Biology and Impacts of Pacific Island Invasive Species.
3. The African Big-Headed Ant, Pheidole megacephala (Hymenoptera: Formicidae)

Author: Wetterer, James K.

Source: Pacific Science, 61(4) : 437-456

Published By: University of Hawai‘i Press

James K. Wetterer

Abstract: In the Pacific region, the African big-headed ant, *Pheidole megacephala*, is now widespread in tropical areas; populations are also found at higher latitudes in Australia, New Zealand, and Japan. On most inhabited tropical islands in the Pacific, *P. megacephala* is well known as a household and agricultural pest. Because *P. megacephala* does not attack humans, this species is often not recognized as an important threat. The negative ecological impact of *P. megacephala*, however, may be greater than that of any other invasive ant species. In areas where it occurs at high density, few native invertebrates persist. Loss of invertebrate species that serve key functions in the natural community (e.g., important prey species) may have cascading effects leading to the subsequent loss of additional species. *Pheidole megacephala* tends to thrive in open, disturbed habitats with weedy vegetation that can support high densities of plant-feeding Hemiptera, which these ants tend for honeydew. Before 1900, *P. megacephala* was known in the Pacific region only from Aru Island (Indonesia) and Hawai’i. By the 1930s, it was found through much of Pacific Asia, Melanesia, and Polynesia, but it was not collected in Micronesia until 1950. Currently *P. megacephala* is known from virtually every tropical island group in the Pacific but not from many islands within the groups, particularly uninhabited islands. Quarantine efforts might be successful in keeping *P. megacephala* off these islands. Because *P. megacephala* does not commonly dominate areas with intact natural vegetation, setting aside relatively undisturbed habitat on inhabited islands may also be effective in protecting native invertebrates from attack by this ant.

Invasive ants are spreading throughout the Pacific, moving from island to island, killing off native species. They are ubiquitous, yet they go largely unnoticed, as do the great losses they inflict. Perhaps due to their small size, they are usually not taken very seriously. This is a mistake.

Invasive ants are “tramp” species that associate with humans and are spread by human commerce. They travel the world hidden in our plant products, packaging material, building supplies, and heavy machinery such as logging and military equipment. For the most part, tramp ants thrive only in disturbed environments and do not penetrate intact natural habitats. But as humans and their disturbance spread, so do the tramp ants. Humans tend to kill off the largest of the native animals. The accompanying ants help eradicate much of what remains. Most of these losses go unappreciated and unrecorded.

More than 35 species of tramp ants have invaded the Pacific (Wilson and Taylor 1967; J.K.W., unpubl. data). The ecological importance of most of these species remains undocumented. Several, however, are known to have dramatic impacts in the Pacific. Perhaps the worst is the African big-headed ant, *Pheidole megacephala* (Fabricius).

NAME

Pheidole megacephala (Fabricius, 1793)

Phylum Arthropoda, class Insecta, order Hymenoptera, family Formicidae
Common names (*, also a common name for the entire genus *Pheidole*): big-headed ant* (most widely used name), bigheaded ant* (e.g., Nishida 2001), African big-headed ant (e.g., Hoffmann and O’Connor 2004), brown house ant (used in Africa [e.g., Broekhuysen 1948, Oswald 1991, Zerhusen and Rashid 1992]), coastal brown ant (used in Australia [e.g., Heterick 1997, Chin 1998]), hormiga leona (Spanish [e.g., Castiñeiras et al. 1982, Maza et al. 2000]), hormiga cabezona* (Spanish [e.g., Chacón de Ulloa 2003]), formiga-cabeçuda* (Portuguese [e.g., Bueno and Campos-Farinha 1998]), formiga-cabeçuda-urbana (Portuguese [e.g., Instituto Hórus 2006]), fournir à grosse tête* (French [e.g., Le Breton 2003; D. Fournier, pers. comm.]), Oo-zu-aka-ari-Zoku* (Japanese [e.g., Onoyama 1976]), Tsuya-ooz-ari (Japanese [e.g., Ogata and Yamane 1998]).

