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Is harvest size a valid indirect measure of abundance for evaluating 
the population size of game animals using harvest-based estimation?
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1064-9420), Forestry and Forest Products Research Inst., Tsukuba, Ibaraki, Japan.

Indirect measures of abundance are essential for evaluating temporal and spatial trends in animal populations under hunt-
ing pressure and hence for evaluating the impact of hunting on the population stock. Recently, harvest-based estimation 
has received attention due to its capacity to estimate population size, hunting mortality and population growth parameters 
based on the responses of indirect measures to hunting pressure. Although harvest size is a widely used statistic for game 
animals and its validity as an indirect measure of abundance has been intensively investigated, its applicability to harvest-
based estimation has rarely been studied. In this study, we applied a simulation approach to examine the accuracy of 
harvest-based estimation when harvest size is used as an indirect measure under different temporal patterns of capture effort 
(constant, increasing and decreasing). We simulated a dataset using a Poisson-binomial surplus-production model that 
explicitly considers the effect of capture effort on harvest size and tested the estimation accuracy and model identifiability 
(i.e. whether there is sufficient statistical information in a dataset to specify model parameters) when harvest size is used 
as an indirect measure. We then compared the estimates with those of the original Poisson-binomial surplus-production 
model. We found that estimates of the population size and intrinsic growth rate were severely biased when the temporal 
heterogeneity in capture effort was large. When capture effort was constant and harvest size was thus proportional to 
the population size, on average, only 10% of iterations were identifiable. The use of harvest size as a population index in 
harvest-based estimation can result in seriously biased estimates of population size and growth rate or low identifiability of 
parameters. Our results highlight the importance of monitoring capture effort and unbiased population indices, in addition 
to harvest sizes, to evaluate the population status of game animals by harvest-based estimation.

Keywords: abundance estimation, harvest-based model, state–space model, population index, CPUE, hunting statistics

Estimating the effect of hunting on wild animals and their 
population status is a key component of wildlife manage-
ment. Such estimates will help determine the appropriate 
level of hunting pressure for the management of distinct 
issues, over-exploitation (Brashares  et  al. 2004) and over-
abundance (Goodrich and Buskirk 1995). Recent advances 
in statistical modeling for time-series analysis and the increas-
ing availability of long-term monitoring data can offer more 
precise and effective measures of population status.

Because it is notoriously difficult to directly obtain the 
exact abundance in the field, indirect measures of abundance 
(‘population indices’ hereafter) are essential for evaluating 

temporal and spatial trends in animal populations under 
hunting pressure and hence for evaluating the impact of 
hunting on the population stock. Population indices are eas-
ily observable values that are, on average, proportional to 
population size. There are various population indices, such as 
harvest size (Cattadori et al. 2003, Ueno et al. 2014), catch 
per unit effort (CPUE, Roseberry and Woolf 1991), sight 
per unit effort (SPUE, Ericsson and Wallin 1999, Ueno et al. 
2014), spotlight count (Uno et al. 2006), camera trap index 
(Rovero and Marshall 2009) and dung count (Goda et  al. 
2008), and the validity of each index has been studied exten-
sively by examining correlations with independent popula-
tion size estimates or other population indices. Harvest size 
(i.e. the number of individuals captured) is the most widely 
used statistic for game animals; however, its validity as a 
population index is controversial. Some studies have shown 
high correlations between harvest size and population size 
(Ranta et al. 2008, Ueno et al. 2014) and others have found 

Wildlife Biology 2020: wlb.00708
doi: 10.2981/wlb.00708

© 2020 The Authors. This is an Open Access article
  Subject Editor: Erlend Nilsen. Editor-in-Chief: Ilse Storch. Accepted 22 October 2020

This work is licensed under the terms of a Creative Commons 
Attribution 4.0 International License (CC-BY) <http://
creativecommons.org/licenses/by/4.0/>. The license permits 
use, distribution and reproduction in any medium, provided the 
original work is properly cited.

