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A new method to determine bird and bat fatality at wind energy

turbines from carcass searches

Fränzi Korner-Nievergelt, Pius Korner-Nievergelt, Oliver Behr, Ivo Niermann, Robert Brinkmann &

Barbara Hellriegel

Wind energy is of increasing importance for a sustainable energy supply worldwide. At the same time, concerns about
the number of birds and bats being killed at wind turbines have been growing. In this situation, methods for a reliable
estimation of bird and bat fatality numbers are needed. To obtain an unbiased estimate of the number of fatalities from
fatality searches, the probability to detect the carcass of an animal being killed at a turbine has to be assessed by

considering carcass persistence rate, searcher efficiency and theprobability that a killed animal falls into a searchedarea.
Here, we describe a new formula to determine the detection probability of birds or bats that are killed at wind turbines
and which can estimate the number of fatalities from the number of carcasses found. The formula was developed to

analyse a large data set of bats killed at wind turbines in Germany. In simulations, we compared it to three other
formulas used in this context. Our new formula seems to have unbiased results when searcher efficiency and carcass
removal rate are constant over time.When searcher efficiency or carcass removal rate variedwith time, all four formulas

showed a similar bias. These comparative results can be used to choose between methods depending on the quality of
information available. Our estimator can, for instance, be adapted to different situations including temporal changes of
searcher efficiency or carcass removal rate because it is based on an explicit process model.
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Wind energy is showing a rapid growth and can help
to avoid the ecological and health problems of fossil
and nuclear energy production (Holdren & Smith
2000). At the same time, concerns about birds and
bats being killed at wind energy facilities and

possible ecological (e.g. de Lucas et al. 2007, Arnett
et al. 2008) and economic (Boyles et al. 2011)
consequences have been growing. In this situation,
methods for a reliable estimation of bird and bat
fatality numbers that are simple enough to qualify
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for general use are needed. In order to reliably
estimate the number of fatalities at wind turbines
from the number of carcasses detected, one has to
correct for imperfect detection (’searcher efficiency’),
for carcass removal, and, if necessary, for incom-
pletely searched area. To do so, a model that reflects
the important steps of the actual processes as well as
possible sources of imprecision is needed.

The key parameter in estimating bird and bat
fatalities is the probability that an animal being
killed is found by a searcher (detection probability
p). On the one hand, this probability depends on the
distribution of the carcasses in the area beneath a
wind turbine andon the fraction of this area that can
be searched, i.e. the proportion of carcasses lying in
the area searched (a). On the other hand, detection
probability p is influenced by the carcass persistence
probability (s), i.e. the probability that a carcass
does not disappear within 24 hours (due to removal
e.g. by scavengers), and the searcher efficiency (f),
i.e. the probability that a carcass that has fallen in
the area searched andhas not been removed is found
by a searcher. Thus, the probability that an animal
killed is also found can be determined as the product
of a and a function g which depends on s and f :
a*g(s,f ). For simplicity, we will assume here that
100%of the area beneath a wind turbine is searched
(a¼1), so that the detection probability is p¼g(s,f).
A simple example for function g is the product of
carcass persistence probability and searcher effi-
ciency, p ¼ f*s. While this equation includes two
very important factors, it does not take into account
that carcasses that have been overlooked may be
found during a later search. Consequently, the
number of fatalities will be overestimated particu-
larly when searcher efficiency is low and persistence
time is high. More sophisticated estimators have
been developed to account for repeated searches
(e.g. Erickson et al. 2004, Huso 2010). In an
extensive simulation study, Huso (2010) showed
that her estimator is more reliable than two
commonly used estimators (Johnson et al. 2003,
Kerns & Kerlinger 2004). These simulations also
showed that her estimator works well for North
American cases where carcass persistence times
normally are long (on average 32 days; Arnett et al.
2009) and usually search intervals of . 14 days are
used. However, for central European cases with
short persistence times (mean 4.2 days; Niermann et
al. 2011) and short search intervals (usually 1-7
days) her estimator tends to overestimate the
number of fatalities (Huso 2010). Therefore, we

have developed a new formula to estimate the
detection probability that allows for a detection of
carcasses during repeated searches, and which is
also reliable for central European cases. Our
estimator is based on a conceptually different model
than the one used by Johnson et al. (2003), Erickson
et al. (2004) andKerns&Kerlinger (2004) or the one
used by Huso (2010). Our estimator is a more
general formulation of the conceptual model used
by Baerwald & Barclay (2009; see Methods).
An important advantage of our approach is that

the formula canbe adapted to different distributions
of searcher efficiency or carcass removal rates,
because it is based on an explicit model of the
carcass removal and search processes. Searcher
efficiency depends on the ability of a searcher to
detect a carcass. This efficiency can be assumed to be
approximately constant over time (i.e. with the
number of searches) on uniform and bare ground.
However, on structured ground some carcasses
might be much more difficult to detect than others
(Arnett 2006). As a result, carcasses that are easy to
detect are more likely to be found during the first
search, whereas hidden carcasses will be more likely
to remain on the plot. Searcher efficiency for a
cohort of carcasses will, hence, decrease in repeated
searches. A modification of our formula accounts
for such a decreasing searcher efficiency in repeated
searches.
We assessed the bias and precision of our new

