A new Miocene Yabepecten (Bivalvia: Pectinidae) from the Hongô Formation in northeast Japan

Author: Takashi Matsubara

Source: Paleontological Research, 7(2) : 167-179

Published By: The Palaeontological Society of Japan

URL: https://doi.org/10.2517/prpsj.7.167
A new Miocene *Yabepecten* (Bivalvia: Pectinidae) from the Hongô Formation in northeast Japan

TAKASHI MATSUBARA

Division of Natural History, Museum of Nature and Human Activities, Hyogo, 6 Yaoi-dai, Sanda, 669-1546, Japan (e-mail: matsu@nat-museum.sanda.hyogo.jp)

Received: 15 October, 2002, Revised manuscript accepted March 31, 2003.

Abstract. *Yabepecten ogasawarai* sp. nov. is proposed from the Hongô Formation in Yamagata Prefecture, northeastern Honshû, Japan. Its occurrence is inferred to be of early late to middle late Miocene age, which makes *Y. ogasawarai* sp. nov. the oldest *Yabepecten* in the northwestern Pacific. *Yabepecten* was derived from *Patinopecten* in the northeastern Pacific, and migrated into the northwestern Pacific by the early late Miocene. From the early late Miocene onward, *Yabepecten* followed different evolutionary histories on both sides of the North Pacific. *Yabepecten* became extinct in the northeastern Pacific by the end of the early late Miocene. However, *Yabepecten* flourished in the northwestern Pacific from the late Pliocene to early Pleistocene, only becoming extinct at the beginning of the middle Pleistocene, along with many other species of the Omma-Manganji Fauna.

Key words: evolutionary history, late Miocene, northwestern Pacific, *Yabepecten*, *Yabepecten ogasawarai* sp. nov.

Introduction

Yabepecten is a pectinid genus typified by *Pecten tokunagai* Yokoyama, 1911, which was originally described from the lower Pleistocene Koshiba Formation on the Miura Peninsula, Kanagawa Prefecture, central Honshû, Japan (Masuda, 1963). The type species is peculiar for northwestern Pacific pectinids in having auricular crura with distal denticles. This character is common in *Patinopecten* Dall, 1898 (*Patinopectininae sensu* Kafanov, 1986a, b) in the northeastern Pacific, but is entirely absent in *Mizuhopecten* Masuda, 1963, and related genera (*Fortpectininae sensu* Masuda, 1963, and Kafanov, 1986a, b) in the northwestern Pacific.

Yabepecten tokunagai has mainly been found in upper lower Pliocene to lower Pleistocene deposits from central Honshû to southern Hokkaidô (e.g., Masuda and Ogawara, 1981; Uozumi *et al.*, 1986a; Matsui, 1990; Ogawara, 1996). The oldest record of *Yabepecten* in the northwestern Pacific was from uppermost Miocene or lowest Pliocene deposits on Hokkaidô (Uozumi *et al.*, 1986a). However, *Yabepecten condoni* (Hertlein, 1925) occurs in the upper Miocene Montesano Formation of Washington, U.S.A. (Masuda and Addicott, 1970), where its oldest occurrence has been dated as of early late Miocene age, based on diatoms and magnetostratigraphic data (Barron, 1981; Prothero and Lau, 2001). This occurrence is much earlier than in the northwestern Pacific. The origin and migration of *Yabepecten* have been discussed from the viewpoints of chronologic and geographic distribution patterns (e.g., Masuda and Addicott, 1970; Masuda, 1986; Uozumi *et al.*, 1986a; Amano and Karasawa, 1988).

In the course of examining collections in the Museum of Natural History, Tohoku University (abbreviated as IGPS), I found a new late Miocene *Yabepecten* from northeastern Japan (Figure 1). This is the first record of *Yabepecten* from lower upper or middle upper Miocene deposits in the northwestern Pacific. I propose *Yabepecten ogasawarai* sp. nov. and discuss its paleobiogeographic implications.