Former common names: Madeira house ant (e.g., Blackburn and Kirby 1880), house ant of Madeira (e.g., Donisthorpe 1915), Haus-ameise Madeiras (German [e.g., Heer 1852, Forel 1895]).

Description and Account of Variation

Fabricius (1793) described *Pheidole megacephala* from "Isle de France," the eighteenth-century name for the island of Mauritius in the Indian Ocean east of Madagascar.

Pheidole megacephala has been recognized as senior synonym of several described forms: *Myrmica trinodis* Losana, described from Italy; *Formica edax* Forsskål, from Egypt; *Oecophthora perniciosa* Gerstaecker, from Mozambique; *Oecophthora pusilla* Heer, from Madeira; *Pheidole janus* F. Smith, from Sri Lanka; *Myrmica laevigata* F. Smith, from Great Britain; *Pheidole laevigata* Mayr, from Brazil; *Myrmica suspicosa* F. Smith, from Aru Island; and *Atta testacea* F. Smith, from Brazil (Bolton 1995).

In addition to the nominal subspecies, Bolton (1995) listed 10 other subspecies of *P. megacephala*, all described from Africa: *P. megacephala costauriensis* Santschi, from Ghana; *P. megacephala duplex* Santschi, from Angola; *P. megacephala ilgi* Forel, from Ethiopia; *P. megacephala impressifrons* Wasmann, from South Africa; *P. megacephala melanochila* Santschi, from Ivory Coast; *P. megacephala nkomoana* Forel, from Zaire; *P. megacephala rotundata* Forel, from Mozambique; *P. megacephala scaber* Forel, from Madagascar; *P. megacephala speculifrons* Stitz, from Tanzania; and *P. megacephala talpa* Gerstaecker, from Kenya. Wheeler (1922:128) concluded: "In all probability *P. megacephala* is of Ethiopian or Malagasy origin, as it shows a great development of subspecies and varieties in these two regions and nowhere else." Although there is debate concerning the taxonomic boundaries among *P. megacephala*, its subspecies, and closely related *Pheidole* in Africa, the identity of *P. megacephala* on Pacific islands is clear-cut.

Like all other *Pheidole* species, *P. megacephala* shows complete dimorphism (distinct minor and major workers and no intermediates), with majors having disproportionately large heads compared with minors (Figures 1–2). *Pheidole megacephala* workers are brown, often with the head and abdomen somewhat darker than the mesosoma (Figures 1–2). Total body length is ~2 mm for minors and ~3.5 mm for majors. For most *Pheidole*, majors are essential for species identification. In *P. megacephala*, however, minors easily can be distinguished from all other *Pheidole* in the Pacific. The postpetiole in minor *P. megacephala* workers is notably longer than broad, has a prominent ventral convexity visible in side view, and is bell-shaped when viewed from above (S. Cover, pers. comm. [see Figure 3]). Major workers have a heart-shaped head that is smooth and shiny on posterior half (Figure 2). In *P. megacephala*, minor workers typically do most of the foraging and majors primarily remain inside the nest.

About 30 native species of *Pheidole* are known from Oceania, including three widespread species, *Pheidole oceania* Mayr, *Pheidole sexspinosa* Mayr, and *Pheidole umbonata* Mayr. In addition, two other exotic *Pheidole* have been introduced to Oceania: *Pheidole fervens* F. Smith from Asia and *Pheidole moerens* Wheeler from the West Indies. Santschi (1919) listed another exotic species, *Pheidole tenerifiana* Forel, in Samoa, but in a later list Santschi (1928) did not include this species, which suggests that he dismissed the earlier
Figure 1. Minor worker of *Pheidole megacephala* (specimen from Nanana-i-Ra Island, Fiji, July 1997, J. K. Wetterer coll., photos by Gary Alpert). *a*, side view; *b*, head-on view.
Figure 2. Major worker of *Pheidole megacephala* (same collection and photo data as Figure 1). *a*, side view; *b*, head-on view.
Figure 3. Postpetiole of *Pheidole megacephala* minor worker (same collection and photo data as Figure 1). *a*, dorsal view; *b*, side view.
identification. Wilson and Taylor (1967) concluded that the P. tenerifiana specimens listed by Santschi (1919) were actually P. megacephala. Although not yet known from Pacific islands, P. tenerifiana recently has been collected in Fremantle, Western Australia (B. Heterick, pers. comm.). In Western Australia, P. megacephala may be confused with P. tenerifiana. The postpetiole of P. tenerifiana minors, however, lacks the prominent ventral convexity present in P. megacephala minors. In the majors, the sculpturing on the dorsal surface of the head is confined to the anterior half in P. megacephala but covers the entire dorsal surface in P. tenerifiana (S. Cover, pers. comm.).