Downloaded From: https://bioone.org/journals/Wildlife-Biology on 25 Sep 2024
Terms of Use: https://bioone.org/terms-of-use



2

biases (Cattadori  et  al. 2003, Imperio  et  al. 2010). These 
differences can be explained by different patterns in capture 
effort (i.e. the amount of effort devoted to capture animals, 
such as hunter-days and trap-days) among regions and spe-
cies. When capture effort varies substantially both in time 
and in space depending on human social conditions (e.g. 
population dynamics of hunters and cash rewards for nui-
sance control) or changes in wildlife behavior in response to 
hunting activity (Iijima 2017), the harvest size can exhibit 
bias, resulting in inaccurate evaluations of population 
dynamics and the effect of hunting pressure, which are cru-
cial for sustainable game management and successful popu-
lation control. Nevertheless, the performance of population 
indices for the estimation of population parameters under 
different scenarios of capture effort has rarely been studied.

Recently, harvest-based estimation (HBE; Roseberry and 
Woolf 1991, Yamamura et al. 2008, Chee and Wintle 2010, 
Ueno  et  al. 2014, Iijima and Ueno 2016), an estimation 
method for population size and hunting mortality from lon-
gitudinal observations of population index (or indexes) and 
harvest size, has been applied in wildlife population man-
agement. Especially, HBE is a common approach to esti-
mate sika deer Cervus nippon in Japan and used to develop 
management plans by the local governments (Iijima 2018). 
In recent studies, HBE is often formulated by generalized 
state-space models, which include state processes (i.e. popu-
lation size dynamics determined by population growth and 
harvest) and observation processes of population index(es) 
(Iijima 2020). In particular, HBE yields successful estimates 
when hunting has a non-negligible impact on population 
size. Longitudinal data for the population index and harvest 
size are used to estimate model parameters.

In some applications of HBE in Japan, harvest size has 
been used as a population index in the observation process 
for HBE (Iijima 2018). However, behavior of the estima-
tor is not well studied. Although temporal heterogeneity 
in capture effort is expected to result in biases in parameter 
estimates even if catchability (i.e. capture probability per 
unit capture effort) is constant over time, the robustness 
of estimation with respect to variation in capture effort is 
not clear. When capture effort is constant over time, harvest 
size is truly proportional to population size and there is no 
difference between data-generating and estimation models. 
However, the behavior of estimates in such an ideal situation 
is not clear. Studies on the behaviour of estimators based on 
harvest size will offer valuable insights into the limitations 
of harvest size as a population index to evaluate the manage-
ment of exploited animal populations.

In the present study, we conducted simulation experi-
ments to demonstrate how HBE behaves when harvest size 
is used as a population index in the observation model (here-
after, proportional harvest size estimator (PHSE)). We gen-
erated a simulated dataset iteratively under different capture 
effort scenarios (i.e. constant, increasing and decreasing) and 
evaluated the identifiability and precision of estimates. To 
show how temporal heterogeneity in capture effort intro-
duces estimation bias for PHSE, we also compared estimates 
of PHSE with those from a model that reflects the true data-
generating process in which harvest size depends on capture 
effort.

Material and methods

Simulation settings and dataset generation

To show the effect of violations of the assumptions of PHSE, 
such as temporal heterogeneity in capture effort, we simu-
lated harvest data of a hunted population under different 
capture effort scenarios and applied PHSE. Temporal het-
erogeneity in capture effort results in the overdispersion of 
harvest size around the average trend, which can result in 
biased estimates of population size and other parameters. We 
predicted that estimation bias would be more severe for sce-
narios with larger variation in capture effort.

The following seven scenarios with different temporal 
patterns in capture effort were used to generate datasets: 
a constant effort scenario (scenario 1), three decreasing 
effort scenarios (scenario 2–4) and three increasing effort 
scenarios (scenario 5–7) (Table 1, Supplementary material 
Appendix 1 Fig. A1). According to each scenario, the pop-
ulation dynamics were simulated for a 20-year period. In 
scenario 1, capture effort in every year was 100 hunter-days 
and invariant with time. In decreasing and increasing effort 
scenarios, capture effort changed linearly with year. Three 
levels of change (low, moderate and high) were established 
for decreasing and increasing effort scenarios. The average 
capture effort across years was 100 hunter-days for all sce-
narios.