Systematic description

The terminology used herein for cardinal properties is principally from Waller (1991) (Figure 2). Right and left valves are abbreviated as RV and LV, respectively. A new term, *inner dorsal flexure (idf)*, refers to a rounded radial flexure on the inner side of both antero- and posterodorsal parts of the disc (Figure 2.1b, 2.2b).
Family Pectinidae Wilkes, 1810
Subfamily Chlamydinae von Teppener, 1922
Tribe Chlamydini von Teppener, 1922
Genus Yabepecten Masuda, 1963

Type species.—Pecten tokunagai Yokoyama, 1911, by original designation. Koshiba Formation, early Pleistocene.

Emended diagnosis.—Chlamydiinae with a circular, compressed, rather thin shell; RV generally more inflated than LV; RV radial costae low, flat-topped or rounded, irregular, broader or narrower than interspaces; LV concave or weakly inflated, sculptured by very fine to fine, low radial costae and strong shagreen microsculpture; LV generally lacking costae in interspaces; auricles rather small; byssal notch very shallow; resilifer small; auricular crura distinct, with a denticle on distal end; dorsal teeth strong; inner dorsal flexures distinct on both RV and LV.

Figure 1. Location of type locality (after Ogaawara et al., 1985; black star).

Discussion.—The taxonomic status of Yabepecten is controversial. Masuda (1963) considered this genus phylogenetically close to Patinopecten and Pecten Müller, 1776, rather than to Mizuhopecten and related genera (Fortipecten Yabe and Hatai, 1940, Masudapecten Akiyama, 1962, Kotorapecten Masuda, 1962, and Nipponpecten Masuda, 1962) in the northern Pacific area, because the auricular crura with denticles on the distal end are shared by Yabepecten, Patinopecten and Pecten. Based on this difference, Masuda (1963) referred Yabepecten and Patinopecten to the subfamily Pectinini, and the above northern Pacific genera except for Yabepecten to the Fortipectinini. Masuda (1963) stated that the five genera in the Fortipectinini are distinguished from Patinopecten in having rounded radial costae in the RV, a very shallow byssal notch and larger auricles in addition to the absence of auricular crura with denticles. In contrast, Hertlein (1969) regarded Yabepecten as a member of the Pecten (Patinopecten) subgroup of the Pecten group and used it as a subgenus of Pecten. He unquestionably considered the northern Pacific Masudapecten, Kotorapecten and Mizuhopecten as synonyms of Patinopecten. Habe (1977) revised Hertlein’s (1969) classification and treated Mizuhopecten, Yabepecten and Kotorapecten as subgenera of Patinopecten, and grouped them into the single subfamily Patinopectininae “Masuda, 1962” [sic] (see Kafanov, 1986a, b for discussion on the exact author).

Kafanov (1986a, b) revised Masuda’s (1963) classification system and referred the northeastern Pacific genera Mizuhopecten, Fortipecten, Masudapecten, Kotorapecten and Nipponpecten to the subfamily Fortipectininae, as done by Masuda (1963), and the northeastern Pacific genus Patinopecten and its subgenera [Patinopecten s.s., Liuyapecten MacNeil, 1961, and “split-ribbed” Patinopecten (=Blanckenhornia von Teppener, 1922)], and tentatively the genus Vertipecten Grant and Gale, 1931, to the subfamily Patinopinctininae, based on the morphological differences and inferred independent evolutionary histories since the early Miocene. Kafanov (1986a, b) considered Yabepecten referable to neither Patinopectinina nor Fortipectininae.

Waller (1991, 1993) proposed a new classification system for Pectinidae primarily on the basis of external microsculpture and cardinal properties rather than external macrosculpture. He pointed out that the external shell microsculpture and internal shell characters, including the cardinal structure of Mizuhopecten and Patinopecten, are coincident with those of the Chlamys group rather than the Pecten group. Waller (1991) observed that auricular crura, with or without denticles on the distal end, appear repeatedly in many clades of Pectinoidae, and therefore cannot be used as a uniquely derived character for distinguishing Patinopecten from Mizuhopecten. He concluded that Mizuhopecten and Patinopecten are members of the subfamily Chlamydiinae, and considered that these two genera may be referable to distinct subtribes of a single tribe. Following Waller’s (1991) opinion, Kafanov and Lutaenko (1998) reduced the rank of the subfamily Fortipectininae to a tribe in the subfamily Chlamydiinae, and referred the extant genera Patinopecten and Mizuhopecten to the tribe Fortipectinini.