ECONOMIC IMPORTANCE AND ENVIRONMENTAL IMPACT

Detrimental Aspects

Pheidole megacephala is well known in the tropical Pacific as both an indoor and outdoor pest. As a household pest, it commonly nests inside buildings and feeds on human foodstuffs (Huddleston and Fluker 1968, Chin 1998). In more temperate areas, P. megacephala may be found nesting exclusively indoors. Pheidole megacephala reportedly attacks and chews through electrical wires, communications cables, and irrigation tubing (Brimblecombe 1958, Chang and Ota 1990).

Pheidole megacephala can be an important agricultural pest on many crops, including pineapple, sugarcane, bananas, coffee, and coconuts, through enhancing populations of the plant-feeding Hemiptera, such as mealybugs, scale insects, and aphids. The ants protect the Hemiptera from predators and parasites while feeding on honeydew that the Hemiptera produce (Fluker et al. 1968, Carver et al. 1987, 1993, Bach 1991, Reimer et al. 1993, Jahn and Beardsley 1994, 1996, González-Hernández et al. 1999a,b). Pheidole megacephala workers will even transport Hemiptera within and among plants (e.g., Wiles et al. 1996). Hemiptera cause crop damage both through sapping plants of nutrients and by increasing the occurrence of diseases, including viral and fungal infections. In the Pacific, P. megacephala is particularly noted as a pest of sugarcane and pineapple, through its tending of mealybugs. When P. megacephala is eradicated from a pineapple field, populations of mealybugs decline and pineapple wilt disease can be brought under control (Beardsley et al. 1982). Pheidole megacephala tends banana aphids (Stechmann et al. 1996) and increases diseases spread by aphids, such as the banana bunchy top virus. Diseases encouraged by P. megacephala tending Hemiptera probably impact native plant communities as well.

Pheidole megacephala has had a great negative impact on native invertebrates in the Pacific (e.g., Gillespie and Reimer 1993, Hoffmann 1998, Hoffmann et al. 1999, LaPolla et al. 2000, Heterick et al. 2000). The impact of P. megacephala on native species has been most extensively noted in Hawai’i, though most reports are anecdotal. Like many other remote Pacific islands, the Hawaiian Islands lack an indigenous ant fauna (Wilson and Taylor 1967). When ants invade such islands, they can have devastating effects on the native ecosystems, preying on the relatively defenseless endemic fauna (Zimmerman 1948, Hölldobler and Wilson 1990, Gillespie and Reimer 1993, LaPolla et al. 2000). Perkins (1913:xli) wrote of P. megacephala, “It may be said that no native Hawaiian Coleoptera insect can resist this predator, and it is practically useless to attempt to collect where it is well established.” Zimmerman (1970:34) wrote that in Hawai’i, “the endemic insect faunas of the lowlands of all the islands mostly have been exterminated throughout the range of the voracious introduced predatory ant Pheidole megacephala.” Loss of invertebrate species that serve key functions in the natural community (e.g., important prey species, pollinators, seed dispersers, scavengers, decomposers) may have cascading effects leading to severe disruptions of natural nutrient cycling and the subsequent loss of additional native plant and animal species (Howarth 1985).

