western side of Esperance Bay (Kendrick et al., 2005). Seagrass meadows prefer sheltered sections of Esperance bay and were also found on the lee side of islands forming rather isolated meadows compared to the more continuous mapped deeper (Ryan et al., 2007). Offshore reef systems are heavily colonised by sessile organisms. Sand waves, or subaqueous dunes (Ashley, 1990) occur in small patches in the outer sector of Esperance Bay (Ryan et al., 2007). Rhodolith beds were mapped between 25 and 60 m in both the inner and outer bay (Kendrick, et al., 2005; Ryan et al., 2007).

Sediment facies - Porto Pino (IT)

Four sand dominated sediment facies were identified at Porto Pino (Table 1, Figure 1), including two shore face facies and two offshore facies. In Sardinia, siliciclastic sands alike facies (1) are redistributed along the shoreline and the limit of Posidonia meadows (Puseeddu et al., 2011; De Muro et al., 2015b). Sediment facies (1) characterises the shallow beach system between 0 and 5 m depth and is mostly siliciclastic. A mixed bioclastic and siliciclastic sediment facies (2) is situated between the shoreline bedrock reefs. The distribution of facies (4) is shore-parallel and this sediment is located in the deeper areas below the Posidonia meadows, as shown in the composition of Facies (3) and (4).

Sediment facies - Esperance (AU)

Five offshore sediment facies were identified within Esperance Bay (Table 2, Figure 2). Grainsize increases moving offshore, from fine-medium sands inshore to coarse sands in the outer bay, and gravels correspondently to rhodolith beds. Whilst quartz is the dominant component of the inshore facies, relict...
carbonate clasts and bioclasts are more common in the offshore facies (Ryan et al., 2007). Modern bioclasts are common within offshore seagrass beds, bare sand substrates and low profile reefs. Carbonate sediment increase is depth consistent within seagrass beds. Ryan et al. (2007) indicated a higher carbonate percentage in the offshore seagrass beds, linked to limestone derived lithic clasts as well as modern bioclasts. Bathymetric range of the sediment facies is as per benthic habitat distribution.

Table 1. Characteristics of the sediment facies of Porto Pino (De Muro et al., 2015a).

<table>
<thead>
<tr>
<th>Sediment facies</th>
<th>CaCO₃ %</th>
<th>Gravel %</th>
<th>Sand %</th>
<th>Mud %</th>
<th>Depositional environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Silicilastic sands</td>
<td>±22.5 ±10.6</td>
<td>1 ±0.0</td>
<td>±99.5 ±0.0</td>
<td>0.4 Shoreface sands (5-0 m)</td>
<td></td>
</tr>
<tr>
<td>(2) Mixed bioclastic and silicilastic gravelly sands</td>
<td>±27.9 ±10.6</td>
<td>9.1 ±18.0</td>
<td>89.6 ±17.2</td>
<td>1.3 Transition from shoreface to the upper limit of Posidonia meadows (1-12 m)</td>
<td></td>
</tr>
<tr>
<td>(3) Biogenic gravelly sands</td>
<td>±45 ±21.2</td>
<td>21.1 ±19.5</td>
<td>78.9 ±19.5</td>
<td>0.0 Internariates (10-30 m)</td>
<td></td>
</tr>
<tr>
<td>(4) Detritic gravelly sands</td>
<td>±50 ±9.0</td>
<td>9.0 ±6.5</td>
<td>91.0 ±5.6</td>
<td>0.0 Posidonia meadows lower limit (30-35 m)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Characteristics of the sediment facies of Esperance Bay (modified from Ryan et al., 2007).

<table>
<thead>
<tr>
<th>Sediment facies</th>
<th>CaCO₃ %</th>
<th>Gravel %</th>
<th>Sand %</th>
<th>Mud %</th>
<th>Depositional environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Medium sand</td>
<td>±63.4 ±22.7</td>
<td>9.7 ±16.4</td>
<td>89.4 ±16.3</td>
<td>0.94 Inshore and offshore seagrass beds (5-30 m)</td>
<td></td>
</tr>
<tr>
<td>(B) Gravelly sands</td>
<td>±69.8 ±20.1</td>
<td>20.7 ±23.2</td>
<td>79.0 ±23.3</td>
<td>0.31 Low profile Reef (20-60 m)</td>
<td></td>
</tr>
<tr>
<td>(C) Gravel</td>
<td>±83.6 ±40.1</td>
<td>40.1 ±56.3</td>
<td>56.3 ±3.6</td>
<td>Rhodoliths (25-60 m)</td>
<td></td>
</tr>
<tr>
<td>(D) Medium sand</td>
<td>±69.7 ±5.9</td>
<td>5.9 ±30.1</td>
<td>93.2 ±30.3</td>
<td>±0.6 Bare Sand (0-60 m)</td>
<td></td>
</tr>
<tr>
<td>(E) Gravelly sands</td>
<td>±86.3 ±16.3</td>
<td>22.0 ±12.4</td>
<td>77.8 ±13.2</td>
<td>0.25 Subaqueous Dunes (~20 m)</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

