Numerical Model of Geochronological Tracers for Deposition and Reworking Applied to the Mississippi Subaqueous Delta

Authors: Birchler, Justin J., Harris, Courtney K., Kniskern, Tara A., and Sherwood, Christopher R.

Source: Journal of Coastal Research, 85(sp1) : 456-460

Published By: Coastal Education and Research Foundation

URL: https://doi.org/10.2112/SI85-092.1
Numerical Model of Geochronological Tracers for Deposition and Reworking Applied to the Mississippi Subaqueous Delta

Justin J. Birchler†, Courtney K. Harris†, Tara A. Kniskern‡, and Christopher R. Sherwood†

† Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, VA USA

‡ Now at: U.S. Geological Survey
Saint Petersburg, FL USA

§* jbirchler@usgs.gov

ABSTRACT

Measurements of naturally occurring, short-lived radioisotopes from sediment cores on the Mississippi subaqueous delta have been used to infer event bed characteristics such as depositional thicknesses and accumulation rates. Specifically, the presence of Beryllium-7 (7Be) indicates recent riverine-derived terrestrial sediment deposition; while Thorium-234 (234Th) provides evidence of recent suspension in marine waters. Sediment transport models typically represent coastal flood and storm deposition via estimated grain size patterns and deposit thicknesses, however, and do not directly calculate radioisotope activities and profiles, which leads to a disconnect between the numerical model and field observations. Here, observed radioisotopic profiles from the Mississippi subaqueous delta cores were directly related to a numerical model that represented resuspension and deposition using a new approach to account for the behavior of short-lived radioisotopes. Appropriate selection of parameters such as the biodiffusion coefficient, sediment accumulation rate, and radioisotopic source terms enabled a good match between the modeled and observed cores. Comparisons of modelled profiles with geochronological analytical models that estimate accumulation rate and flood layer thickness revealed potential avenues for refining these tools, and highlight the importance of constraining the biodiffusion coefficient.

ADDITIONAL INDEX WORDS: Sediment transport model, Mississippi subaqueous delta, radioisotopes.

INTRODUCTION

Naturally occurring, short-lived radioisotopic tracers have been used to characterize sediment deposition in many coastal environments. For example, 7Be has been used to infer recent deposition of fluvially-derived sediment (Kniskern et al., 2014; Sommerfield, Nittouer, and Alexander, 1999), while the presence of 234Th indicates recent riverine-derived terrestrial sediment deposition; while Thorium-234 (234Th) provides evidence of recent suspension in marine waters. Sediment transport models typically represent coastal flood and storm deposition via estimated grain size patterns and deposit thicknesses, however, and do not directly calculate radioisotope activities and profiles, which leads to a disconnect between the numerical model and field observations. Here, observed radioisotopic profiles from the Mississippi subaqueous delta cores were directly related to a numerical model that represented resuspension and deposition using a new approach to account for the behavior of short-lived radioisotopes. Appropriate selection of parameters such as the biodiffusion coefficient, sediment accumulation rate, and radioisotopic source terms enabled a good match between the modeled and observed cores. Comparisons of modelled profiles with geochronological analytical models that estimate accumulation rate and flood layer thickness revealed potential avenues for refining these tools, and highlight the importance of constraining the biodiffusion coefficient.

The seafloor here predominantly consists of mud and is influenced by wave reworking, and freshwater and sediment discharge from the Mississippi River. Bioturbation did not appear to be intense, based on analysis of X-radiographs and lack of macro-fauna observed during core collection (Corbett, McKee, and Duncan, 2004). From April to October, 2000, the site experienced high river discharge that then decreased, low wave energy, and significant deposition (Figure 2). The high inventories of 7Be in October, 2000 were attributed to spring and summer sediment deposition, while the elevated 234Th inventories were explained by increased wave energy at the end of the period (Corbett, McKee, and Duncan, 2004).