formula for the estimation of bat or bird fatalities in
a simulation study. We compared the results
obtained with our formula to that of three different
approaches to model carcass detection. The other
approaches were 1) the above-mentioned simple
formula p ¼ f*s*, where s* is the remaining
proportion of carcasses of animals that were killed
during one search interval (see below), 2) the
formula of Erickson et al. (2004) that is one of the
latest versions of the earlier estimators before the
publication of Huso (2010), and 3) the formula of
Huso (2010).
Simulation results were also compared with the

uncorrected raw number of carcasses found (C).
Using the carcass count as an estimate for the
number of animals killed (N̂) i.e. N̂ ¼ C, or just
correcting it in a simple way, e.g. N̂¼C/(f*s*) is still
common practice despite the obvious shortcomings
(Smallwood & Karas 2009, Dulac 2010).
In summary, we suggest a new formula to

estimate bat or bird mortality at wind turbines
and we analyse the differences in bias and precision
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between this new and four existing methods for

different scenarios. The new estimator is based on

an explicit model of the processes and can be

adapted to specific situations when needed. Our

goal is to help in deciding which method should

advantageously be used in which context.

Methods

The formula

The formula we have developed is based on an

explicit model of two processes: the removal by

scavengers or decay, and the carcass search. The

basic formula assumes that a mean number of m̄

individuals are killed per day, that the carcasses of

these killed animals are removed (e.g. by scavengers

or decay) at a constant probability (1-s; i.e. s¼daily

persistence probability) and that the searcher

efficiency is constant over time and similar for all

carcasses. Variations of the formula can account for

non-constancy in persistence time and/or searcher

efficiency (see below). Searches are conducted at

regular intervals of d days. During each search

carcasses are foundwith searcher efficiency f and are

removed from the plot. Based on these assumptions,

the number of carcasses found can be calculated (see

Appendix I and Table 1):

C ¼ m̄f s
1-sd

1-s

� � Xn-1

i¼0

ðn-iÞ ð1-fÞsd
� �i

 !
:

C is the total number of carcasses found during n

searches conducted at intervals of d days, given an

average number of m̄ animals killed per night, a
searcher efficiency f and a carcass persistence rate s.
If we divide the number of detected carcasses by the
total number of animals killed (m̄nd), we obtain an
estimate for the probability p̂ of finding an animal
that is killed at a wind energy turbine:

p̂ ¼ C

m̄nd

If the above formula forC is inserted in this formula,
m̄ cancels out. This makes the detection probability
p̂ independent of the number of killed animals:

p̂ ¼
f s

1-sd

1-s

� � Xn-1

i¼0

ðn-iÞ ð1-fÞsd
� �i

 !

nd
ð1Þ:

The formula assumes that f and s are constant over
time (see results of the simulation study) and that
these two parameters do not differ between individ-
ual carcasses (see Discussion).
Baerwald&Barclay (2009) used a similar formula

as the one presented here. In their formula a carcass
that is not found during the first search can also be
found during the second search, but not thereafter.
In contrast, our formula allows that such a carcass
can be found at any subsequent search. Our formula
may, therefore, be seen as a generalisation of the
method proposed by Baerwald & Barclay (2009).

Simulation study to assess the performance of the

new formula in comparison with other formulas

To assess the performance of the new formula, we
simulated data sets and subsequently used five
different estimators for thenumberof animalskilled.

Table 1. Definitions of important parameters used.

Parameter Definition

d Search interval, i.e. number of days between two searches

n Number of searches in the study

s Daily persistence probability of a carcass, i.e. proportion of killed bats/birds which do not disappear (e.g. due to
decay or scavangers) in 24 hours

t̄ Average persistence time of a carcass

f Searcher efficiency, i.e. the proportion of bats/birds killed and not removed that are found during one search

I Length of study period (days); I ¼ n*d

N Number of bats/birds which were killed during the study period I (unknown parameter of interest)

Nt Number of bats/birds which were killed during day t

m̄ Average number of bats/birds killed during one day

ci Number of carcasses counted during search i

C The total number of counted carcasses
Xn

i¼1

ci

p Probability that a bat/bird, which is killed during the study period I, is found

352 � WILDLIFE BIOLOGY 17:4 (2011)

Downloaded From: https://bioone.org/journals/Wildlife-Biology on 25 Apr 2024
Terms of Use: https://bioone.org/terms-of-use



The simplest estimator used the number of carcasses
found as a measure of mortality:

N̂ ¼
Xn

i¼1

ci;

where ci equals the number of carcasses found
during the ith search. All other estimators include a
formula to estimate the probability p to detect a
killed animal. For simplicity, we here divide the
numberof foundcarcasses by p̂ to obtain an estimate
of the number of killed animals:

N̂ ¼

Xn

i¼1

ci

p̂
:

In Appendix II, we present a method to obtain a
credible interval for this estimate.

The four formulas for the detection probability
were:

1) The simple formula p̂¼ f s*, where

s
� ¼ 1

d

Xd

i¼1

s
ðd-iþ1Þ

is the proportionof carcasses that died in the time
interval ]t-d, t] and remained until the search at
time t, and f is the searcher efficiency, i.e. the
proportion of carcasses present during the search
that are found by the searcher. This formula
ignores carcasses that were overlooked by the
searchers, i.e. it assumes that all remaining
carcasses have a probability of zero to be
detected during further searches.

