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PROCEEDING ARTICLES

The use and abuse of microsatellite DNA markers in conservation 
biology

Robert Moss, Stuart B. Piertney & Stephen C.F. Palmer

M oss, R., Piertney, S.B. & Palmer, S.C.F. 2003: The use and abuse o f m icro­
satellite DNA markers in conservation biology. - W ildl. Biol. 9: 243-250.

Conservation genetics is based on the need to maintain genetic variation, 
which retains deleterious recessive mutations in a heterozygous state and pro­
vides adaptive potential in a changing environment. Typically, levels o f vari­
ation in natural populations are assessed with neutral markers such as microsatel­
lites. Adaptive genetic variation, however, is likely to respond to m icroevolu­
tionary forces (mutation, natural selection and random genetic drift) in a differ­
ent way. Hence we need to study the relationship between neutral m icrosatel­
lite markers and genes of adaptive significance. We present simple models that 
illustrate the difficulty o f inferring levels of adaptive genetic variation from mol­
ecular markers, and hence evolutionary potential and fitness from m icrosatel­
lite markers.
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Conservation genetics is concerned w ith the genetic fac­
to rs tha t affect ex tinc tion  risk  and the m anagem en t 
p rac tices needed  to  m in im ise such risk, thereby m ain ­
tain ing  populations o r species as dynam ic entities that 
can  survive environm ental change (F rankham , B allou 
&  B riscoe  2002). T he p rim ary  causes o f  ex tinction  
risk  are often  an thropogenic , typically  involving rem ­
nant popu la tions in fragm ented  o r degraded  habitats 
(Lande 1 9 8 8 , 1999). T he contribution o f  genetic factors 
to  the fate o f  endangered  populations has often , the re ­
fore, been  considered  secondary. Even so, the genetic 
changes associated w ith population  isolation, fragm en­

tation and concom itant reduction in effective population 
size are intim ately linked w ith population viability. Two 
key processes have been highlighted. First, sm all pop­
ulations are p rone to  inbreed ing  as indiv iduals becom e 
related by descent over time. This reduces individual fit­
ness through inbreeding depression, itself brought about 
by increased  hom ozygosity , the unm asking  o f  de le te­
rious recessive alleles and reduced  genetic variation 
(C rnokrak & R off 1999). Second, sm all, isolated popu­
lations have reduced  levels o f  genetic variation, w hich 
com prom ises their ability  to adapt and so survive envi­
ronm ental change. This association, betw een reduced ge­
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netic variation, inbreeding and inability to adapt, m eans 
that a  prim ary objective in genetic m anagem ent o f  pop­
ulations and species is m aintenance o f  genetic variation 
(A vise &  H am rick  1996).

G enetic  varia tion  w ith in  a popu la tion  is naturally  
maintained by new genetic variants, alleles, that arise from 
m utation  or im m igration . C onversely, genetic variation 
is lost from  a population by natural selection against al­
leles w ith low er reproductive fitness in particu lar envi­
ronm ents, o r by genetic drift. Low  genetic variation can 
also  occu r w hen a b iased  set o f  founders fo rm s a new  
population .

M easuring  genetic  varia tion  in natu ral popu la tions, 
and so iden tify ing  popu la tions at risk  o f  extinction , is 
p roblem atic. A  cu rren t trend is to  characterise  genetic 
variation w ithin populations and species in term s o f  the 
num ber o f  a lleles and  the ir respective frequencies and 
he te rozygosities  at ind iv idual loci, frequen tly  using  
m olecu la r m arkers such as m icrosate llite  D N A  loci 
(F rankham  et al. 2002). Such surveys allow  com pari­
son betw een  fragm ented  and  continuous, o r sm all and 
large, populations. Also, because allele and genotype fre­
quencies a tta in  H ardy-W einberg  equ ilib rium  after a 
single generation  o f  random  breed ing  in a  large popu ­
lation, any sign ifican t deviation  from  H ardy-W einberg 
predictions should reflect processes such as inbreeding.