While standard sediment transport models (i.e. Warner et al., 2008) can not directly test these interpretations, a newly

Figure 1: Mississippi River Delta, Gulf of Mexico, USA. Model location indicated by triangle. Buoys used shown as circles.
developed model accounts for both radioisotope activities and sediment transport (Birchler et al., submitted). This paper discusses application of the coupled model to the radioisotopic cores for the Mississippi subaqueous delta measured by Corbett, McKee, and Duncan (2004) and use of the model to evaluate the applicability of analytically based estimates of deposition rates.

METHODS

A one-dimensional (vertical) version of the Community Sediment Transport Modeling System (CSTMS; Warner et al., 2008), within ROMS (Regional Ocean Modeling System; see Haidvogel et al., 2008; Shchepetkin and McWilliams, 2005) was used. Recently, Moriarty et al. (2017) introduced both particulate and dissolved geochemically reactive tracers in the seabed and the water column. Using a similar framework, Birchler et al. (submitted) developed a model to directly estimate activities of radioisotopes 7Be and 234Th. The one-dimensional model was implemented to represent the ‘near river’ site offshore of the Mississippi delta sampled by Corbett, McKee, and Duncan (2004) (Figure 1). This section summarizes the model configuration. Birchler, Harris, and Kniskern (2018) provides an archive of the model code, input, and output.

The model used 30 uniformly spaced layers in the vertical to represent the 50 m water column, while the sediment bed model had 40 layers that were each initially 0.5 cm thick. Two grain sizes were used to represent mud, with diameters of 0.015 and 0.003 mm; settling velocities of 0.01 and 0.1 cm s$^{-1}$; and critical shear stresses of 0.03 and 0.08 Pa, respectively. The erosion rate parameter (see Warner et al., 2008) was chosen as 5×10^{-6} kg m$^{-2}$ s$^{-1}$ so that the model produced erodibility curves consistent with those measured near the Mississippi delta by Xu et al. (2014). As the model proceeded, newly delivered river sediment supplied 7Be. For suspended material, 234Th was reset to maintain a constant activity, which supplied 234Th to the bed during cycles of sediment resuspension and deposition. A constant wind speed of 15 m s$^{-1}$ was applied to create steady currents of about 10 cm s$^{-1}$. For input timeseries, hourly wave height and period were taken from buoys 42040 and 42007 (Figure 1) from the National Oceanic and Atmospheric Administration National Data Buoy Center (NDBC, 2013).

One-dimensional (vertical) models of sediment transport typically neglect horizontal flux convergences and divergences that lead to net erosion or deposition. The study location accumulates ~1-3 cm of new sediment per month, however, and at times also supplies sediment that is eroded and redistributed to downstream locations (Corbett, McKee, and Duncan, 2004). Source and sink terms were therefore added as surface tracer fluxes (m s$^{-1}$) to represent Mississippi River sediment delivered to, or eroded sediment removed from, the study site from April to October, 2000. The timing of the surface tracer source was input at a rate proportional to the observed river sediment discharge at Tarbert Landing, MS, obtained from the U.S. Geological Survey (Figure 2a). The surface tracer flux was scaled so that a total of 4.6 cm of sediment was deposited to produce modeled radioisotope profiles that matched those reported in Corbett, McKee, and Duncan (2004). Episodic erosion coincided with the four wave resuspension events where the bed shear stress exceeded 0.1 Pa (Figure 2c). To account for removal and erosion of sediment, roughly 50% of suspended material was removed as a surface tracer flux during timesteps when the bed shear stress exceeded 0.1 Pa. The sediment deposition, erosion, and input radioisotope activity were chosen to replicate observed penetration depths and activity profiles. The main choices made to match the profiles were the biodiffusion coefficients and deposition rates used, and the activity of new sediment (Birchler, 2014).