2) Our formula in two versions, namely in its basic
version as presented above (1), as well as in an
adapted version that accounts for decreasing
searcher efficiency with the number of searches:

p̂ ¼ Af þ
Xn

x¼1

Af

 
1þ ks

dð1-fÞ
(

þ
Xx-1

j¼1

k
x-j

s
ðx-jÞd Yx-j-1

i¼0

ð1-fk
iÞ

 !!),
nd ð2Þ;

where

A ¼ s
1-sd

1-s

and k is the factor by which the searcher
efficiency decreases with each search.

3) The formula suggested by Erickson et al. (2004):

p̂ ¼ t̄ f

d

ed= t̄-1

ed= t̄-1þ f

� �
;

where t̄ is the mean persistence time of a carcass.

This parameter is related to the persistence proba-

bility s with

t̄ ¼ 1

-lnðsÞ :

4) A formula recently developed by Huso (2010)

and applied by Arnett et al. (2009):

p̂ ¼ f k r ¼ f k
t̄ð1-e-d�= t̄Þ

d�

where f is the searcher efficiency, d*¼min(d, d̃),

d̃¼-log(0.01)* t̄ and k¼min(1, d̃/d). Here, r is the

proportion of animals killedduring dnightswhich

are still there at the end of the investigation period.

k is either 1 or the ratio between the timeuntil 99%

of the carcasses have disappeared and d.

We simulated data given different scenarios (see

below) and applied the five estimators to obtain an

estimate of the number of killed animals from the

number of carcasses found. The simulation study,

i.e. the settings of true parameter values, was

inspired by studies on bat collisions in Germany

(Brinkmann et al. 2011) andNorthAmerica (Arnett

et al. 2009). For every simulated data set, we

calculated the relative error of the estimates by

dividing the difference between estimated and true

number of animals killed by the true number:

relative error of estimate¼ (N̂-N)/ N.

The followingprotocolwas used to simulate data:

1) For n*d days, the true number of killed animals

per daymt was drawn from a Poisson distribution

with expected value m̄. m̄ was either held constant

or was proportional to empirical acoustic bat

activity data taken from Behr et al. (2011).

2) The number of carcasses that have not been

removed during the first day (N1) was drawn

from a binomial distribution N1;binom(m1, s).

3) The number of carcasses present (Nt) at day t¼2
to t¼I was simulated autoregressively as the sum

of two binomial processes: those animals that

were killed before day t and have not been

removed (lt) and those that were killed during

day t and were not removed during that day (kt):
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Nt ¼ lt þ kt with lt ; binom(Nt-1, s) and kt ;

binom(mt, s).

4) At intervals of d days virtual searches were
performed. For each search day, we subtracted
the number of carcasses found and removed by a
searcher from Nt: Nt

* ¼ Nt - ci with ci ;

binom(Nt, f). Nt was then replaced by Nt
*.

5) Steps 3 and 4 were repeated until t reached the
end of the investigation period (t¼ I).

For scenarios with variable persistence probabil-
ities s or variable searcher efficiencies f, we kept
track of the individual cohorts (animals killed on the
same day) during step 2 to 5. In all simulations, the
number of carcasses was zero at the beginning of the
study in order to exclude effects of the initial number
of carcasses on the bias estimates. In field studies,
this effect can be reduced by clean-out searches at
the beginning of the study and by discarding old
carcasses during the first days of the study.

We simulated data in order to estimate the bias in
the different formulas and to assess their robustness
against violations of the assumptions. First, the bias
of the five estimators was assessed for data that met
all assumptions made by our new basic formula (1),
i.e. constant persistence probability as well as
constant and independent searcher efficiency. Based
on these assumptions, we simulated 12 different
scenarios by using constant or variable mortality
rates (for the constant case: m̄¼0.01, for the variable
case: mt proportional to empirical acoustic bat
activity with an average of 0.01), short or high
average carcass persistence times ( t̄¼3 days or t̄¼30
days) and three different search intervals (d¼1, 7 and
14 days). We set searcher efficiency f to 0.8 and the
study period to I¼ 100 days. Secondly, we assessed
the robustness of the basic formula against violation
of the assumption of constant persistence probabil-
ity. The little empirical data available on carcass
persistence times suggest that persistence time might
generally increase with exposure time of carcasses
(e.g. American crows Corvus brachyrhynchos and
house sparrowsPasser domesticus inNorthAmerica;
Ward et al. 2006, guillemots Uria aagle in Alaska;
Van Pelt & Piatt 1995, bats Chiroptera spp. and
brown mice Mus musculus; Fig. S2). Though, our
own data (see Fig. S2) and those of Erickson et al.
(2004) show that this increase inpersistence timewith
exposure timemight be negligible. Toaccount for the
scarce knowledge about temporal variability in
carcass persistence times, we simulated data once
with decreasing and once with increasing persistence

probabilities over time for the six scenarios described
above with constant mt. Virtual carcass persistence
times were simulated as random draws from a
Weibull distribution with t̄¼ 3 or 30 days and shape
parameter 0.7 for increasing and 1.3 for decreasing
persistence probability (Fig. S1). Third, we tested
robustness against variation of searcher efficiency
using nine scenarios: we set the average persistence
time to 4.5 days, the search interval was d¼1, 7 or 14
days, and searcher efficiencywas constant f¼0.5, 0.8,
or decreased per carcass with the number of searches
i: f(i)¼ 0.8*0.25(i-1). For these simulations, we also
used our adapted formula (2) that takes a decrease in
searcher efficiency into account.
Finally, we carried out a last set of simulations to