Pheidole megacephala is extremely aggressive toward other ant species. Colonies of P. mega-
workers will quickly cut to *P. megacephala* when live ants are collected in an aspirator, *Lasius humile* (Mayr) (Fluker and Beardsley 1970). When live ants are collected in an aspirator, *P. megacephala* workers will quickly cut to pieces other ants in the collection vial (pers. obs.). *Pheidole megacephala* often dominates over extensive areas (e.g., much of the Hawaiian lowlands). In many parts of Tonga, I (Wetterer 2002) found *P. megacephala* under almost every rock and log and virtually no other ants.

Pheidole megacephala may also negatively impact vertebrates in the Pacific, both directly and indirectly. In Hawai‘i, C. Daehler (pers. comm.) observed (and filmed) hundreds of *P. megacephala* workers attacking 3-week-old hatchlings of an exotic bird, the Japanese White-eye (*Zosterops japonicus*). Banko and Banko (1976:31) concluded that in Hawai‘i, *P. megacephala* “played an indirect though paramount role in the reduction and extinction of all insectivorous birds. *Pheidole* was particularly effective in displacing an exceptionally wide variety of insects, even causing species extinctions in the Coleoptera and Lepidoptera, the two orders of insects which are most important as food to a majority of insectivorous birds of the Hawaiian Islands.” Concerning the decline of the Laysan Duck (*Anas laysanensis* Rothschild), Reynolds et al. (2005) wrote “alien insects, including bigheaded ants (*Pheidole megacephala*) are suspected of reducing the duck’s food abundance.”

A great negative impact of *P. megacephala* on native species is not inevitable everywhere. *Pheidole megacephala* first came to widespread attention as a result of an enormous outbreak in the city of Funchal, on the subtropical Atlantic island of Madeira (Heer 1852). Many authors have long assumed that *P. megacephala* has exterminated most or all of the native ants of Madeira (Wetterer 2006b). However, after 150 or more years of residence on Madeira, *P. megacephala* has come to occupy only a tiny range and appears to have had little impact (Wetterer et al. 2006). Most of Madeira may be too cool for *P. megacephala* to dominate. Also, Madeira’s vast natural areas may generally lack weedy vegetation that can support high densities of plant-feeding Hemiptera critical for the ecological dominance of invasive ants. Finally, a dominant native ant, *Lasius grandis* Forel, inhabiting ~84% of Madeira, may actively exclude *P. megacephala*.

Beneficial Aspects

Because *P. megacephala* workers are efficient predators on other invertebrates, capable of subduing prey much larger than themselves, *P. megacephala* is sometimes considered a beneficial biocontrol agent against other insect pests. Illingworth (1927:389) wrote, concerning *P. megacephala*, “this valuable predaceous ant has driven out of Honolulu many noxious insects, even within the last decade.” H. W. Simmonds (1958) attributed a great drop in numbers of houseflies in Fiji to *P. megacephala*. *Pheidole megacephala* preys on pests that attack sugarcane, bananas, and other crops. For example, *P. megacephala* is an important predator of the sugarcane stem borer, *Chilo sacchariphagus* Bojer (Goebel et al. 1999); the banana weevil, *Cosmopolites sordidus* (Germar) (Tinzaara et al. 2005); and the southern green stink bug, *Nezara viridula* (L.) (a pest of macadamia in Hawai‘i [Jones et al. 2001]). *Pheidole megacephala* was observed to prey upon coconut moths in Fiji (Tothill et al. 1930). *Pheidole megacephala* is also known to attack pest termites (Cornelius and Grace 1996). In Africa, Cushman et al. (1998) found that the presence of *P. megacephala* benefitted figs (*Ficus* spp.) by reducing seed predators and parasitoids of pollinating fig wasps. Rosset (1996 in *World Resources Institute* 2000:160) reported that in Cuba, “growers have been releasing predatory ants (*Pheidole megacephala*) to control the sweet potato weevil (*Cylas formicarius*), a method that has proven 99 percent effective.” Lagnaoui et al. (2000:3) described how to move *P. megacephala* colonies using rolled banana leaves from banana plantations, where they were common, to sweet potato fields; they reported that “setting up colonies in the field 30 days after planting...
with 60–110 nest/ha can keep weevil infestations at low levels (3–5%)."