The model represented April to October, 2000 (Figure 2). Because the data from October, 2000 had 234Th observations only for the very surface sample (Corbett, McKee, and Duncan, 2004), the effort to reproduce the observed profiles focused mainly on 7Be (Figure 3). A low, but non-zero, biodiffusion rate was needed in the model to obtain reasonable penetration depths. Biodiffusion was implemented as described in Sherwood et al. (in press), where $D_{b,max}$ was 0.95 cm2 yr$^{-1}$ (3×10^{-12} m2 s$^{-1}$), $D_{b,min}$ was 0.016 cm2 yr$^{-1}$ (5×10^{-13} m2 s$^{-1}$) and Z_{max} was 3 cm.

![Figure 2: Time-series used to represent April, 2000 to October, 2000; (a) measured river sediment discharge (USGS, https://waterdata.usgs.gov), (b) wave heights measured by NDBC buoys, (c) bed stress calculated by model, and (d) modeled bed thickness.](https://bioone.org/journals/Journal-of-Coastal-Research)

![Figure 3: Model estimated and observed profiles; (a) initial, (b, c, d) intermediate profiles, and (e) final measured and modeled profiles after seven months. Text in each panel denotes day of model run and amount of net sediment deposition to that day in cm.](https://bioone.org/journals/Journal-of-Coastal-Research)
When biodiffusion was neglected, the surface activity of both radioisotopes was slightly too high, and the penetration depth was too shallow (Birchler, 2014).

The radioisotope activity profiles were initialized with those found in April, 2000 by Corbett, McKee, and Duncan (2004) (Figure 3a). For \(^{10}Be\), a source activity of 20 dpm g\(^{-1}\) was needed to match the final observed \(^{10}Be\) surface activity from October, 2000. A value of 95 dpm g\(^{-1}\) was chosen for the water column activity of \(^{234}Th\) in order to match the high surface activity observed in October, 2000. Because nearly all of the modeled deposition occurred in the first half of the time period, \(^{10}Be\) needed a reasonably high input activity as its signal decayed significantly by the simulation’s end.

To investigate the role of biodiffusion on radioisotope profiles, two additional models were run that were identical except for the maximum bioturbation rates; the models had bioturbation rates of 0 and 25 cm\(^2\) yr\(^{-1}\), respectively.

RESULTS

The profiles of \(^{10}Be\) and \(^{234}Th\) changed through time from the initial profile due to sediment deposition, decay, and reworking due to waves and bioturbation (Figure 3a-e). Time series of surface activities, inventories, and penetration depths calculated for both radionuclides illustrates their response to sediment erosion and deposition (Figure 2). Peaks in \(^{10}Be\) and \(^{234}Th\) surface activity were associated with fluvial delivery, but did not scale directly with discharge, which was largest early in the model (days 0-15) when seabed activities continued to reflect initial conditions (Figure 2). Instead, peak surface activities co-occurred with a smaller river pulse around day 100, when bed stresses were smaller and net erosion was nil (Figure 4). For the rest of the model, river discharge decreased which slowed the addition of tracer to the seabed, and surface activities of both tracers fell via radioisotopic decay and biodiffusive dilution. Wave-driven erosion that removed high-activity sediments also decreased bed inventory and surface activity late in the model.

Penetration depths of \(^{10}Be\) and \(^{234}Th\) were initially about 10 cm and 6 cm, respectively (Figure 4c). Penetration depths of \(^{10}Be\) and \(^{234}Th\) changed slightly until day 100, after which a large sediment input increased the penetration depth of \(^{10}Be\) and \(^{234}Th\) to 10.5 cm and 8 cm, respectively. After day 100, declining river discharge and two erosion events decreased the penetration depths of \(^{10}Be\) to about 6 cm by the end of the model. Penetration depths only loosely corresponded to the sediment input timeseries because of confounding processes of sediment erosion and biodiffusive mixing.

DISCUSSION

The modeled radioisotope profiles were interpreted using multiple analytical methods that have been applied to sediment core data to estimate the accumulation rate and deposit thickness. These estimated rates were then compared to the modeled accumulation rates and deposit thicknesses.