assess the maximally possible precision that can be
obtained when estimating the number of fatalities
based on carcass searches.Here, we assumed that all
parameters are constant in time. In different
simulation runs, we varied average mortality rates
(m̄ from 0.01 to 1) and searcher efficiency (f from
0.05 to 0.95). Hundred scenarios that differed in the
number of carcasses found and in the detection
probability for carcasses were produced. For each
scenario, we used the standard deviation of the
relative error from 1,000 replicates as a measure for
minimal uncertainty (i.e. maximal precision).
In field data, several additional factors will

increase uncertainty, such as a clumped temporal
distribution of fatalities (i.e. a non-constant mor-
tality rate) or an uncertainty in the estimated
searcher efficiency and persistence probability. The
latter two were assumed to be known in our
simulations, but actually have to be estimated from
separate experiments using specificmethods. There-
fore, the standard deviations presented here have to
be interpreted as a minimal possible uncertainty
given the number of carcasses found and the specific
detection probability.
Due to the large variety in methods applied to

estimate searcher efficiency and carcass removal
rates, the exploration of bias and precision in these
estimates is beyond the topic of our paper.
However, we present a worked example in Appen-
dix II that shows how to combine the uncertainty of
the estimated searcher efficiency and carcass persis-
tence probability with the uncertainty that is
inherent to the observation process.
The simulations were done in R 2.12.0 (R

Development Core Team 2010). The R-code for
the simulations can be obtained from the authors
upon request.
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Results

The data simulation generally showed that the
proportion of simulated data sets with zero car-
casses found (i.e. no single carcass was found during
the whole study period) reached up to 40% when
assuming a true average of 10 animals killed during
the 100 days of the virtual study period (Fig. 1). The
proportion increased with increasing search inter-
val, with decreasing persistence time, and when
mortality rate varied over time. The 95% range of
the relative errors strongly correlated with the
proportion of zero counts among the data sets and
they were similar between the different estimators.

The uncorrected count consistently underesti-
mated the number of fatalities in all scenarios (see
Figs. 1 and 2). The simple formula produced an
overestimation with searcher efficiency kept con-
stant over time for short search intervals (d¼1) and
with long persistence times (see Fig. 1). When
searcher efficiency decreased with the number of
searches, the simple formula appeared to perform
well, at least for an average persistence time of 4.5

days and search intervals of 1, 7 or 14 days (Fig. 2,
right panel).
The new formula presented here appeared to be

unbiased for all scenarios with constant parameters
and robust towards a decrease of removal proba-
bility with time (see Fig. 1). When removal
probability increased over time the formula pro-
duced an underestimation of the number of
fatalities, especially with short persistence times
and long search intervals. The size of this underes-
timation was similar to the underestimation by the
other three formulas. When searcher efficiency
decreased over time the basic version of our new
formula produced a slight underestimation for
short search intervals (see Fig. 2). However, this
bias was reduced when the adapted formula was
used (see Fig. 2).
The formula of Erickson et al. (2004) slightly

underestimated the number of fatalities when
persistence times were short (see Fig. 1), but
appeared to produce unbiased results for long
persistence times. This formula was rather robust
towards temporal variation in removal probabili-

Figure 1. Relative errors of five different
estimators for the number of fatalities in
1,000 simulated data sets for eight different
scenarios (symbols¼means, bars¼ range of
95%of the relative errors). In the upper row,
data were simulated with a high carcass
removal rate (short average persistence time
t̄ ¼ 3 days). In the lower row, a long
persistence time of 30 days was assumed. In
the first column,mortality and removal rates
were constant over time. In the second
column, mortality rate was proportional to
empirical acoustic bat activity (i.e. mortality
rate varied from day to day; own data),
simulating a natural distribution of bat
fatalities. In the last two columns, removal
rate decreased (third column) or increased
(fourth column) with time. See text for
details of the five different estimators.
Constant parameters: searcher efficiency f
¼ 0.8, meanmortality rate per night m̄¼ 0.1,
study period I ¼ 100 days. Wide grey bars
(right axes): proportion of simulated data
sets with zero carcasses found.
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ties. However, for short average persistence times

and increasing removal probabilities, this formula

produced an underestimation, too.

The formula of Huso (2010) tended to overesti-

mate the number of fatalities for short search

intervals and long persistence times and constant

low searcher efficiency (see Figs. 1 and 2). This

formula was quite robust when removal probabil-

ities decreased over time and it showed a similar

negative bias as our formula when persistence times

were short, removal probability increased and

search interval was large. The Huso (2010) formula

seemed to be robust against decreasing searcher

efficiency (see Fig. 2).

The standard deviations of the relative error

(hereafter called ’uncertainty’) were substantially

smaller when the uncorrected counts were used as

estimator than when a formula that accounted for

detection probability was used. However, uncor-

rected counts were strongly negatively biased.

Therefore, we do not show the uncertainty of this

method here. The uncertainty and its correlation

with the number of carcasses found and with the

detection probability did not differ substantially

between the four formulas (the simple formula, the

new formula presented here, Erickson et al. 2004

and Huso 2010). Therefore, we present only the

results for our formula. The uncertainty decreased

with the number of carcasses found and with

increasing detection probability (Fig. 3). When

, 10 carcasses were found, the uncertainty

increased dramatically, especially when detection

probability was low.