Recently, Matsumoto and Hayami (2000) strongly bolstered Waller’s (1991, 1993) classification system, based on molecular phylogenetic analysis of extant pectinids using mitochondrial cytochrome c oxidase subunit I. Their results include Mizuhopecten in the same clade as Chlamys Röding, 1798, Swiftpecten Hertlein, 1936 and Azumapecten Habe, 1977 (= Leochlamys MacNeil, 1967). However, the phylogenetic relationship between this group of genera and Patinopecten remains obscure.

In my opinion, Yabepecten is a member of the tribe Chlamydini, as are Patinopecten and Mizuhopecten, based on the presence of shagreen microsculpture on the LV, and on the cardinal properties. The auricular crura with denticles on the distal end, which were considered to be a significant character of Pectiniinae by Masuda (1963, 1971), are not useful for subfamily-level classification, as noted by Waller (1991). However, this feature is useful for separating the northeastern Pacific Patinopecten and the northeastern Pacific Mizuhopecten, Fortipecten, Masudapecten, Kotorapecten and Nipponpecten, given the morphological differences that have resulted from their separate evolutionary histories on either side of the North Pacific since the early Miocene (Masuda, 1963, 1971; Kafanov, 1986a, b). Consequently, I consider that Yabepecten was derived from Patinopecten and migrated westward into the northern Pacific by the early late Miocene.

Masudapecten, based on Patinopecten (Masudapecten) masudai Akiyama, 1962, from the lower middle Miocene Sugota Formation in Akita Prefecture, northeastern Japan, closely resembles Yabepecten. Similarities include having the LV sculptured by stringy radial costae and shagreen microsculpture, at least on immature shells. However, Masudapecten lacks auricular crura with denticles, and has less developed inner dorsal flexures. In addition, this genus has several striated threads in the interspaces of radial costae on the LV, and finely sulcated radial costae on the RV. Patinopecten differs from Yabepecten in having stouter RV radial costae, very high and squarish RV radial costae, larger auricles and a deeper byssal notch.

Yabepecten ogasawarai sp. nov.

Figures 2, 3, 4.2, 4.4, 4.6a-b

Mizuhopecten pararlebeus muraetaensis Masuda and Takegawa.

Ogasawara, 1983, p. 61–62, pl. 6–1, figs. 1, 2.
New Yabepecten from NE Japan

Mizuhopecten paraplebejus murataensis Masuda and Takegawa.
Ogasawara et al., 1985, p. 31, pl. 2, figs. 5, 7; pl. 3, figs. 1, 5. [not of Masuda and Takegawa, 1965].

Type specimens.—Holotype: IGPS 98911–1; paratypes: IGPS 98911–2, 98911–3, 98911–4 and 98911–5. These are specimens of Mizuhopecten paraplebejus murataensis figured by Ogasawara et al. (1985). There should be another figured specimen in the IGPS collection (Ogasawara et al., 1985, pl. 2, fig. 5: IGPS 98911), but it was not found when I visited the Natural History Museum, Tohoku University.

Type locality, formation and age.—“Bed of the Sagae River, about 250 m downstream of ‘Uwano O-hashi’ [‘Uwano big bridge’] over the Sagae River and about 500 m south-southwest of the hamlet of Uwano, Sagae City, Yamagata Prefecture” (Ogasawara et al., 1985, p. 7), Ōya Tuffaceous Sandstone Member of the Hongō Formation, late Miocene.

Diagnosis.—Yabepecten with moderate-size, moderately thick shell; LV rather inflated; auricles small; byssal fasciole weakly flexed, rather broad; RV radial costae 18, low, broad, flat-topped, round-edged; LV radial costae 18–20, fine, tending to become weakly bi- or tripartite with shell growth; dorsal and inner dorsal teeth strong.

Description.—Shell moderate in size, moderately thick, circular, slightly longer than high, compressed, nearly equilateral except for auricles; apical angle about 120°; both antero- and postero-dorsal margines gape.