A  m ajo r critic ism  o f  this approach , how ever, lies in 
the im plic it assum ption  that a  population  depauperate  
in m icrosatellite variation show s a proportionate reduc­
tion in the genetic variation  associated  w ith the quan­
tita tive  tra its  th a t underp in  rep roductive  fitness and 
adaptive potential (R eed  & F rankham  2001). C erta in ­
ly, m ean heterozygosity  should  be proportional to the 
variance fo r a po lygenic trait, i f  all gene action  is ad ­
ditive (Falconer 1989). H ow ever, quantitative traits as­
sociated  w ith fitness vary con tinuously  due to the con ­
tributions o f m any loci and to genotype-environm ent in­
teractions. M oreover, pleiotrophy, epistasis, dom inance, 
differential selection, d ifferent m utation rates and reg­
ulatory variation fu rther com plicate the structure o f  fit­
ness-related  traits (R eed  & F rankham  2001).

H ere w e use sim ple m odels to  exam ine the dynam ­
ics o f  genetic variation under particular regim es o f  ran­
dom  genetic drift, selection  and m utation . T hey illu s­
trate the dangers o f  using  m icrosatellites as a surrogate 
for adaptive genetic variation. O ur m odels are m ore eco­
logically  m eaningfu l than  classical population  genetic 
m odels.

T he usual textbook (e.g. Hartl 1980) m odel for m icro­
evolutionary processes such as genetic drift, gene flow  
and selection  concen trates on a single locus w ith tw o 
alleles, A  and a, w ith  popu la tion  frequencies p  and  q,

respectively. It focuses on p, estim ating q by difference 
(q = 1 -p). T here are tw o alleles per locus and so the to ­
tal num ber o f  gene cop ies is 2N , w here N  is the num ­
ber o f  o rgan ism s in the constan t population . T he m od­
el ignores sex and assum es independent segregation  o f 
alleles. To m im ic drift, a  binom ial distribution (num ber 
2N , probability  p t in generation  t) is used to generate a 
random  w alk in the num ber o f  allele A. H ence genetic 
drift is due to environm ental, not dem ographic, stochas­
ticity. Population size affects drift because there are few ­
er possib le  values o f  A in  sm aller populations, and so 
drift is faster.

T he textbook m odel contains no explicit reproduction 
o r death. N onetheless, it seem s to  represen t dem ogra­
phy like that o f  an annual plant, each  generation  rep ro ­
ducing  once and then dying. It seem s inappropria te  for 
m any natural system s, including grouse populations. 
T herefore , ou r m odels explicitly  involve the effects o f 
dem ographic stochasticity on survival and reproduction.

Methods and models

Demographic model with explicit survival and 
recruitment
W e begin w ith a sim ple dem ograph ic  m odel o f  g rouse 
num bers, s tarting  w ith a popu la tion  o f  100 grouse  in 
autum n, 50 o f  w hich survive to  rep roduce next spring. 
To m aintain a constant population, each surviving adult 
m ust rear on average one rec ru it per year (this d iffers 
from  the num ber o f  young  reared , fo r it inc ludes only 
recru its to  the breed ing  population). O ver-w in ter su r­
vival is enac ted  by app ly ing  to  each  ind iv idual in the 
au tum n popu la tion  a b inom ial survival p robab ility  o f 
0.5. Each survivor then produces recruits to the next gen­
e ra tio n , the n u m b er being  taken  at ran d o m  from  a 
Po isson  d is tribu tion  w ith  m ean  one. T he total num ber 
o f  g rouse fluctuates due to  dem ograph ic  stochasticity , 
and it m igh t becom e ex tinc t o r expand  indefinitely .

The basic model
W e apply  the sam e m odel to the alleles at a single lo ­
cus, m aking  ex tra  assum ptions. G iven a fixed  num ber 
o f  100 autum n grouse, there  are 200 copies o f  alleles 
A  or a. F ocusing  on alle le  A, w e start the m odel w ith 
100 copies o f  A. If  the num ber o f  A falls to  zero (extinc­
tion), the num ber o f  a m ust be 200 (fixation) and  vice 
versa. H ence one unit o f  genetic heterogeneity  is lost 
w hen A  num bers zero or 200. The m odel param eters (i.e. 
survival probability , recruitm ent p robability  and popu ­
lation size) can, o f  course, be varied.

)
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Population size and the harmonic mean
We are interested in how population size affects drift and 
selection , but have tw o popu la tion  sizes, autum n and 
spring. In a fluctuating population, the m ean num ber o f 
generations taken by a neutral allele to d rift to fixa­
tion /ex tinction  should  be proportional to the harm onic 
m ean  o f  the popu la tion  size (W right 1938, G illesp ie  
1998). We therefore use the harm onic m ean  o f  po p u ­
lation  size in au tum n (2N ) and spring  (2N  x over-w in­
ter survival) to represent the size o f  constant populations.