Discussion

We present a new estimator for the number of bats

or birds killed at wind turbines from the number of

carcasses found in fatality searches. Similar to

previously published approaches, our new method

accounts for the bias resulting from carcass removal

by predators or decay and from imperfect detection.

In a simulation study, we compared our estimator

Figure 2. Relative errors of six different estimators for the number of fatalities in 1,000 simulated data sets for three different scenarios
(symbols¼means, bars¼rangeof 95%of the relative errors). The first and secondplots show the relative errors if searcher efficiency f is low
or high, respectively, and constant over time. In the third plot, searcher efficiency was 0.8 during the first search and then decreased by the
factor 0.25 for each subsequent search to simulate carcassesmissed at the search. In addition to the five estimators presented inFigure 1, the
adaptation of our formula that allows for a decrease in searcher efficiency (see formula 2 in the text) is shown. Grey bars as in Fig. 1.
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with four existing ones. All five estimators assume
that 100% of the area beneath a wind turbine is
being searched. When only parts of the area can be
searched, a correction is necessary that takes into
account the distribution of carcasses beneath a
turbine (Arnett et al. 2009, Hull & Muir 2010,
Niermann et al. 2011).

The five estimators we compared differed with
respect to bias. If the number of carcasses foundwas
used directly as an estimator of the number of
fatalities, this number was, of course, consistently
underestimated. This method works best with high
detection probabilities. It has the advantage of
being cheap and fast, because no experiments to
assess searcher efficiency (f) and carcass persistence
probability (s) are necessary. However, it only gives

a minimum number of dead animals and, under
most conditions, the estimated number of fatalities
will only be very weakly correlated with the real
number of animals being killed.
Not surprisingly, the number of fatalities can be

estimated more accurately when the detection
probability is accounted for. Even using the simple
formula p ¼ f*s* reduced the bias considerably.
However, this method overestimated the number of
fatalities when search intervals were short or carcass
persistence rates were high (see Figs. 1 and 2)
because the formula ignores the carcasses that were
missed in a search. When searcher efficiency
decreases with the number of searches, the simple
formula can produce fairly reliable results. Many
studies on bat and bird mortality at wind turbines
have used this simple formula, e.g. to estimate bird
mortality with a mean search interval of 17 to . 90
days (Smallwood & Karas 2009) or to assess bat
mortality with weekly searches (Dulac 2010).
When comparing the performance of the three

more complex formulas (Erickson et al. 2004, Huso
2010 and our formula) none can be identified to be
consistently superior to the others according to our
simulations. The formula of Erickson et al. (2004)
generally showed a slight underestimation. Our
formula produced, on average, the smallest bias.
When searcher efficiency decreasedwith the number
of searches, our formula could be adapted, whereas
the formula of Huso (2010) appeared to be robust
towards decreasing searcher efficiency. This formu-
la was designed to be robust when detectability is
heterogeneous, as is the case when searcher efficien-
cy decreases (see Huso 2010). It overestimated,
however, the number of fatalities when searcher
efficiency was low and independent of previous
searches, andwhen the search intervalwas short (see
Fig. 2). All three formulas similarly underestimated
the actual number of fatalities when removal
probability was high and when it increased over
time.
If the strength of the increase or decrease of the

removal probability over time is known (or esti-
mated from experimental data), it is possible to
adapt our new formula to account for the temporal
variation in removal probability. This is possible
because our estimator is based on an explicit model
of the removal and search process. Empirical data
from bats and mice carcasses (see Fig. S2, Erickson
et al. 2004) or bird carcasses (Van Pelt & Piatt 1995,
Ward et al. 2006) suggested that removal probabil-
ities were either constant or slightly decreasing over

Figure 3. Highest possible precision given the number of carcasses
found and the detection probability. Shown are the standard
deviations of the relative errors (estimated fatalities minus true
fatalities divided by true fatalities) for different numbers of
carcasses found (x-axis) and for different detection probabilities
(numbers), based on simulated data (see text). Only results for our
formula are presented as the formulas ofHuso (2010) orErickson et
al. (2004) showed similar results. For data simulation, average
persistence time was set to 30 days, searcher efficiency varied from
0.05 to 0.95,mean number of fatalities per night varied from 0.01 to
1, search interval was set to seven days and total time sampled to
100 days. Note that the standard deviations in this figure only show
the uncertainty induced by the variation of the Poisson distribution
of the simulated fatalities and by random effects in the search
process. In field data, several additional factors will increase
uncertainty, such as a clumped distribution of the fatalities or the
uncertainty in the estimated searcher efficiency and persistence
probability (both were assumed to be known in our simulations).
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time.Removal ratesmay decreasewith timebecause
those carcasses most easily detected by scavengers
are removed first, leaving only those more difficult
to detect on the plot. For the same reason, searcher
efficiency is often assumed to decrease with persis-
tence time.

A further issue that has to be addressed in real
cases is that removal probability might be lower for
the first day than during subsequent days because
the exposure time is on average shorter than 24
hours for the day the animal is killed. In this case, it
might be necessary to include a separate persistence
probability for the first day in the formula.
However, for bats in central Europe, it seems
reasonable to assume similar carcass persistence
probabilities s for the first and subsequent days:
most of the bats are likely to be killed during the first
half of the night (as inferred from acoustic activity
measurements; Behr et al. 2011) and activity of the
most common predator, the red fox Vulpes vulpes,
peaks in the second half of the night (Ott 2009).