Although stochastic structures of the underlying model 
for HBE vary among studies (Yamamura et al. 2008, Chee 
and Wintle 2010, Fukasawa et al. 2013, Iijima et al. 2013, 
Osada et al. 2015, Iijima and Ueno 2016), they reflect popu-
lation growth and artificial removal from the population. In 
this study, the Poisson-binomial surplus-production model 
(Chee and Wintle 2010, Fukasawa et al. 2013) was applied 

Table 1. Capture effort scenarios. In the decreasing and increasing scenarios, capture effort decreases and increases linearly with time, 
respectively. Means and 50% range of Pearson’s correlation coefficients between harvest size and population size are also shown.

Scenario Type E1 E20

Rate of change  
per year

Mean Pearson’s correlation coefficient between harvest 
size Ct and population size Nt (50% range)

1 Uniform 100 100 0 0.974 (0.967, 0.982)
2 Decreasing 120 80 −2.11 0.986 (0.983, 0.991)
3 Decreasing 150 50 −5.26 0.986 (0.981, 0.992)
4 Decreasing 180 20 −8.42 0.974 (0.968, 0.986)
5 Increasing 80 120  2.11 0.924 (0.907, 0.954)
6 Increasing 50 150  5.26 0.545 (0.480, 0.610)
7 Increasing 20 180  8.42 0.455 (0.410, 0.512)
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because it explicitly incorporates a process of stochastic pop-
ulation growth and the removal of individuals from a finite 
and countable population. For simplicity, we assumed expo-
nential population growth. Let Nt denote the population size 
at the beginning of year t, the population size after popula-
tion growth, St, is assumed to follow a Poisson distribution 
as follows:

P S r N S r Nt t t t| |,( ) ( )( )= Poisson exp   (1)

where exp(r) is the annual population growth rate. Harvest 
size, Ct, is determined by a binomial process with capture 
probability pt and population size at year t:

P C p S C p St t t t t t| |, ,( ) ( )= Binomial   (2)

and the population size in year t + 1 is determined by remov-
ing harvest size from St:

N S Ct t t+ = -1   (3)

To model the relationship between capture probability pt and 
capture effort, the Poisson catchability model (Seber 1982, 
Skalski  et  al. 2005), which assumes random encounters of 
individuals and unit capture effort, was applied as follows:

p Et t= - - ( )( )1 exp exp j   (4)

where exp(φ) is the catchability coefficient (i.e. capture 
probability per unit effort) and Et is the capture effort (i.e. 
hunter-days). Equation 4 corresponds to an inverse comple-
mentary log–log link function that constrains p to between 
0 and 1 for any given real number φ.

For the seven scenarios, virtual harvest sizes were gen-
erated by Monte Carlo simulations following the Poisson-
binomial surplus-production model. True r, φ and N1 were 
ln(1.21), −6 and 1000, respectively. The population growth 
rate, exp(r), was determined with reference to the sika 
deer population growth rate in Shiretoko peninsula, Japan 
(Kaji et al. 2004). The other parameters, exp(φ) and N1, were 
determined so that 1) the population never goes extinct, 2) 
population dynamics are clearly affected by hunting pressure 
and 3) computational time for parameter estimation is realis-
tic. The order of computational time is cubic of the maximal 
possible population size estimate (for details, Supplementary 
material Appendix 2), and setting initial population size too 
large can result in unrealistic computational time in param-
eter estimation. Monte Carlo simulations were run for 100 
iterations. The number of iterations was determined to finish 
our calculation within a realistic computational time.