In reality, population size varies from  year to year. To 
m odel this, w e calculated the frequency p t o f  A  after re­
production in year t, the population size in year t+ 1 , and 
reset the num ber o f  A  =  pt (2N t+1). T he harm onic m ean 
o f  all autum n and spring population sizes throughout each 
sim ulation  rep resen ted  the size o f  fluctuating  popu la­
tions.

Loss of variation
T he average rate o f  loss o f  genetic o r m icrosatellite var­
iation due to  drift w as sim ulated  by starting  the basic 
m odel w ith a  frequency fo r A  o f  0.5. T his w as done re­
peatedly, the m odel restarting after each fixation/extinc­
tion. W e m easured  the m ean  num ber o f  years to fixa­
tion  o r ex tinction  and its inverse, the num ber o f  fixa­
tions/ex tinctions p e r year. S im ulations con tinued  until 
the standard  erro r o f  the m ean  num ber o f  years to fix­
a tion /ex tinction  w as less than 10% o f  the m ean, o r un­
til 40 ,000  years had  been  sim ulated .

Selection, heterozygosity and protected 
polymorphisms
Selection  fo r o r against A  could  be enacted  by varying 
the average survival o r recruitm ent rate o f  A. T he above 
m odel does no t inco rporate  he terozygosity  and so, for 
a d ip lo id  organism  like grouse, it im plies that A  dom ­
inates a. To represent recessive A  alleles w e incorporated 
heterozygosity  in to  the m odel, defin ing  the frequency 
o f homozygous A  alleles in year t as pt2 and the frequency 
o f  he terozygotic  A  alleles as 2p tq t [i.e. 2p t( l - p t)]. T his 
app rox im ated  a popu la tion  tha t rem ained  at H ardy-Weinberg 

equilibrium .
D rift o r un id irectional selection  im plies that A  or a 

w ill eventually  becom e fixed, w ith loss o f  genetic var­
iation. T his can be preserved if  neither A  nor a becom es 
fixed because  the heterozygotic  genotype is protected  
th rough  frequency-dependen t selection . Several such 
m echanism s are know n. W e illustrate the principle w ith 
m odels that give the heterozygote a selective advantage 
over the tw o hom ozygotes.

Mutation and immigration
A starting  frequency  o f  0.5 fo r each run is convention­
al w hen sim ulating fixation/extinction o f alleles already 
in a  population. M utations, however, are likely to  occur 
singly. We therefore  assum ed that a m utation  affecting  
reproduction  occurred  in a single indiv idual in a  p o p ­
u lation  previously  hom ozygous fo r allele a. H ence the 
starting  num ber o f  allele A w as one. T he sam e m odel 
can  be used fo r im m igration  o f  a single heterozygous 
individual in to  a hom ozygous population .

Results

T he results from  several iterations o f  the sam e m odel 
o ften  d iffered  w idely  due to random  drift. E ach  quo t­
ed result was the average o f  m any iterations for the m od­
elled  locus. For heuristic  purposes, w e assum e tha t the 
m odelled locus is typical o f  an idealised genom e. M any 
o f the results are expressed as rates, for example the mean 
num ber o f  loci at w hich A becam e fixed/extinct each 
year. T hese rates can also be regarded  as probabilities, 
fo r exam ple the probability  that a locus w ith the m od­
e lled  ch arac te ris tics  w ill b ecom e fixed /ex tinc t each  
year.

Demographic extinction versus loss of genetic 
variation
In o u r random ly  fluctuating  dem ographic  m odel o f  N 
grouse, the probability that a population will becom e ex­
tinct before it doubles in num ber Pdx(N) is equal to the 
probability  that it w ill double  in num ber. H aving dou­
bled in num ber, the probability  o f  dem ographic ex tinc­
tion before  a fu rther doubling  in num ber is Pdx(2N),and 
so on. Hence, the total probability o f extinction o f a pop­
ulation  o f  N  individual g rouse is

In the genetic version o f the sam e m odel, there are 2N  
alleles and the rate at w hich loci w ith tw o alleles becom e 
fixed is equal to  2Pdx(2N). A t very low  population  sizes 
P dx(N) > > Pdx(2N)’  so that the probability  o f  dem ograph­
ic ex tinction  is g rea ter than the rate o f  loss o f  genetic 
o r m icrosatellite  he terozygosity  (Fig. 1).