All formulas presented here assume a constant
search interval. In the field, searches may be
performed at irregular time intervals. Different
search interval patterns will affect the fatality
estimate each in its own way. Therefore, it is
important to agree on a realistic schedule and to
stick to it as closely as possible. Alternatively, the
effect of a specific search interval pattern can be
assessed based on simulated data.

When the animals killed include a variety of
species with different body sizes (e.g. from hum-
mingbirds to eagles), persistence time and detect-
ability may differ substantially between individual
carcasses. Such heterogeneity in persistence time
and in detectability can produce a bias in the
estimated number of fatalities, as it has been
described for mark-recapture models used to
estimate population size (Carothers 1973, Nichols
et al. 1982, Pollock & Raveling 1982). Species-
specific heterogeneity in persistence time and
detectability can be reduced by analysing groups
of similar species separately.

The distribution and the mean of carcass
persistence times will also most likely differ sub-
stantially between different study sites because of
differences in e.g. predator behaviour, temperature
and humidity. Within Germany, we found carcass
persistence times that varied between 1.3 and 24.5
days at 30 different wind turbines (with a mean of
4.2 days; Niermann et al. 2011). Arnett et al. (2009)
report a mean persistence time of 32 days in North

America. Furthermore, vegetation cover and other
ground parameters (e.g. stones) differ between
study sites producing heterogeneity in carcass
detectability to different degrees. The search inter-
val and study period also differ between studies
depending on the time and funding available. These
differences have to be accounted for when estimat-
ing fatality rates. Therefore, and based on our
simulation results, we suggest that there may not be
a universal formula that is applicable in all
situations. For each study, the most appropriate
method should be chosen and our simulation study
can provide an orientation for this decision.
We found a strong correlation of the precision of

the estimated number of fatalities with both the
number of carcasses found and with the detection
probability; if , 10 carcasses were found, the
(highest possible) precision in our simulation was
low, suggesting that conclusions from studies where
only few dead animals are detected will be very
uncertain. This implies that at some sites a big
search effort may be necessary to obtain estimates
with acceptable precision. The number of carcasses
found can be increased e.g. with shorter search
intervals, a longer study period, a larger proportion
of area searched, an improved visibility in the area
searched and by increasing the number of turbines
included in the study. However, optimising the
visibility in the area searched should be done with
care, because it might affect the number of fatalities
by altering the habitat use by the animals.
Data from different turbines and estimated

searcher efficiencies from different searchers can
be combined in different ways. Jones et al. (2009)
suggested generalised linear models. In our exten-
sive study, we used weighted averages of searcher
efficiencies per turbine with weights proportional to
three visibility classes in the area searched and to the
number of searches per person (Niermann et al.
2011).
Once the searcher efficiency and removal proba-

bilities have been estimated for a specific study, one
of the formulas discussed in this article can be
applied to obtain an estimate for the number of
fatalities. To obtain an uncertainty measure for this
estimate, several sources of uncertainties have to be
included: 1) the randomness produced by the count
process, 2) the uncertainty in the estimated removal
probability, 3) the uncertainty in the estimate for
searcher efficiency and 4) if , 100% of the area
beneath a wind turbine is searched, the uncertainty
of the estimated proportion of killed animals that
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fall into a searched area. The uncertainties 2) to 4)
were not included in our simulation studies in this
article. The uncertainty in actual field data would

therefore be considerably higher than in the sim-
ulated data presented here. We provide one pos-
sibility to combine the sources of uncertainty men-

tioned above for real data in a worked example in
Appendix II.

To summarise, our formula appears to provide an

unbiased estimate of the number of animals killed
when searcher efficiency and removal probability are
constant in time. The robustness of our formula with

respect to temporal variation in the removal prob-
ability or searcher efficiency is similar to that of other
formulas published. However, in contrast to other

approaches, our formula is based on an explicit
carcass search process model that can be adapted to
the specific circumstances of a field study.
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Appendix II. Worked example of fatility estimation

Here, we present a worked example using the

statistical software R (R Development Core Team

2010) to obtain a fatality estimate based on an

empirical carcass count. It assumes that both

searcher efficiency and removal probability are

experimentally assessed. By providing this example,

we show one possible way to obtain an estimate

together with an uncertainty measure (here a 95%

credible interval).

To obtain an uncertainty measure for the

estimatednumber of fatalities, the following sources

of uncertainties have to be combined: 1) the

randomness of the count process (e.g. two searches

will result in different numbers of carcasses found

even if detection probability and the true number of

carcasses are the same), 2) the uncertainty in the

estimate for removal probability and 3) the uncer-

tainty in the estimate for searcher efficiency. The

uncertainty of the fatality estimate which is due to

the randomness of the count process is calculated

with the help of Bayes’ theorem. This gives a

posterior distribution of the number of fatalities

based on the carcasses counted and the (known)

probability of detecting a carcass. To include the

uncertainty in the detection probability (that is

based on the estimated searcher efficiency and the

estimated carcass removal probability) into this

posterior distribution, we apply a Monte Carlo

simulation.