RV rather inflated compared to LV; radial costae 18, low, flat-topped, rather irregular, indistinctly defined from interspaces, rarely dichotomous owing to a very shallow median groove; interspaces shallow, somewhat narrower than costae; commarginal growth lines rather distinct, fine to coarse, irregular; auricles small; byssal fasciole broad, very weakly flexed, sculptured by fine to coarse, irregular growth lines; byssal notch very shallow; hinge line very bluntly v-shaped; resilifier moderate in size, moderately concave; resilifier teeth rather strong, with anterior tooth stronger than posterior tooth; dorsal teeth strong; anterior auricular crus indistinct; posterior auricular crus weakly elevated; inner dorsal flexures distinct; thin, foliated calcite layer inside of pallial line; adductor muscle scar indistinct except for dorsal part, reentered by foliated calcite layer; internal disc very weakly folded in concert with radial costae.

LV weakly inflated; radial costae 18–20, fine, tending to become weakly bi- or tripartite with shell growth; faint costae rarely present in interspaces; shagreen microsculpture on entire external shell; commarginal growth lines indistinct; interspace of costae shallow, slightly round-bottomed; auricles small, sculptured by irregular, rather widely spaced growth lines and fine, low, radial costae; hinge line nearly straight; resilifier same as that of RV; sockets of resilifier teeth distinct, especially the anterior one; infradorsal teeth strong; supradorsal teeth very narrow; sockets of dorsal teeth rather deeply concave; anterior auricular crus distinct, with a low distal denticle; posterior auricular crus indistinct, but with a distal denticle; dorsal flexures distinct; foliated calcite layer inside of pallial line, very thin; other internal features same as RV.

Etymology.—This species is named in honor of Prof. Kenshiro Ogasawara of the Institute of Geoscience, the University of Tsukuba.

Discussion.—The type specimens of this new species were once referred to as Mizuhopecten paraplebejus murataensis Masuda and Takegawa, 1965, which was originally described from the upper Miocene Fukuda Formation in Miyagi Prefecture, northeastern Japan (Ogasawara et al., 1985). The most significant difference between the two taxa is the mode of the auricular crura. The present new species has auricular crura with rather distinct denticles on the distal end, whereas M. paraplebejus murataensis has less developed crura that lack denticles, as seen in other members of Mizuhopecten. In addition, M. paraplebejus murataensis has much larger auricles, a more inflated RV with more distinct radial costae, and an LV with stouter radial costae and less developed shagreen microsculpture (Fig. 4.2, 4.4, 4.6a–c). The other significant difference is the mode of development of the inner dorsal flexures. The flexures are well developed in the LV of the Hongō specimens, whereas they are indistinct in M. paraplebejus murataensis. Taking account of these characters, the Hongō specimens are assigned to Yabepecten rather than Mizuhopecten.

The specimens illustrated by Ogasawara (1983) as M. paraplebejus murataensis from the Hashigami Sandstone Member of the Hongō Formation is probably referable to the present new species, although a definite assignment cannot be made because the specimens are not preserved well.

The present new species closely resembles Yabepecten condoni (Hertlein, 1925), from the lower upper Miocene Montesano Formation of Washington, in having a weakly inflated LV. However, it differs from that species by having a larger shell with smaller auricles and stronger shagreen microsculpture. Y. ogasawarai sp. nov. is also similar to the “smooth form” of Patopecten (Patopec-
New Yabepecten from NE Japan

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Length</th>
<th>Height</th>
<th>Convexity</th>
<th>Umbonal angle</th>
<th>Number of radial costae</th>
<th>Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGPS 98911-1 (holotype)</td>
<td>82.9 mm</td>
<td>86.1 mm+</td>
<td>8.6 mm</td>
<td>120°</td>
<td>18</td>
<td>Right</td>
</tr>
<tr>
<td>IGPS 98911-2 (paratype)</td>
<td>80.7 mm</td>
<td>82.5 mm</td>
<td>8.6 mm</td>
<td>122°</td>
<td>18</td>
<td>Left</td>
</tr>
<tr>
<td>IGPS 98911-3 (paratype)</td>
<td>45.1 mm</td>
<td>45.6 mm</td>
<td>4.1 mm</td>
<td>123°</td>
<td>20</td>
<td>Left</td>
</tr>
<tr>
<td>IGPS 98911-4 (paratype)</td>
<td>36.1 mm+</td>
<td>39.0 mm</td>
<td>3.6 mm</td>
<td>112°</td>
<td>19</td>
<td>Left</td>
</tr>
<tr>
<td>IGPS 98911-5 (paratype)</td>
<td>30.4 mm</td>
<td>31.3 mm</td>
<td>4.1 mm</td>
<td>119°</td>
<td>?18</td>
<td>Right</td>
</tr>
</tbody>
</table>