Drift in models with different vital rates
In our d rift m odel, recru itm en t o f  alle le  A  averages 
ju s t enough to  com pensate for its mortality, the converse 
o f  survival. Survival and  rec ru itm en t, how ever, can
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HARMONIC MEAN POPULATION SIZE (2N)

Figure 1. Loss of genetic variation in relation to the harmonic mean pop­
ulation size for three different sets o f vital rates, i.e. survival rates of 
0.1 ( ???), 0.5 (x) and 0 .9  ( ???); recruitment per survivor 9 ,  1 and 0.1111, 
respectively. A) shows the mean number of years that an allele took to 
become fixed or extinct, and B) shows the mean number of fixa­
tions/extinctions per locus per 100 years. Slopes differed significant­
ly (ANCOVA: P < 0.05).

Figure 2. Effect o f frequency-dependent selection upon the mean 
number of years to fixation/extinction, in relation to the harmonic 
mean population size. With drift alone (x; survival rate = 0.5 and 
recruitment rate = 1.0), the mean number of years that an allele took 
to become fixed/extinct was linearly related to population size. The four 
examples of frequency-dependent selection vary from strong to weak 
(recruitment rate for homozygotes of 0.73 ( ???), 0.91 ( ???), 0.991 (???), 
0.9991 (???), for heterozygotes 1.3 and 1.1 , 1.01, 1.001, respectively, sur­
vival rate 0.5 throughout). In each example the effects of selection dif­
fered significantly (ANOVA: P < 0.05, at each population size) from 
those of drift alone, at or below the maximum population size shown 
on the x-axis, except that for 0  a significant difference occurred at a pop­
ulation size o f 6,667 but not at 4,000 or less. In each case 40,000 years 
were simulated.

about 1.0 p e r survivor, varying th is som ew hat to  m im ­
ic d ifferent selection  pressures.

differ, g iv ing d ifferent rates o f  turnover, the p roportion  
o f  alleles new ly recru ited  each year. W e sim ulated  drift 
in populations w ith three different sets o f  vital rates (see 
Fig. 1A ) at various population  sizes (2N ). In each  case, 
the m ean  num ber o f  years to  fixation /ex tinction  w as 
d irectly  proportional to the harm onic m ean  o f  popu la­
tion  size. T he slopes o f  the regression lines rep resen t­
ed the rate at w hich the num ber o f years to fixation/extinc­
tion  increased  w ith population  size. T he m ean  tim e to 
fix a tio n /ex tin c tio n  w as sh o rte r  in  p o p u la tio n s  w ith  
faster tu rnover ra tes and  the d ifference grew  as po p u ­
lation  size increased.

A  num ber p lo tted  against its inverse describes a hy ­
perbola , so the rela tionsh ip  betw een  the ra te  o f  loss o f 
heterozygosity  and population  size w as hyperbolic (see 
Fig. 1B) and accelerated w ith decreasing population size, 
especially  w hen  populations w ere  sm all.

F o r the res t o f  the pap er w e use  a m odel w ith  a sur­
vival rate o f  0.5 per indiv idual and a  recruitm ent rate o f

Protected polymorphisms
T he m ean  tim e tha t a deleterious recessive alle le  p e r­
sisted in m odel populations depended upon the strength 
o f  any frequency-dependen t selection . W hen  the het­
erozygote had a very sm all selective advantage over both 
hom ozygotes, its m ean  tim e to  fixa tion /ex tinction  w as 
indistinguishable from  that due to drift alone (Fig. 2) until 
population size (2N) reached 6,000-7,000. A s the selec­
tive advantage o f the heterozygote increased, so the m ean 
tim e to  fixation /ex tinction  becam e longer than  expect­
ed from  drift alone. A t popu la tion  sizes (2N ) o f  a few  
hundred, the m ean tim e to  fixation fo r the tw o m odels 
w ith  the b igges t heterozygo te  advantages w as so long 
that no fixations occurred  in 40 ,000  sim ulated  years.