Specifications of estimation models

Prior to defining the estimation model for PHSE, we con-
sidered the statistical model for HBE which has the same 
structure as the data-generating model. In terms of statistical 
modelling, the Poisson-binomial surplus-production model 

can be regarded as a discrete-valued generalized state–space 
model. The generalized state–space model is a statistical mod-
eling framework for time-series analyses for the estimation of 
system parameters and latent states, considering two sources 
of variability: observation error and process variability. It can 
be written as a set of three probability distributional func-
tions, the initial state distribution, state process distribution 
and observation process distribution (Buckland et al. 2004). 
The state–space model which has the same structure as the 
data-generating model is described as follows:

Initial state distribution

Discrete non-informative or va

:

p S1( ) = ggue prior( )
  (5)

State process distribution

Poisson exp

:

,| |p S S S r St t t t- -( ) ( )=1 1q --( )( )-Ct 1

  (6)

Observation process distribution

Binomial exp

:

,| |p C S Ct t tq( ) = -1 --( )( )( )exp j E St t,
  (7)

where the vector of parameters θ = (r, φ).
PHSE is based on the assumption that the expectation of 

harvest size is proportional to population size, [Ct] ∝ Nt; it 
is equivalent to assume that the capture probability pt is con-
stant. The underlying PHSE model can be derived by a slight 
modification of the state–space Poisson-binomial surplus-
production model by replacing Eq. 7 with the following:

p C S C St t t t| |, . ,q j( ) ( )( ) ( )( )= - - =Binomial exp exp const1   (8)

Because Eq. 8 does not include Et in contrast to Eq. 7, 
exp(φ) is no longer interpreted as a catchability coefficient 
but as a transformed capture probability. Note that the Pois-
son-binomial surplus-production model for scenario 1 has 
an identical structure to the model for PHSE because true 
capture effort is invariant over time, and they are expected to 
return the same population size estimates. Under this model, 
[Ct] = exp(r)pNt, satisfying the condition that the harvest size 
is, on average, proportional to population size.

Estimation of parameters

Parameters of the PHSE were estimated for 7 scenarios × 100 
iterations of generated datasets. Furthermore, the original 
Poisson-binomial surplus-production model in Eq. 5–7 was 
evaluated for comparison. Marginal maximum likelihood 
estimation was applied to obtain the maximum a posteriori 
estimation for the vector of parameters θ by maximizing the 
marginal likelihood. Although it is common to apply Gibbs 
sampling using WinBUGS (Lunn et al. 2000), OpenBUGS 
(Lunn  et  al. 2009) and JAGS (Plummer 2003) for HBE 
(Yamamura et al. 2008, Fukasawa et al. 2013, Iijima et al. 
2013, Osada et al. 2015, Iijima and Ueno 2016), marginal 
maximum likelihood estimation has advantages over Gibbs 
sampling for determining the identifiability of statistical 
models because it searches peaks of the marginal likelihood 
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surface numerically. The marginal likelihood is derived by 
integrating a latent state variable, St, from the full poste-
rior distribution by recursive Bayesian filtering (de Valpine 
2012). The derivation of marginal likelihood is described 
in Supplementary material Appendix 2. We obtained maxi-
mum a posteriori estimates by maximizing ln(marginal like-
lihood) using the numerical optimization function nlm() in 
R ver. 3.4.3 (<www.r-project.org>). For parameter estima-
tion, the maximum value of St, Smax, was set to 10 000 and 
the integer uniform distribution U(0, Smax) was applied to 
the prior distribution of S1. After obtaining parameter esti-
mates, q̂ , we derived the distribution of St and initial popu-
lation size N1 via forward–backward smoothing (Briers et al. 
2010) (Supplementary material Appendix 2). The R codes 
for model estimation and smoothing were available online at 
<https://github.com/kfukasawa37/HBEtest>.

Identifiability was evaluated by checking P(St = Smax|C1, 
C2, …, CT) = 0 (t = 1, 2, …, T). Applying this criterion, two 
types of unidentifiable cases were screened: 1) parameter 
estimation did not reach convergence and 2) the estimated 
population size was near Smax, which is considered unidenti-
fiable, but reached a state of false convergence owing to the 
numerical limit in recursive filtering.

Results

Population size generated by our simulation model showed 
different nonlinear temporal trajectories among scenarios. 
Under constant effort, both harvest size and population size 
showed exponential decay with time, on average (Supple-
mentary material Appendix 1 Fig. A2a, A3a). When effort 
decreased with time and the rate of decrease was high, the 
harvest size showed temporal decay in which the harvest size 
growth rate was temporally heterogeneous but population 
size exhibited a U-shaped trajectory (Supplementary mate-
rial Appendix 1 Fig. A2b–d, A3b–d). Harvest size and popu-
lation size were unimodal when effort increased with time 
(Supplementary material Appendix 1 Fig. A2b–d, A3b–d). 
Pearson’s correlation coefficient for the relationship between 
harvest size and population size was high (> 0.9), except in 
scenario 6 and 7 (Table 1).