Accumulation Rate Estimates

For situations where bioturbation and physical mixing appear to be less influential than deposition, short-lived radioisotopic records from sediment cores are often analyzed to estimate sediment accumulation rates and deposit thicknesses. These analytically-derived values were especially unreliable when biodiffusion was significant (Table 1). The steady-state analytical method applied a steady-state solution that assumed accumulation exceeds the effect of biodiffusion (Nittrouer et al., 1984):

\[
A_1 = \frac{2z}{\ln(C_0/C_z)} \quad (1)
\]

where \(A_1\) represents accumulation rate in cm month\(^{-1}\); \(\lambda\) is the decay constant of the radionuclide; \(z\) is depth in the seabed; \(C_0\) is radioactivity at the surface; and \(C_z\) is radioactivity at depth. The second method accounted for biodiffusion, fitting an advection-diffusion equation to the final profile (Nittrouer et al., 1984):

\[
A_2 = \frac{2z}{\ln(C_0/C_z)} - \frac{D_B}{z} \left(\ln(C_0/C_z) \right) \quad (2)
\]

where \(D_B\) represented the biodiffusion rate in cm\(^2\) yr\(^{-1}\).

Compared to the actual value of ~0.66 cm month\(^{-1}\), the steady-state analytical estimates of accumulation rate varied from net erosion (~0.33 cm month\(^{-1}\)) to double the actual value (Table 1). Rates based on \(^{10}Be\) were more reliable than those from \(^{234}Th\). These analytically-derived values were especially unreliable when biodiffusion was significant (Table 1). Even the steady-state model that accounted for biodiffusion using the correct value of \(D_{B,max}\) had this problem (Table 1, \(A_2\), bottom row). These analytical solutions were imprecise because deposition and erosion during the modeled period produced radioisotopic profiles that did not represent steady state conditions (e.g. Sadler, 1999). During erosive periods, radioisotope-tagged sediment was removed from the surface, and what remained was mixed more deeply into the seabed. Resuspension increased \(^{234}Th\) inventory via water column replenishment, which in most cases produced higher apparent accumulation rates based on \(^{234}Th\).
1984) to produce an expected 7Be profile between each model accumulation rate calculated by dividing elevation change over the duration of the model by time (column 3). Models were run using various maximum bioturbation rates ($D_{b,max}$), and rates calculated based on final radioisotope profiles.

| $D_{b,max}$ cm2 yr$^{-1}$ | A_1 234Th 7Be 234Th 7Be $A_3 = \frac{\text{deposition}}{\text{time}}$ |
|-------------------------|-------------------------------------|--|
| 0 | 0.65 0.87 0.65 0.87 0.67 |
| 0.95 | 0.70 0.89 0.66 0.81 0.67 |
| 25 | 1.15 1.20 0.44 -0.33 0.66 |

Deposit Thickness Estimates

Alternatively, episodic seabed elevation changes can be analyzed using non-steady state solutions. Palinkas et al.’s (2005) approach assesses deposit thickness from modeled non-steady-state radioisotope profiles that account for episodic deposition. In this study, the approach was modified to assess relative rates of diffusive bioturbation and net deposition and applied the appropriate advection-diffusion equation (e.g. Nittouer et al., 1984) to produce an expected 7Be profile between each model time step (Palinkas et al., 2005). If the expected activity profile did not match the observed, a new layer of sediment was added to the top of the seabed with activity equal to the observed surface layer until the calculated profile matched the observed (Palinkas et al., 2005). To test the method using the modeled profiles, this routine was applied to each daily time interval and each seabed layer independently for incremental deposit-layer thicknesses ranging from one to the total seabed thickness. The two calculated profiles with the least amount of deviation above and below the actual deposit thickness at each time were identified and adjusted to the actual deposit thickness. This reconstructed the depositional history with precision (Figure 5), but assumed perfect knowledge of the biodiffusion coefficient and radioisotopic profiles at daily and sub-cm resolution.