Note that the credible interval presented here

shows the uncertainty in the fatality estimate for the

actual sample (the specific study period and study

location) only, and it is only reliable for short search

intervals. This is because it does not take the

temporal or spatial distribution of the fatalities into

Appendices

Appendix I. Derivation of the new formula to estimate carcass detection probability

The table below contains the expected number of killed bats and birds that are present below a wind
turbine for each day (1 to I) of the study period, if an average of m̄ animals are killed per day. For each
search the expected number of carcasses found is given in the last column. The last row gives the sum of
the expected number of animals killed and the sum of the carcasses found during all searches.

Search Night/day Expected number of killed animals present
Expected number of
killed animals found

1 m̄ s

2 m̄ (s þ s2)

1st search d m̄ (s þ s2 þ .. þ sd) ¼ m̄ s 1-sd

1-s
¼ m̄ A m̄ Af

with A ¼ s 1-sd

1-s

d þ 1 m̄ (A(1-f)s þ s)

d þ 2 m̄ (A(1-f)s2 þ s þ s2)

..

2nd search 2d m̄ (A(1-f)sd þ s þ s2 þ .. þ sd) ¼ m̄ (A(1-f)sd þ A) ¼
m̄ A((1-f)sdþ1)

m̄ A((1-f)sdþ1)f

2d þ 1 m̄ (A((1-f)sd þ 1)(1-f)s þ s)

2d þ 2 m̄ (A((1-f)sd þ 1)(1-f)s2 þ s þ s2)

..

3rd search 3d m̄ (A((1-f)sd þ 1)(1-f)sd þ A) ¼ m̄ (A(xþ1)x þ A) ¼
m̄ A((xþ1)xþ1) ¼ m̄ A(x2 þ x þ 1) with x ¼ (1-f)sd

m̄ A(x2 þ x þ 1)f

3d þ 1 m̄ (A(x2 þ x þ 1)(1-f)s þ s)

3d þ 2 m̄ (A(x2 þ x þ 1)(1-f)s2 þ s þ s2)

..

4th search 4d m̄ (A(x2 þ x þ 1)(1-f)sd þ A) ¼ m̄ A(x3þ x2 þ x þ 1) m̄ A(x3þ x2 þ x þ 1)f

nth search nd ¼ I m̄ A(x(n-1) þ x(n-2) þ .. þ x þ 1) m̄ A(x(n-1) þ x(n-2) þ .. þ x þ 1)f

Sum of n searches I m̄ A(1 þ (1 þx) þ (1 þ x þ x2) þ .. þ (1 þ x þ .. þ
x(n-1))) ¼ m̄ A(n þ (n-1)x þ (n-2)x2 þ .. þ (n-n)xn) ¼
m̄ A

Pn�1
i¼0 ðn-iÞxi

m̄ Af
Pn�1

i¼0 ðn-iÞxi, where A ¼ s 1-sd

1-s

and x ¼ (1-f)sd
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account. If the aim of the study is to predict fatality
in future or for different turbines or if search
intervals are large, a model of the collision process
(and presumably additional data providing infor-
mation about the temporal and spatial distribution
of the animals) is needed in addition to the search
process model presented here to obtain a reliable
uncertainty measure (see Korner-Nievergelt et al.
2011 for an example).

Example study description

Carcass searches were performed every second day
during a 200 days study period (100 searches). For
simplicity, we assume that 100%of the area beneath
a wind turbine is searched. If only a part of the area
is searched, the probability that a killed animal falls
into the searched area (a) has to be estimated (see
Niermann et al. 2011). Then, the probability that a
killed animal is detected by a researcher is p’¼p* a,
and the uncertainty in the estimate of a can be
included in the uncertaintymeasure for p’ byMonte
Carlo methods in the same way as shown here for
the uncertainties in the estimates for searcher
efficiency and carcass persistence probability.

Example data

Number of carcasses found C ¼ 12, searcher
efficiency f ¼ 0.72 (95% CI: 0.62-0.81 from experi-
ments), i.e. the probability that a carcass that is lying
on the groundat the timeof the search is foundby the
searcher, carcass persistence s¼ 0.84 (95% CI: 0.64-
0.94 from experiments), i.e. the probability that a
carcass is not removed during 24 hours. As CI,
credible or confidence intervals can be used.

Estimating the number of fatalities with a credible

interval

Step 1
Describe the uncertainty in the estimates for
searcher efficiency and carcass persistence proba-
bility by a beta distribution, i.e. transform the 95%
CI into the shape parameters of the beta distribu-
tions.

f ,- 0.72; f.lower ,- 0.62; f.upper ,- 0.81

s ,- 0.84; s.lower ,- 0.64; s.upper ,- 0.94

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# function to transform the 95%CI into shape parameters of a