Geographical Distribution

Climate appears to be the most important factor in determining the geographic limits of *Pheidole megacephala*. In the Pacific, *P. megacephala* is known primarily from tropical lowland regions but ranges into more temperate latitudes in Australia (to 37° S [Nikitin 1979]), New Zealand (to 37° S [Taylor 1961]), and the Ryukyu Islands of Japan (to 27° N [Yamauchi and Ogata 1995]). Within many invaded island groups in the Pacific, *P. megacephala* has a scattered distribution and is not yet present in numerous islands, particularly uninhabited islands (e.g., the northernmost Marianas).

Around the Pacific rim, *P. megacephala* has been found in Australia (e.g., Forel 1902, 1915, Tryon 1912, Crawley 1915, Clark 1941, Nikitin 1979, Vanderwoude et al. 2000), China (e.g., Wheeler 1927, Zhou and Zheng 1999), Indonesia (e.g., Smith 1871, Emery 1900, Forel 1909, Wheeler 1924), Japan (e.g., Sonobe 1973, Onoyama 1976, Abe and Maeda 1977, Yamauchi and Ogata 1995), Papua New Guinea (e.g., Room 1975), the Philippines (e.g., Forel 1907), Taiwan (e.g., Wheeler 1909, 1929, Forel 1912), and Vietnam (e.g., Karawajew 1935).

In Melanesia, *P. megacephala* has been collected in Fiji (e.g., Mann 1925, Santschi 1928, Wilson and Taylor 1967), New Caledonia (e.g., Jourdan 1997), Solomon Islands (e.g., Forel 1910, Wheeler 1935, Wilson and Taylor 1967, Greenslade 1971), and Vanuatu (e.g., Chazeau and Bonnet de Larbogne 1999).

In Micronesia, *P. megacephala* has been recorded from the Federated States of Micronesia (e.g., previously unpublished records in Table 2), Kiribati (e.g., Wilson and Taylor 1967), Mariana Islands (e.g., Schreiner 1991, Wiles et al. 1996), Marshall Islands (e.g., Sugerman 1972), Palau (e.g., Hoffmann 2004), and U.S. Pacific Territories (e.g., Chilson 1959).

Only a few Pacific island groups still lack records of *P. megacephala* (Table 1). For some tropical islands (e.g., Nauru, Tuvalu, Phoenix Islands, Tuamotu Islands, and the Galápagos), this may be due to a lack of collection information. The scarcity of records in all temperate parts of the world suggests that *P. megacephala* may not be able to establish outdoor populations on more-temperate Pacific islands (e.g., Bonin Islands, Pitcairn Island, Easter Island, and Juan Fernández Islands).

Habitat

Pheidole megacephala tends to be more common in open, disturbed habitats with weedy vegetation that can support high densities of the plant-feeding Hemiptera that the ants tend for honeydew. Typically, *P. megacephala* is largely absent in intact natural forest, even in Hawai‘i, which lacks any native ant competitors (Wetterer 1998). This absence may be due to a general scarcity of plant-feeding Hemiptera in forested areas. In New Caledonia, Jourdan (1997) found a variety of exotic ants, including *Paratrechina longicornis* (Latreille) and *Wasmannia auropunctata* (Roger), in intact forest and shrub habitats but found *P. megacephala* only in heavily disturbed “anthropic” areas. In Fiji, Mann (1925:5) noted that “especially in the cultivated districts, it was one of the commonest ants.” Wetterer and Vargo (2003) commonly found
Pheidole megacephala is common in the lowlands, at elevations up to 900 m (Perkins 1913, Gagné 1979, Reimer 1994). Delesalle et al. (1986) found P. megacephala at elevations up to 1,220 m on the Big Island and up to 1,250 m on Maui. Wetterer (1998) found P. megacephala in very high densities in and around the geothermal area near the park headquarters in Hawai‘i Volcanoes National Park (1,200–1,220 m elevation). The geothermal areas and park buildings appear to serve as warm “habitat islands” that allow P. megacephala to extend its ranges to higher elevations. Wetterer et al. (1998) found P. megacephala at a disturbed site on Mauna Kea (1,770 m elevation). Reimer et al. (1990) reported that P. megacephala is also limited by rainfall and rarely found in very dry (<38–50 cm annual rainfall) or wet areas (>250 cm annual rainfall). Beardsley et al. (1982) found that periods of heavy rainfall were often followed by a great drop in the numbers of P. megacephala in pineapple fields.