Evolutionary history of Yabepecten

The oldest known species of *Yabepecten* is *Y. condoni* (Herrelein) from the upper Miocene Montesano Formation of Washington along the northeastern Pacific margin (Loc. 22 in Figure 5). This species has been cited as an index fossil for the Grayson Stage (Addicott, 1976, 1977, 1984). According to Barron (1981a) the diatom assemblages of the Montesano Formation are referred to subzone b of the XV-XVI to XIII-XIV zones of Barron (1976). These zones correspond to Subzone d of the *Denticulopsis hustedti-Denticulopsis lauta* Zone and Subzone a of the *Denticulopsis hustedti* Zone of Barron (1981b), which implies an early late Miocene age. Prothero and Lau (2001) recently examined the magnetostatigraphy of the Montesano Formation. Although their recognition of the lower limit of the type Grayson Stage differs from Addicott (1976), this stage can be correlated with chron C4Ar2r to C4Ar1r (9.584–9.025Ma: Cande and Kent, 1995; Berggren et al., 1995b). *Yabepecten* in the northeastern Pacific is known only in the Grayson Stage (Addicott, 1976, 1977, 1984) and is considered to have become extinct by the end of the early late Miocene.

In contrast, the oldest species of *Yabepecten* in the northwestern Pacific is *Y. ogasawara* sp. nov. from the Ōya Tuffaceous Sandstone Member of the Hongō Formation in northeastern Honshū, Japan (Loc. 10 in Figure 5). Diatom assemblages from this member indicate that its horizon is somewhere between the *Denticulopsis katayamae* and the lowest part of *Rouxia californica* Zones of Akiba (1986) (Akiba, 1983; Takahashi et al., 1986; Manuyama, 1993; Kanamori et al., 1996). According to Motoyama and Manuyama (1998) and Yanagisawa and Akiba (1998), these zones range from 9.2 or 9.1 to 7.4 or 7.3 Ma, following the magnetostratigraphy of Cande and Kent (1995) and Berggren et al. (1995b). This age is slightly younger than

the first appearance of the northeastern Pacific Y. condoni. Masuda and Addicott (1970) and Masuda (1986) speculated that Yabepecten originated in the Arctic Ocean or high-latitude northern Pacific. However, the earliest appearances of Yabepecten in both the northeastern and northwestern Pacific predate the earliest opening of the Bering Strait (Marincovich and Gladenkov, 1999; Marincovich et al., 2002), and there is no fossil record of Yabepecten in its ostensible region of origin.

Yabepecten tokunagai has generally been reported in upper Pliocene to lower Pleistocene strata from southern Hokkaido and the Sea of Japan side of central Japan (Figure 5), and is a representative species in the Omma-Manganji Fauna (Masuda and Ogasawara, 1981; Ogasawara, 1981, 1986, 1996). The oldest record of this species is from the uppermost Miocene–lower Pliocene Atsuga Formation of Hokkaido (Loc. 2 in Figure 5). Uozumi et al. (1986a) cited and figured Yabepecten cf. condoni (Hertlein) from this formation, and believed that the Atsuga specimens are much more similar morphologically to Y. condoni than to Y. tokunagai. However, Y. tokunagai exhibits a wide range of variation in the height and width of RV radial costae and LV convexity (e.g., Amano and Karasawa, 1988). Consequently, I consider that Y. cf. condoni of Uozumi et al. (1986a) is included within the intraspecific variation of Y. tokunagai. A latest late Miocene to earliest Pliocene age for the Atsuga Formation is indicated by radiometric and diatom data (Uozumi et al., 1986b; Sagayama et al., 1992). Although Amano and Karasawa (1988) inferred that Y. tokunagai was derived from Y. condoni, the occurrence of Y. ogasawarai sp. nov. from upper Miocene strata of northeastern Japan implies that this species is more directly ancestral to Y. tokunagai.