In sm all m odel p o p u la tions , how ever, d rif t o v e r­
w h e lm ed  the  stab ilis in g  effec ts  even  o f  stro n g  fre ­
quency-dependent selection, heterozygosity w as lost and 
deleterious recessive alleles becam e fixed w ith increas­
ing frequency.
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Figure 3. Dynamics of constant (closed symbols) and cycling (open sym­
bols) populations. Rate o f loss of heterozygosity in relation to the har­
monic mean population size with drift alone (??? = constant, x = cyclic), 
and with frequency-dependent selection ( ??? = constant, ??? = cyclic 
with recruitment 0.91 homozygotes and 1.1 heterozygotes, and ??? = con­
stant, ??? = cyclic for recruitment 0.73 homozygotes and 1.1 heterozy­
gotes). A survival rate of 0.5 was used throughout.

Fluctuating populations and the harmonic mean
In  F igure  3, the solid  sym bols rep resen t constan t pop­
u lations w ith  no  year-to -year variation  in size, and  the 
open sym bols denote  populations w hose size fluctuat­
ed through a  lim it cycle w ith  a period  o f  eigh t years and

Figure 5. Percentage o f mutations that became established, i.e. reached 
a frequency of 0.5, under frequency-dependent selection with a recruit­
ment rate for homozygotes of 0.91 and 1.1 for heterozygotes (???). For 
comparison, the percentage of advantageous dominant mutations that 
became fixed is also shown for a recruitment rate of 1.05 ( ???) and 1.1 
( ???). A survival rate of 0.5 was used throughout.

a nine-fold am plitude (peak num bers/trough num bers at 
the sam e season). R esu lts from  o therw ise sim ilar co n ­
stant and cyclic populations showed m uch the sam e rela­
tionsh ip  w ith  population  size, p rov ided  tha t th is w as 
exp ressed  as th e  harm onic  m ean , as expec ted  from  
standard  theory  (W righ t 1938, G illesp ie  1998). T he 
harm onic m ean  is b iased  tow ards sm aller populations 
such that, in these exam ples, the harm onic m ean size o f  
each  cy c lin g  p o p u la tio n  w as 0 .55  o f  its  a rith m etic  
m ean.

Figure 4. Percentage of mutations that became fixed in relation to the 
harmonic mean population size, x = drift and ▼ = deleterious recessive 
with a recruitment rate of 0.95 for homozygotes and 1.0 for heterozy­
gotes, V= deleterious dominant (0.95,0.95), □ = advantageous reces- 
sive(1.05,1.0) and ■ = advantageous dominant (1.05, 1.05). A survival 
rate of 0.5 was used throughout.

Mutation and immigration
Selection  tends to elim inate deleterious alleles, and yet 
they rem ain com m on in m any populations. W e illustrate 
tw o w ays in w hich this can occur. F irst, deleterious m u­
tations, recessive or dom inant, can becom e fixed by drift 
a t sm all popu la tion  sizes (Fig. 4). N ow  hom ozygous, 
such alleles w ill rem ain  in the population , even i f  it in ­
creases in  size, until they are ousted by a beneficial m u­
tation  o r im m igran t allele.

Second, frequency-dependen t selection  allow s dele­
terious recessive alle les to  becom e estab lished  even at 
large population  sizes (Fig. 5). &lsquo;E stab lished&rsquo; in this con­
tex t does no t m eans &lsquo;fixed&rsquo;, bu t tha t the m utation  is 
sufficiently  frequen t to be p ro tected  w ith in  a po lym or­
phism .

W e rep resen t im m igration  o f  a single heterozygous 
individual by the sam e m odel as m utation. A  notable re­
sult is that, as with mutations, m ost im migrant genes were 
elim inated from  the population by drift, even if  they were 
som ewhat advantageous. Naturally, the proportion o f m u­
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tan ts/im m igran ts tha t becam e estab lished  increased  as 
their selective advantage increased  (results no t show n).

Discussion

Neutral versus adaptive variation
T he m odels show  how  neutral m olecu lar m arkers and 
adap tive genetic  varian ts can  respond  d ifferen tly  to 
selection  and drift. H ence m olecu lar m arkers, such as 
m icrosatellite D N A  polym orphism s, should not be used 
uncritically  as surrogates fo r adaptive genetic varia­
tion w hen identifying populations as genetically depau­
perate, o r at increased  risk  o f  extinction .