History

The oldest record of P. megacephala from the Indo-Pacific region comes from Aru Island, Indonesia (Smith 1859 [as Myrmica suspiciosa]). The earliest records from Oceania come from Hawai‘i (Smith 1879, Blackburn and Kirby 1880, Forel 1899). Banko and Banko (1976) speculated that P. megacephala probably arrived in Hawai‘i by 1825. Over the course of the twentieth century, P. megacephala spread throughout tropical parts of the Pacific region. By the 1930s, it was found through much of Pacific Asia, Melanesia, and Polynesia. In Micronesia, P. megacephala was not collected until 1950, and there were no published reports until 1972 (Table 2).

After its arrival on one island in a group, P. megacephala often soon spreads to many nearby islands, particularly inhabited ones. In the Hawaiian Islands, Blackburn and Kirby (1880:89) reported that P. megacephala was “one of the commonest ants in Oahu and probably elsewhere.” It was subsequently re-

<table>
<thead>
<tr>
<th>Pacific Locales</th>
<th>Present</th>
<th>Absent</th>
<th>No Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Samoa</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonin Islands</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cocos Islands</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easter Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiji</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>French Polynesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galápagos Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaiian Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juan Fernández</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kiribati</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marshall Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micronesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nauru</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Caledonia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norfolk Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Mariana Islands</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Palau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitcairn Island</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Solomon Islands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokelau Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonga</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuvalu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanuatu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wake Island</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wallis and Futuna</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
ported from the inhabited Big Island, Kaua‘i, Moloka‘i, Maui, and Niʻihau (Wheeler 1934, Krauss 1944, Beardsley and Tuthill 1959). Forel (1899:118) reported that *P. megacephala* was found in Hawai‘i “on all islands,” but this was certainly an exaggeration. A 1923 expedition to the uninhabited northwestern islands of Hawai‘i found *P. megacephala* only on Midway (Bryan 1926). Decades later it was first collected on Laysan (Butler 1961), and only very recently it was reported for the first time from Kure, Pearl and Hermes, French Frigate Shoals (Nishida 2001), and Kaho‘olawe (Starr et al. 2004). *Pheidole megacephala* still has not been reported from some of the Northwestern Hawaiian Islands, including Necker, Nihoa, Lisianski, Johnson, and Wake.

Collection records document the spread of *P. megacephala* to the four island groups of Tonga (from north to south: the Niuas, Vava‘u, Ha‘apai, and Tongatapu). Museum specimens indicate that *P. megacephala* invaded the far north of Tonga by 1930, but