The sensitivity of PHSE to a change in capture effort 
was high. Initial population size and annual growth rate 
estimates of PHSE exhibited downward and upward biases 
from true values when the true capture effort changed with 

time, respectively (Table 2). Estimation bias was larger when 
the rate of change in effort was larger and was more severe 
in increasing effort scenarios than in decreasing effort sce-
narios. Estimated initial population sizes for scenario 6 and 
7 were 51.0 and 7.45, on average, respectively. Pearson’s 
correlation coefficients of estimated mean population size 
and true population size were also low for these scenarios 
(Table 2). The 50% range of population size estimates did 
not cover the true value, except in scenario 1 and 2. Fig-
ure 1 shows the ratio of estimated and true population sizes 
under PHSE against Pearson’s correlation coefficients of 
harvest size and true population size for each scenario. Even 
when correlation coefficients exceeded 0.9, there were sce-
narios in which initial population size estimates by PHSE 
were largely biased. The original Poisson-binomial surplus-
production model did not show such a downward bias and 
correlation between estimated and true population size was 
substantially high (Table 3). Although a weak upward bias 
was found, on average, the 50% range of initial population 
size estimates captured the true value for all scenarios. The 
original Poisson-binomial surplus-production model yielded 
more precise estimates with lower variance when the change 
in capture effort was larger.

The ratio of identifiable iterations was low when there 
was little or no temporal variability in capture effort for both 
the PHSE and original Poisson-binomial surplus-production 
model (Table 2, 3). In particular, it was 10% when capture 
effort was constant, the case in which the data-generating 
model and estimation model for PHSE are identical.

Discussion

Although harvest size is often highly correlated with popu-
lation size and is thought to be a viable population index 
(Ranta et al. 2008, Ueno et al. 2014), our results indicate that 
caution is needed when it is used to estimate population size 
and population parameters by HBE. With low variation in 
capture effort, population size and population growth rate 
estimates exhibited serious bias. Even when the correlation 
between population size and harvest size was high (e.g. Pear-
son's correlation coefficient > 0.9), there were cases in which 
population size was underestimated by about half, on average. 
Another drawback of PHSE is the low identifiability in the 
ideal situation in which capture effort is constant and the esti-
mation model is identical to the data-generating model. In the 

Table 2. Summary of estimates of PHSE applied to 100 simulated datasets. Means and 50% ranges were derived from estimates of identifiable 
iterations. Means and 50% range of Pearson’s correlation coefficients between harvest size and population size are also shown.

Scenario

Proportion of 
identifiable 
iterations

Mean capture 
probability p (50% 
range), true value 
depends on time

Mean loge annual 
growth rate r (50% 

range) true 
value = ln(1.21) ≈ 

0.191

Mean initial population 
size N1 (50% range) 

true value = 1000

Pearson’ correlation 
coefficient between mean 

population size Nt and true 
value (50% range)

1 0.1 0.322 (0.207, 0.389)  0.353 (0.175, 0.434)  759 (458, 1079) 0.993 (0.992, 0.997)
2 0.49 0.324 (0.248, 0.416)  0.318 (0.185, 0.448)  899 (485, 1046) 0.992 (0.992, 0.997)
3 0.93 0.465 (0.376, 0.557)  0.507 (0.308, 0.655) 604 (347, 701) 0.987 (0.981, 0.994)
4 0.91 0.525 (0.457, 0.607)  0.556 (0.396, 0.714) 546 (336, 605) 0.972 (0.966, 0.986)
5 0.72 0.402 (0.301, 0.519)  0.504 (0.320, 0.701) 442 (211, 547) 0.970 (0.960, 0.988)
6 0.9 0.746 (0.727, 0.773) 1.39 (1.30, 1.49) 51.0 (42.1, 56.3) 0.552 (0.478, 0.626)
7 0.89 0.893 (0.886, 0.902) 2.27 (2.19, 2.35) 7.45 (6.42, 8.33) 0.451 (0.403, 0.507)
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constant effort scenario, a model of PHSE is identical to an 
original Poisson-binomial surplus-production model. There-
fore, the low identifiability under constant effort is an intrinsic 
constraint of the Poisson-binomial surplus-production model. 
These results imply that longitudinal data for harvest size only 
would not offer sufficient information to evaluate the effect of 
harvest on wildlife populations and PHSE could not compen-
sate for the lack of information of data itself.