Such cau tion  is m irrored  in recen t review s com par­
ing  various m easures o f  genetic variation from  em pir­
ical studies. B utlin  & T reganza (1998) found  no signif­
ican t correlation  betw een  m olecu lar m arker he terozy ­
gosity and the coefficient o f variation for additive genet­
ic variation o f  sexually selected traits am ong 20 different 
species. Similarly, R eed &  Frankham  (2001) carried out 
a meta-analysis on 71 data sets and found only w eak cor­
relation (r =  0.217) betw een m olecular and quantitative 
m easures o f  genetic  variation, and no correlation  at all 
w hen analysis w as restric ted  to  traits considered  to be 
the best ind icators o f  adaptive potential.

In our m odels, differences betw een neutral and adap­
tive genetic variation  depend  on the relative strengths 
o f  selection  versus drift. In populations (2N ) o f  a  few  
hundred  o r less, w eak  se lection  is overw helm ed  by 
drift, and so the expected  am oun t o f  variation  fo r a 
polygenic trait, determ ined by m any w eakly-selected al­
leles, is largely a result o f  m utation-drift balance (Foley 
1992), p rov ided  tha t the constituen t genes act add i­
tively. U nder these specific conditions, microsatellite var­
iation  m igh t on average reflec t genetic  variation. T he 
random  nature o f  drift, how ever, ensures that this w ill 
not apply to all sm all populations, nor necessarily to any 
particular study population. M oreover, characters influ­
enced by m any loci should have a bigger m utational in­
pu t so that, in sm all populations, polygenic traits m ight 
re ta in  m ore variation  and recover variability  m ore fre ­
quently  fo llow ing  a popu la tion  bo ttleneck  than m ark­
er surrogates (Lynch 1996).

W eak ly -se lec ted  genes show  sim ila r d ynam ics to 
m icrosatellite m arkers even in m odel populations o f  re l­
atively large sizes. In reality, how ever, the best-know n 
weakly-selected genes are largely loci, such as allozymes, 
tha t m ay  in fluence ind iv idual fitness, bu t are unlikely  
to contribu te  to  the po lygen ic  traits thought to  under­
pin evolutionarily  im portan t processes such as adap ta­
tion.

Effective population size
O ur results are for a  population size o f 2N alleles; in prin­
cip le  th is represen ts a  population  o f  N  grouse. B ut real 
grouse populations fluctuate widely in numbers, and past 
num bers are likely to have influenced  presen t genetic 
variation. A n appropriate m easure o f  population  size is 
the harm onic m ean, w hich is b iased tow ards low er val­
ues. Also, in studies o f real birds, about 20% o f the breed­
ing population  p roduced  about 50%  o f  the offspring 
(N ew ton 1989). For this and o ther reasons, natural pop­
u lations are likely to com prise  individuals that share 
genes by descent, and the effective population size is like­
ly to be sm aller than the population size observed in the 
field. Such considerations indicate that the num ber o f  
real g rouse equivalent to N  m odel g rouse m igh t be  5-1 
1ON , w hich im plies that the population size o f  2N  used 
in ou r F igures should  be m ultip lied  by about 3 -4  w hen 
considering  real anim als.

Minimum viable population size
T he m odel indicates som e genetic  aspects governing 
m in im um  v iab le  population  size (M V P). T here are at 
least two views o f this problem. First, the hyperbolic rela­
tionship betw een the rate o f loss o f genetic variation and 
population size resem bles a threshold effect (Frankham  
1995). B roadly, the loss o f  adaptive genetic variation, 
and the fix ing o f  deleterious m utations, becam e m ajor 
below  a m odel population  size o f  about 50 (2N ), equiv­
a len t to  abou t 125-250 real grouse. T he sole d o cu ­
m en ted  exam ple o f  inb reed ing  depression  in a  w ild 
grouse population occurred w hen an isolated population 
o f greater prairie chickens Tympanachus cupido pinnatus  
had fallen to about 100-200 b irds (W estem eier, Braw n, 
S im pson , E sker, Jansen , W alk, K ershner, B ouza t & 
Paige 1998). A lso, w hen exotic bird species w ere in tro­
duced to N ew  Zealand, the chances o f  successful estab­
lishm ent w ere m uch h igher w hen m ore than  100 ind i­
v iduals w ere in troduced  (G reen  1997). T h is apparen t 
agreem ent betw een model and reality could well be coin­
cidence.