# beta distribution

shapeparameter ,- function (m, lwr, upr)f
# m¼ estimate

# lwr, upr¼ lower and upper limit of the 95% credible or

# confidence interval

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ci ,- upr - lwr

sigma2 ,- (ci/4)̂2

a ,- m*(m*(1-m)/sigma2-1)

b ,- (1-m)*(m*(1-m)/sigma2-1)

list (a¼a,b¼b)
g
# endof function shape parameter # - - - - - - - - - - - - - - - - - - - - - -

f.a ,- shapeparameter(f, f.lower, f.upper)$a

f.b ,- shapeparameter(f, f.lower, f.upper)$b

s.a ,- shapeparameter(s, s.lower, s.upper)$a

s.b ,- shapeparameter(s, s.lower, s.upper)$b

Step 2
Define the parameters of the simulations and

prepare the vector for the resulting posterior
distribution of the number of fatalities. Define a
function to obtain the detection probability from
searcher efficiency, persistence probability and

search interval. Here, we use the new formula
presented in this article. Define a function to obtain
the posterior distribution of the number of fatalities
based on the number of observed carcasses and the

detection probability. This formula is based on the
theorem of Bayes. Start the loop over step 3 and
step 4.

maxn ,- 500 # define a maximum for the number of fatalities

nsim ,- 1000 # number of Monte Carlo simulations

# prepare a vector for the posterior density distribution

# of the estimated number of fatalities:

Npostdist ,- numeric(maxnþ1)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# function to obtain the probability of detecting a carcass

# given the searcher efficiency (f), persistence probability

# (s), search interval (d) and the total number of searches

# (n).

pcarcass ,- function (s, f, d, n)f
# s¼probability that a carcass remains 24 hours

# f¼probability that a carcass is detected by a

# searcher during a search given it persisted to the search

# d¼ (average) number of days between two searches

# n¼number of searches (n * d¼ length of study period)

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

x ,- (1-f)*ŝd

A ,- s*(1-ŝd)/(1-s)

summep ,- numeric(n)

for (k in 0: (n-1)) summep[kþ1] ,- (n-k)*x̂k

p ,- A*f*sum (summep)/(d*n)

p
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g
# endof functionpcarcass # - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# function to obtain the posterior density distribution of the

# number of fatalities based on a (known) probability that a

# carcass is detected (p) and the number of observed carcasses

#(nf)

posterior.N ,- function(p, nf¼0, maxN¼50, ci.int¼0.95,
plot¼TRUE, dist¼FALSE)f

# p¼probability that a killed animal is detected by a seacher

# nf¼number of carcasses found

# maxN¼maximal possible number of fatalities

# ci.int¼size of the credible interval that should be calculated

# plot: posterior distribution is plotted if TRUE

# dist: posterior distribution is given if TRUE

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

N ,- nf:maxN

if (nf¼¼0) pN ,- p*(1-p)̂(N-nf)

if (nf.0) f
denom ,- sum (choose(N, nf) * (1-p)̂(N-nf))

pN ,- choose (N, nf) * (1-p)̂(N-nf)/denom

pN ,- c (rep(0, nf), pN)

N ,- c (rep(0, nf), N)

g
if(plot) plot(N, pN, type¼"h", lwd¼5, lend¼"butt",
xlab¼"Number of fatalities", ylab¼"Posterior density")

index ,- cumsum(pN) , ci.int

indexLower ,- cumsum(pN) , (1-ci.int)/2

indexUpper ,- cumsum(pN) , 1-(1-ci.int)/2

if (nf¼¼0) interval ,- c(nf, min(N[!index]))

if (nf.0) interval ,- c(min(N[!indexLower]), min(N[!index-
Upper]))

if (interval [2]¼¼Inf) cat("Upper limit of CI larger thanmaxN!
-. increase maxN\n")

expected ,- min(N[!cumsum(pN),0.5])

results ,- list (interval¼interval, expected¼expected)
if (dist¼¼TRUE) results ,- list (interval¼interval, expect-
ed¼expected, pN¼pN)

results

g
# endof functionposterior.N# - - - - - - - - - - - - - - - - - - - - - - - - - -

for (i in 1:nsim)f

Step 3
Drawa searcher efficiency f at random from the beta
distribution defined by f.a and f.b.

fr ,- rbeta(1, f.a, f.b)

Draw a persistence probability s at random from
the beta distribution defined by s.a and s.b.

sr ,- rbeta(1, s.a, s.b)

Calculate the detection probability given sr, fr,
search interval d¼2 and number of searches n¼100.

pr ,- pcarcass(sr, fr, d¼2, n¼100)

Step 4
Compute the posterior density distribution of the
number of fatalities based on pr and the observed
number of carcasses (number found¼12) using the
function posterior.N.

postNtemp ,- posterior.N(nf¼12, p¼pr, maxN¼maxn,
plot¼FALSE, dist¼TRUE)

Sum the posterior densities over all nsim simula-
tions.

Npostdist ,- Npostdist þ postNtemp$pN

g # close loop i

Step 5
Scale the summed posterior distribution and extract
median and 95% credible interval.

Npostdist.sc ,- Npostdist/nsim

indexLower ,- cumsum(Npostdist.sc) , 0.025

indexMedian ,- cumsum(Npostdist.sc) , 0.5

indexUpper ,- cumsum(Npostdist.sc) , 0.975

lower ,- min(c(0:maxn)[!indexLower])

estimate ,- min(c(0:maxn)[!indexMedian])

upper ,- min(c(0:maxn)[!indexUpper])

lower; estimate; upper

As a result we receive an estimate of 17 fatalities
with a 95% credible interval of 12-31 fatalities.
The posterior distribution of the number of

fatalities is plotted:
plot (0:maxn, Npostdist.sc , type¼"h", lwd¼5, lend¼"butt",
xlab¼"Number of fatalities", ylab¼"Posterior density",
xlim¼c(0,50))
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