There have been only a few records of Yabepecten tokunagai from lower Pliocene deposits, one of them being in the Arakurayama Pyroclastic Member of the Shigarami Formation in central Japan (Amano and Karasawa, 1988; Loc. 14 in Figure 5). Amano and Karasawa (1993) reported fission-track ages of 4.6 ± 0.2 and 4.7 ± 0.2 Ma (error: 1σ), indicating an early Pliocene age for this member. Tsuchi and Ibaraki (1988) referred the Ogikubo Sandstone and Siltstone Member of the Shigarami Formation, which overlies the Arakurayama Pyroclastic Member, to planktonic foraminiferal zone N21 of Blow (1969), of late Pliocene age (3.35–2.0Ma: Berggren et al., 1995a).

Another early Pliocene record of Y. tokunagai may be from the Nakawatari Formation in Yamagata Prefecture, northeastern Honshu (Loc. 9 in Figure 5; Ogasawara et al., 1984). However, this formation contains few planktonic microfossils (Maruyama, 1998; Aita et al., 1999), and age estimates based on biostatigraphic and radiometric data are not in agreement (Sato, 1986; Nagasawa et al., 1998, 1999), so further chronostratigraphic study is needed.

Occurrences of Y. tokunagai from the "upper Miocene to lower Pliocene" Okurglovskaya Formation on Paramushir Island in the Kurile Islands, northwestern Pacific (Zhikhova et al. (1972) described as Mitechpecten cf. subyessoensis (Yokoyama); Masuda, 1986; Amano and Karasawa, 1988; Loc. 20 in Figure 5), may be as old as those from the Shigarami and Nakawatari Formations. However, the precise geological age of the Okurglovskaya Formation is unknown, since there are no accompanying radiometric data or planktonic microfossils.

Yabepecten tokunagai flourished in southern Hokkaido and the Sea of Japan side of central and northeast Honshu during the late Pliocene and early Pleistocene, as noted by many workers (Masuda and Ogasawara, 1981; Masuda, 1986; Uozumi et al., 1986a; Amano and Karasawa, 1988;
Figure 5). These occurrences were in a mild- to cold-
temperate marine climate somewhat colder than today’s
(Ogasawara, 1994; Amano, 1994). It subsequently be-
came extinct by the beginning of the middle Pleistocene,
along with many other taxa in the Omma-Manganji Fauna.

Acknowledgments

I would like to express my appreciation to I. Hayami
(Kanagawa University) and K. Amano (Joetsu University
of Education) for their critically reading the manuscript
and providing valuable comments. I am grateful to L.
Marincovich, Jr. (California Academy of Sciences) for his
review of an early draft of the manuscript. Thanks are also
due to J. Nemoto (Tohoku University) for the loan of speci-
mens from the Museum of Natural History, Tohoku
University, and H. Kato (Natural History Museum and
Institute, Chiba), R. Nakashima (Geological Survey of
Japan, AIST) and Y. Suzuki (Shizuoka University) for their
kind cooperation in accessing some references.

References

Addicott, W.O., 1976: Neogene molluscan stages of Oregon and
Symposium: Selected Papers on Paleontology, Sedimentology,
Petrology, Tectonics, and Geologic History of the Pacific
Coast of North America, p. 95–115. Pacific Section, Society
for Economic Paleontologists and Mineralogists (SEPM), San
Francisco.

Addicott, W.O., 1977: Neogene chronostatigraphy of nearshore
marine basins of the eastern North Pacific. In, Saito, T. and
Ujjal, H. eds., Proceedings of the First International Congress
on Pacific Neogene Stratigraphy, p. 151–175. Keio, Shuppam,
Tokyo.

Addicott, W.O., 1984: Significance of pectinids in Tertiary
biochronology of the Pacific Northwest. Geological Society
of America, Special Paper, no. 184, p. 17–37.