![Figure 5: Modeled seabed elevation compared to analytical solution using 7Be activity profiles adapted from Palinkas et al. (2005).](Image)

A more likely scenario would be a case where net deposition would be estimated based on sediment cores taken some weeks or months apart. For example, the difference in 7Be inventories in the radioisotopic profiles in Figure 3 could be used to infer depositional history. Applying the methods of Canuel, Martens, and Benninger (1990), deposit thicknesses were estimated for the four time intervals illustrated in Figure 3 and compared to the actual modeled deposition (Table 2). For the first three intervals, which were short, the analytical estimate agreed to within 10% of the actual deposition. For the final period, however, which covered days 41-210, the analytical approach underestimated the actual deposition by a factor of two (Table 2).

Table 2: Deposition (cm) based on analytical method (Canuel, Martens, and Benninger, 1990) from 7Be profiles in Figure 3, and actual model deposition over the same time periods.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical</td>
<td>1.1</td>
<td>0.15</td>
<td>0.28</td>
<td>1.5</td>
</tr>
<tr>
<td>Actual</td>
<td>1.0</td>
<td>0.14</td>
<td>0.26</td>
<td>3.2</td>
</tr>
</tbody>
</table>

This analytical method assumes that all of the new deposition occurs instantaneously, and that the activity of newly deposited sediment equals the activity of surficial sediment at the end of the study period. This method underestimated the actual deposition between days 41-210 because the modeled deposition was somewhat gradual then, but the analytical method assumed that much of the deposition occurred early in the time interval.

CONCLUSIONS

A combined sediment transport and radioisotope model was applied to a realistic shelf setting to calculate sediment bed profiles representing short half-life radioisotopes 7Be and 234Th that are used to interpret deposition of river derived sediment and sediment resuspension, respectively. This provided an example in a one-dimensional (vertical) model of suspended and seabed sediment of a realistic scenario that evaluated the response of radioisotope profiles to variations in riverine sediment input, storm intensity, and biodiffusion. Success in reproducing the observed profiles measured by Corbett, McKee, and Duncan (2004) for a 50 m site near the Southwest Pass of the Mississippi River was possible with proper specification of the 7Be and 234Th activities of fluvial and resuspended sediment; and selection of biodiffusion coefficients, deposition, and erosion. Radioisotopic values such as surface activity, inventory, and penetration depth reflect processes operating at timescales ranging from individual floods or storms, to seasonal. Episodic increases and decreases in these values occurred in response to depositional and erosional events, but these were also gradually modified by mixing within the sediment bed, background deposition, and radioisotopic decay.

The model’s accumulation rates and deposit thicknesses were compared to values obtained via analytical methods commonly applied to sediment cores. Steady-state analytical estimates of accumulation rate based on 7Be were generally more reliable than those based on 234Th which was enriched via resuspension. For the case using an intense bioturbation rate, the steady-state analytical expressions were imprecise, even Eq. 2 which accounted for biodiffusion. A non-steady state estimate of new deposition reliably calculated the modeled deposit thickness
when it was run at temporal and spatial resolutions that greatly exceeded those typically achieved by field studies. When applied at the temporal scales more typical of field studies, however, the analytical method of Canuel, Martens, and Benninger (1990) underestimated deposit thickness due to uncertainties in the depositional history.

ACKNOWLEDGEMENTS

The Bureau of Ocean Energy Management (BOEM) provided funding for Birchler, Harris, and Kniskern. Birchler received additional support from VIMS’ Office of Academic Studies. This work was partially supported by the U.S. Geological Survey, Coastal and Marine Geology Program. Use of firm and product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The authors appreciate input from VIMS’ faculty who served on Birchler’s M.S. committee: C. Friedrichs, S. Kuehl, and L. Schaffner. The authors thank the anonymous reviewers and J. Moriarty (USGS), whose suggestions helped improve this manuscript. This paper is Contribution No. 3724 of the Virginia Institute of Marine Science, College of William & Mary.

LITERATURE CITED