The underestimation of population size by PHSE can be 
explained by the relationship between model parameters, the 
resulting harvest size trend and dispersion around the aver-
age trend. Yamamura (2016) showed that population growth 
rate and population size are not identifiable from the growth 
rate of the population index. In a similar way, we can derive 
the following equations to explain the relationship between 
parameters and harvest size trends under the assumption 
of the Poisson-binomial surplus-production model from  
Eq. 1 to 4:

E EC C r E

E
t t t

t

[ ] [ ] ( ) ( )( )
( )( )( )

-

- - -
- -= j

j
1 1

1 1

exp exp exp

exp exp ex/ pp exp- ( )( )( )-j Et 1

  (9)

E C N r E1 1 11[ ] ( )= - -( )( )exp( ) exp exp j   (10)

If we set up a system of nonlinear simultaneous Eq. 9 over 
different ts, there is a unique solution for the log population 
growth rate r and log capture efficiency φ, but special combina-
tions of capture efforts Et at different times, making the system 
singular. However, the PHSE assumption of constant capture 
effort is a special case in which simultaneous equations do not 

have a solution: 1- - = =( )( )( ) ( )exp exp constantj E pt  

and E EC C r pt t
éë ùû éë ùû ( ) ( )= --1 1exp . Therefore, the iden-

tifiability of model parameters of PHSE depends on the dis-
persion component of harvest size, rather than the average 
trend. The Poisson-binomial structure of the surplus-produc-
tion model is the same as that of the N-mixture model, which 
is well-studied owing to its capacity to estimate abundance 
for unmarked populations using information from dispersion 
among repeated counts (Royle 2004, Kéry 2018). Population 
size estimates by the N-mixture model are highly sensitive 
to the distributional assumption of the model (Duarte et al. 
2018, Knape et al. 2018), and the Poisson-binomial surplus-
production model without information for different capture 
efforts would share the same feature. In the case of PHSE, 
overdispersion of observed harvest size would increase the esti-
mate of p because removing a large proportion of individuals 
induces large fluctuations in population size and hence fluc-
tuations in harvest size. Under a ‘false’ assumption of constant 
capture effort, the overdispersion of harvest size induced by 
temporal heterogeneity in capture effort can be misinterpreted 
as a high capture probability, large population growth rate and 
small initial population size. Then, the overestimation of p and 
r and underestimation of N1 would occur.

Low identifiability for a constant actual capture effort 
is also due to the dispersion dependence of parameter esti-
mates. As mentioned above, the system of Eq. 9 is singu-
lar when capture effort is constant and it can be difficult 
to determine the model parameters from the dispersion of 
harvest size. Considering that estimates of the original Pois-
son-binomial surplus-production model were more precise 
when the change in capture effort was large, the change in 
capture effort and the harvest size response would be impor-
tant information to ensure parameter identifiability. Our 
results further indicate that harvest-estimation should be 
applied when capture effort varies with time and it can be 

Figure 1. Divergence between the estimated initial population size 
and the true value when harvest size is treated as the population 
index in relation to the Pearson’s correlation coefficient for the rela-
tionship between harvest size and true population size under differ-
ent data‐generating scenarios (1–7), as described in Table 1. Dots 
and bars indicate means and 50% ranges of identifiable iterations, 
respectively. (A) full-scale and (B) extended figures when the cor-
relation coefficient is larger than 0.9 are shown.

Table 3. Summary of estimation of the Poisson-binomial surplus-production model applied to 100 simulated datasets. Means and 50% ranges 
were derived from estimates of identifiable iterations.