Aita, Y., Taketani, Y., Masuyama, T., Tanaka, Y. and Ogasawara,
K., 1999: Microfossil analysis and age determination of the
Neogene fossil whale bearing strata in Maramagawa Town,
Yamagata Prefecture, northeast Japan. In, Research Report on
the Fossil Whales from Maramagawa-machi in Yamagata
Prefecture, p. 69 – 105. Yamagata Prefectural Museum,
Yamagata. (in Japanese with English abstract)

Akiba, F., 1983: Diatom fossils. In, Yamagata Dai-Kaigai
Hakkatsu Chosa Hikokusa-sha [Report on the Excavation Survey
of Yamagata Giant Sea Cow], p. 65–49. Yamagata Prefectural
Museum, Yamagata. (in Japanese)

Akiba, F., 1986: Middle Miocene to Quaternary diatom biostrati-
graphy in the Nankai Trough and Japan Trench, and modified
Lower Miocene through Quaternary diatom zones for middle-
to high latitudes of the North Pacific. In, Kagami, H. et al.
Washington, D.C.

Akiyama, M., 1962: Studies on the phylogeny of Patinopecten in
Japan. Science Reports of the Tokyo Kyoku Daigaku (Tokyo
University of Education), Section C, vol. 8, no. 74, p. 63–122,
pls. 1–8.

Amano, K., 1994: An attempt to estimate the surface temperature of
the Japan Sea in the early Pleistocene by using a molluscan as-
tsemblage. Palaeogeography, Palaeoclimatology, Palaeoecolo-

Amano, K. and Kaetsu Group of Society for Earth Science
Education of Niigata Prefecture, 1989: Molluscan molluscan
fauna from Asahi-mura, Iwafune-gun, Niigata Prefecture,
109–115, pl. 20. (in Japanese with English abstract)

Amano, K. and Karasawa, S., 1988: Yabepecten and Pseudamiantis
from the Shigarami Formation in Nagano Prefecture, central
Japan. In, Grant-Mackie, J.A., et al. eds., Professor Tamio
Kotaka Commemorative Volume on Molluscan Paleontology,
p. 507–517, pls. 1, 2. Saito Gratitude Foundation (Saito Ho-
on Kai), Sendai.

Amano, K. and Karasawa, S., 1993: Molluscan fauna and
paleoenvironment of the Plicose Okikobo Formation in the
northern part of Nagano Prefecture, central Japan. Journal of
Geography (Tokyo Geographical Society), vol. 102, p. 572–
582. (in Japanese with English abstract)

Amano, K., Sato, T. and Koike, T., 2000a: Paleoenvironmental con-
ditions during the Middle Pliocene in the central part of Japan
Sea Borderland—Molluscan fauna from the Kuwae Formation in
Shibata City, Niigata Prefecture, central Japan. Journal of
the Geological Society of Japan, vol. 106, p. 883–894. (in
Japanese with English abstract)

Amano, K., Suzuki, M. and Sato, T., 2000b: Warm-water influx into
Japan Sea in the middle Pliocene—Molluscan fauna from the
Tentokuji Formation around Mt. Taikei in Akita Prefecture,
306. (in Japanese with English abstract)

Arnold, R., 1906: Tertiary and Quaternary pectens of California.

Barron, J.A., 1975: Revised Miocene and Pliocene diatom
biostratigraphy of Upper Newport Bay, Newport Beach,

Barron, J.A., 1981a: Marine diatom biostratigraphy of the
Montesano Formation near Aberdeen, Washington. Geologi-
cal Society of America, Special Papers, no. 184, p. 113–126.

Barron, J.A., 1981b: Late Cenozoic diatom biostratigraphy and
paleoceanography of the middle-latitude eastern North Pacific,
Deep Sea Drilling Project Leg 63. In, Yeats, R.S. et al. eds.,
Initial Reports of the Deep Sea Drilling Project, 63, p. 507–

Berggren, W.A., Hilgen, F.J., Langereis, C.G., Kent, D.V.,
Obradovich, J.D., Raffi, I., Raymo, M.E. and Shackleton, N.J.,
1995a: Late Neogene chronology: New perspectives in high-
resolution stratigraphy. Geological Society of America

Berggren, W.A., Kent, D.V., Swisher, C.C., III and Aubry, M.-P.,
1995b: A revised Cenozoic geochronology and chronostрат-
graphy. In, Berggren, W.A. et al. eds., Geochronology, Time
Scales and Global Stratigraphic Correlation, p. 129–212.
Society for Sedimentary Geology (SEPM), Tulsa.