The similarities found at the study sites are mainly related to processes regulating seagrass distribution and sediment accumulation. Seagrass meadows show a significant areal extent off Porto Pino and Esperance Bay, and are likely to contribute to beach stability and to control the morphology of the seabed from the shoreface to inner shelf areas. Considering that we are comparing two wave dominated environments (Australian bay - high energy, Mediterranean embayment - lower energy) characterized by different seagrass genera, it is interesting to note that the geographic distribution of these benthic habitats prefers the most sheltered regions of the studied embayments. In fact, different geomorphological features shelter the studied areas such as islands and promontories, as well as low relief palaeo-reefs and ridge systems offshore. Facies (1 and 2) of Porto Pino and facies (A inshore) of Esperance are very similar (Tables 1 and 2), as well as Facies (3 and 4) of Porto Pino and Facies (A offshore seagrass beds) of Esperance, both mixed carbonate silicilastic sediment with up to 90% sand and up to 60% carbonate. The quartz component of these sediment facies reaches their depositional environment through different processes: fluvial transport in Sardina and cliff erosion in Australia. The carbonate content of these sediment facies (4 and A) reflects the presence of eroded limestone material and modern bioclasts, with similar amounts in both facies. This is partly due to the capacity of seagrass meadows to physically retain silicilastic sediments deposited at shallower depths than the meadow. The accumulation of similar relict sediment on two contrasting continental shelves regulated by different hydrodynamic regimes, suggests that limestone derived lithic clasts were chemically stable within the range of temperatures that occurred in the last Interglacial. Also the modern temperate carbonate production of these environments appears to produce similar quantities of sediment, with a trend of carbonate component increase from the inshore to the offshore sediment facies recorded at both Italian and Australian site within seagrass beds. Whilst this assessment is only preliminary, future research is planned and will support understanding of modern carbonate sedimentation for the selected sites and could be applicable to cool-water carbonate systems globally.

Implication for coastal management

The main outcomes of this paper are the implications for coastal management resulting from an international comparison. The protection of seagrasses is somehow ensured by environmental managers for the selected Mediterranean and oceanic coasts, however the aspects outlined below are currently not included in the regulations.

The geographic distribution of seagrass meadows prefers the most sheltered regions of the studied embayments. Especially in Sardina, sheltered bays attract boating tourism and seagrasses are highly affected by mooring damage and fishing. Considering the ecological significance of this habitat, mooring should be forbidden on seagrass meadows. The removal of beach wrack along part of the Sardinian coasts has caused poor sediment budgets and higher exposure to storms, with subsequent coastal erosion. Further data are needed to compare the importance of beach wrack for maintaining beach stability at both sites.

CONCLUSIONS

This research uses a sedimentological approach to compare cool water carbonate sedimentation and benthic habitat distribution for two geomorphologically different embayments in terms of size and features but with similar outcropping lithologies. An important outcome is the role of seagrass meadows in maintaining beach morphodynamics of the studied Mediterranean and Australian embayments. Seagrasses favour the accumulation of terrigenous sediments within the beach and nearshore system, allowing accumulation of biogenic sediment in the deeper part of the meadows. Further research is needed to deepen our knowledge on the relationship between beach evolution and benthic habitats, as well as on the processes driving sediment accumulation.

This initial comparison of the selected Mediterranean and Australian embayments also outlined the regular removal of beach wrack on the Sardinian beaches and its impact on the
adjacent beach system. In Australia these operations are not common, offering an example of environmentally sensitive management which may be used to support the development of a Mediterranean regulation for the protection of seagrass “banquettes”.

ACKNOWLEDGMENTS
This publication is one of the results of the LIFE 13 NAT/IT/001013 SOSS DUNES and B.E.A.C.H. Projects.

LITERATURE CITED