Scenario

Proportion of 
identifiable 
iterations

Mean loge catchability 
φ (50% range) true 

value = −6.00

Mean loge annual 
growth rate (50% 

range) true 
value = ln(1.21) ≈ 

0.191

Mean initial popula-
tion size (50% range) 

true value = 1000

Pearson’ correlation 
coefficient between mean 

population size Nt and true 
value (50% range)

1 0.1 −5.63 (−6.08, −5.31) 0.353 (0.175, 0.434) 759 (458, 1079) 0.993 (0.992, 0.997)
2 0.66 −6.23 (−6.43, −5.96) 0.152 (0.0969, 0.202) 1372 (950, 1541) 0.995 (0.994, 0.997)
3 0.96 −6.08 (−6.19, −5.94) 0.173 (0.138, 0.204) 1119 (967, 1225) 0.996 (0.996, 0.998)
4 0.92 −6.06 (−6.17, −5.92) 0.176 (0.146, 0.214) 1083 (912, 1197) 0.997 (0.996, 0.998)
5 0.76 −6.14 (−6.41, −5.83) 0.172 (0.108, 0.239) 1296 (832, 1610) 0.993 (0.991, 0.996)
6 0.89 −6.02 (−6.11, −5.95) 0.186 (0.166, 0.206) 1057 (893, 1142) 0.994 (0.993, 0.996)
7 0.87 −6.02 (−6.08, −5.94) 0.186 (0.168, 0.206) 1057 (924, 1162) 0.996 (0.995, 0.998)
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explicitly modelled. If capture effort has low variation, we 
recommend the inclusion of auxiliary information, such as 
independent estimates of population size (Fukasawa  et  al. 
2013, Iijima et al. 2013) and a reliable estimate of intrinsic 
growth rate (Yamamura  et  al. 2008, Yamamura 2016), to 
improve model identifiability and stability.

Although we considered single time-series and assessed 
the effects of ignorance of temporal heterogeneity in cap-
ture effort on estimation bias in our study, heterogeneity in 
space would have similar effect on estimation. HBE can be 
extended to accommodate multiple spatial units with dif-
ferent population sizes, capture efforts and harvest sizes 
(Iijima et al. 2013, Osada et al. 2018). In such cases, ignor-
ing spatial heterogeneity in capture effort as well as tempo-
ral heterogeneity can induce overdispersion of harvest size 
hence estimation bias of model parameters. However, spatial 
heterogeneity in capture effort would improve the model 
identifiability if capture effort were explicitly modelled.

In this study, we applied marginal maximum likelihood 
estimation via recursive filtering to HBE and easily and 
clearly determined model identifiability. Although Gibbs 
sampling is often used for HBE (Chee and Wintle 2010, 
Fukasawa et al. 2013) and data cloning (Lele et al. 2007) is 
an available option for the evaluation of model identifiability 
within a framework of Gibbs sampling, the computational 
cost is high, which is inappropriate for our study in which 
state–space models were applied to large quantities of simu-
lated data. For the application to actual datasets, marginal 
maximum likelihood estimation presented in this study is 
useful to check model identifiability.

In conclusion, we recommend wildlife managers monitor 
both harvest size and capture effort to make sound estima-
tion of population size and harvest rate. The use of harvest 
size as a population index in HBE can lead to seriously 
biased estimates of population size and growth rate when 
capture effort shows a temporal trend. Additionally, inde-
pendent survey of population size or population growth rate 
would be needed to overcome low identifiability of param-
eters if temporal change in capture effort is small. Obviously, 
such problems would be shared by other population indices 
that are closely correlated with harvest size. Generally, the 
management of large mammals requires reliable estimates of 
the population status because maintaining their density at a 
socially acceptable level requires fine-tuned control. In par-
ticular, wildlife managers in many regions must address the 
overabundance of large mammals and the urgent need for 
population control (Fagerstone and Clay 1997, Côté et al. 
2004, Uno et al. 2009). The underestimation of population 
size leads to the failure of population control projects via the 
establishment of inadequate quantitative targets for removal. 
We hope our research encourages managers to collect unbi-
ased population indices, not only harvest size.
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