Blow, W.H., 1969: Late middle Eocene to Recent planktonic
foraminiferal biostratigraphy. In, Bronnimann, P. and Renz,
H.H. eds., Proceedings of the First International Conference on
E.J. Brill, Leiden.

Cande, S.C. and Kent, D.V., 1995: Revised calibration of the geo-
magnetic polarity time scale for the Late Cretaceous and
Cenozoic. Journal of Geophysical Research, vol. 100, no. 84,
Takashi Matsubara

p. 6093–6095.

Eto, T., Oda, M., Hasegawa, S., Honda, N. and Funayama, M., 1987: Geologic age and paleoenvironment based upon microfossils of the Cenozoic sequence in the middle and northern parts of the Misura Peninsula. Science Reports of the Yokohama National University, Section 2, no. 34, p. 41–57. (in Japanese with English abstract)

Grant, U.S., IV and Gale, H.R., 1931: Catalogue of the marine Pliocene and Pleistocene Mollusca of California and adjacent region, with notes on their morphology, classification, and nomenclature and a special treatment of the Pectinidae and the Turridae (including a few Miocene and Recent species), together with a summary of the stratigraphic relations of the formations involved. Memoirs of the San Diego Society of Natural History, vol. 1, p. 1–1036.

Maruyama, T., 1993: Diatoms contained in ichnofossils from the
upper Miocene of the Yamagata Basin. Proceedings of the Tōhoku Branch, the Geological Society of Japan, no. 22, p. 43–44. (in Japanese)

Matsubara, T., 1996: Late Miocene molluscs from the lowest part of the Shiizakata Formation in the Ninoo-Sannohe district, Northeast Honshu, Japan. Saito Ho-on Kai Museum, Research Bulletin, no. 64, p. 11–33.

Ogasawara, K., Saito, T. and Takahashi, S., 1985: Late Miocene molluscs from the northwestern part of Yamagata Basin, Yamagata Prefecture, Tohoku District, Japan. Saito Ho-on

Takayasa, T., Ogasawara, K., Masuda, K. and Matoba, Y., eds., 1986: Neogene and Quaternary Molluscs from the Akita Oilfield, Japan. 310 p. Commemorative Association for Professor Taisuke Takayasu’s Retirement and Supporters’ Foundation of Mineral Industry Museum, Mining College, Akita University, Akita. (in Japanese)

New Yabepecten from NE Japan

Yabe, H. and Hatai, K.M., 1940: A note on Pecten (Fortispecten, subg. nov.) takahashii Yokoyama and its bearing on the Neogene deposits of Japan. Science Reports of the Tohoku Imperial University, Sendai, Japan, Second Series (Geology), vol. 21, p.147–160, pls. 34–35.

Yokoyama, M., 1926: Fossil shells from Sado. Journal of the Faculty of Science, Imperial University of Tokyo, Section 2, vol. 1, pt. 8, p. 249–212, pls. 32–37.

Appendix. Distribution of Yabepecten

Locality numbers are the same as in Figure 5.

Comment 1.—Uozumi et al. (1986a, fig. 2) cited the occurrence of Y. tokanagai in the Plio-Pleistocene Kakegawa Formation [sic = Kakegawa Group] of central Japan. Nozuhara (1993) also reported this species in the upper Pliocene–lower Pleistocene Ukar Formation of the Kakegawa Group. These records are excluded from Figure 5, because the occurrences are unverified due to the lack of figured specimens. If this record were true, it would be the only record from the late Pliocene-early Pleistocene subtribal realm.

Comment 2.—Pecten (Painopecten) plebejas of Kubota (1950, p. 13–14, pl. 9, fig. 61) in the Setana Formation, Yabepecten tokanagai of Iway (1965, p. 30–31, pl. 15, fig. 14) in the Daishaka Formation, and Yabepecten tokanagai of Shimamoto and Koike (1986, p. 36–37, pl. 5, fig. 12) in the Tenokuki Formation, are referable to Mizuhopecten yeosensis (Jay, 1857) or its subspecies, as noted by Masuda and Noda (1976), Takayasu et al. (1986) and Amano and Karasawa (1988).