A n im portan t caveat is that population  size alone is 
unlikely  to be a good pred ic to r o f  heterozygosity . For 
exam ple, d ifferent levels o f  heterozygosity  are likely in 
tw o sm all populations, one taken from  a large pool o f 
individuals and another, o f  equal size, kep t iso lated  fo r 
a long period. A lso, the latter population is likely to  con­
tain m ore deleterious m utations fixed th rough  drift.

A  second approach to genetic M V P considers the num ­
ber o f  anim als necessary  to m aintain  adaptive genetic 
variation sufficient to  allow  the population  to respond 
to fu ture environm ental changes. T hus the m ost w eak­
ly p ro tec ted  m odel po lym orphism  (see legend in  Fig.
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2) w as overw helm ed by drift even in a  population  (2N ) 
o f  4 ,000. In popu la tions up to  th is size, the genetic 
variation for a model polygenic trait, comprising the addi­
tive effects o f  m any such alleles, w ould  depend  solely 
upon the balance betw een  m utation , im m igration  and 
drift. O nly in popu la tion  sizes (2N ) o f  ≥ 6 ,000-7 ,000  
would such a trait benefit from  frequency-dependent pro­
tection.

C alcu lations (w hich w e did  no t a ttem pt) use various 
crite ria  and  conclude that the population  size required  
to m aintain adaptive genetic variation (Lynch 1996), and 
also to ensure against dem ographic catastrophes (Ewens, 
B rockw ell, G ani &  R esnick  1987, Ew ens 1990), is sev­
eral thousand  ind iv iduals. H ence, even if  an inbred  
w ild  popu la tion  o f  100-200 g rouse can be rescued  by 
new  b lood  in  the short term  (W estem eier et al. 1998), 
the current best estim ate is that a population o f thousands 
w ill probably  be necessary  fo r long-term  survival in a 
changing  environm ent.

Microsatellite utility
D espite  concerns about neutral m olecu lar m arkers as 
indicators o f  adaptive genetic variation  in natural po p ­
u lations, m icrosatellites are finding pervasive use in 
o ther areas o f  conservation  biology. F rankham  et al. 
(2002) h igh ligh t 11 m ajo r genetic issues in conserva­
tion  b io logy, o f  w hich  m ost are not concerned  w ith 
deleterious effects o f  reduced variability in natural pop­
u la tions . M ic ro sa te llite s  have p roven  in va luab le  in 
de te rm in ing  levels o f  popu la tion  fragm en ta tion  and 
associated  levels o f  gene flow  betw een  populations, 
reso lv ing  taxonom ic  uncerta in ty  and  defin ing  m an ­
agem ent units, forensic analyses and m olecu lar ana ly ­
ses to unravel aspects o f  species biology. M ost p rom is­
ingly, they can be used  to  estim ate  genetic relatedness, 
w hich facilita tes quan tita tive genetic  analysis in na tu ­
ral populations fo r w hich pedigrees are unknow n. Such 
approaches represent perhaps the only way to understand 
the heritability  o f  quantitative trait loci associated  w ith 
com plex  life h istory  traits in real species (M erilä  & 
Sheldon  2000).

Conclusion

G enetic  variation  at m olecu lar m arkers such as m icro ­
satellite  D N A  po lym orphism s is presum ably  governed 
by random  genetic drift, and so m ay not reflect varia­
tion in po lygenic traits that underp in  evolutionary  p o ­
tential. H ence, w hilst m icrosatellite  data can be used to 
estim ate  the extent o f  inbreed ing  w ith in  natural popu ­
lations, it is no t necessarily  straigh tforw ard  to  ex trapo­

late and predict the levels o f  inbreeding depression and 
a ssoc ia ted  reductions in fitness. N o r shou ld  m ic ro ­
satellite  variation  be used as an ersatz  m easure o f  the 
genetic variation  that underp ins adaptive and evolu­
tionary potential in a changing environm ent. F rom  lim ­
ited experience in field  (W estem eier e t al. 1998) and 
aviary (R. M oss, unpubl. data), a  practical indication  o f 
inbreed ing  depression  in sm all, iso lated  grouse popu ­
lations is likely to be a decline in the egg hatch ing  rate. 
C h ick  v iab ility  m igh t a lso  decline, bu t m ay  be less 
useful, being m ore difficult to study in the field and m ore 
affected  by ex traneous factors.
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