<table>
<thead>
<tr>
<th>Pacific Region</th>
<th>Year</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td><1859</td>
<td>Smith (1859)</td>
</tr>
<tr>
<td>Singapore</td>
<td>1879</td>
<td>F. Smith; BMNH</td>
</tr>
<tr>
<td>Australia</td>
<td><1902</td>
<td>Forel (1902)</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>1907</td>
<td>R. Bradley and J. H. Burrett; MCZ</td>
</tr>
<tr>
<td>Philippines</td>
<td><1907</td>
<td>Forel (1907)</td>
</tr>
<tr>
<td>China</td>
<td>1923</td>
<td>Wheeler (1927)</td>
</tr>
<tr>
<td>Vietnam</td>
<td><1935</td>
<td>Karawajew (1935)</td>
</tr>
<tr>
<td>Japan: Ryuku Is.</td>
<td><1959</td>
<td>Sonobe (1973)</td>
</tr>
<tr>
<td>Solomon Is.</td>
<td><1910</td>
<td>Forel (1910)</td>
</tr>
<tr>
<td>Fiji</td>
<td>1915</td>
<td>Mann (1925)</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>1929</td>
<td>L. Cheesman; BMNH</td>
</tr>
<tr>
<td>Hawai‘i</td>
<td><1879</td>
<td>Smith (1879)</td>
</tr>
<tr>
<td>Society Is. (France)</td>
<td>1907</td>
<td>Wheeler (1908)</td>
</tr>
<tr>
<td>Cook Is.</td>
<td>1914</td>
<td>Wilson and Taylor (1967)</td>
</tr>
<tr>
<td>Line Is.</td>
<td>1922</td>
<td>Wilson and Taylor (1967)</td>
</tr>
<tr>
<td>Samoa</td>
<td>1924</td>
<td>Santschi (1928)</td>
</tr>
<tr>
<td>Marquesas Is. (France)</td>
<td>1925</td>
<td>Cheesman and Crawley (1928)</td>
</tr>
<tr>
<td>Tonga</td>
<td>1930</td>
<td>Wetterer (2002)</td>
</tr>
<tr>
<td>Austrail Is. (France)</td>
<td>1934</td>
<td>Wheeler (1936)</td>
</tr>
<tr>
<td>Gambier Is. (France)</td>
<td>1934</td>
<td>Wheeler (1936)</td>
</tr>
<tr>
<td>Swains Is. (U.S.)</td>
<td>1940</td>
<td>Wilson and Taylor (1967)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>1942</td>
<td>Berry et al. (1997)</td>
</tr>
<tr>
<td>Tokelau</td>
<td><1959</td>
<td>Dale (1959)</td>
</tr>
<tr>
<td>Wallis and Futuna</td>
<td>1965</td>
<td>Wilson and Hunt (1967)</td>
</tr>
<tr>
<td>Niue</td>
<td><1967</td>
<td>Taylor (1967)</td>
</tr>
<tr>
<td>Micronesia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed. States of Micronesia</td>
<td>1950</td>
<td>R. J. Goss; MCZ</td>
</tr>
<tr>
<td>Gilbert Is.</td>
<td>1956</td>
<td>E. S. Brown; BMNH</td>
</tr>
<tr>
<td>Guam</td>
<td>1985</td>
<td>D. Nafus; UGM</td>
</tr>
<tr>
<td>Northern Marianas Is.</td>
<td>1990</td>
<td>L. Schreiner; UGM</td>
</tr>
</tbody>
</table>

* Previously unpublished specimen records include collector’s name and museum source. BMNH, the Natural History Museum in London; MCZ, Museum of Comparative Zoology; UGM, University of Guam Museum.
the ant was not found on the main island of Tongatapu until 1975 (Wetterer 2002). Dlusky (1994) recorded the first *P. megacephala* in Vava'u in 1980. Wetterer (2002) made the first collections of *P. megacephala* in 'Eua (the second largest island of Tongatapu) and in Ha'apai in 1995.

Among the Pacific islands most recently invaded by *P. megacephala* are Guam, Rota, and Saipan in the Mariana Islands, where the first records for *P. megacephala* date from 1985, 1990, and 2001, respectively (J.K.W. and O. Bourquin, unpubl. data). Schreiner (1991:9) wrote “according to pest control operators [*P. megacephala*] has been present in at least one housing subdivision in northern Guam for a number of years, but it appears to be spreading, having reached the University only in the last year.” *Pheidole megacephala* has not yet been recorded from the northern uninhabited Mariana Islands (Terayama et al. 1994, J.K.W. and O. Bourquin, unpubl. data).

Physiology

Temperature has a substantial effect on development and activity of *P. megacephala* workers. Fluker (1969 in Chang 1985) found that at 20–22°C *P. megacephala* minors took 66–78 days to develop to adulthood (19–23 days as an egg, 28–32 days as a larva, and 19–23 days as a pupa). Phillips (1934 in Chang 1985) found that minor workers raised at 24.5–26.7°C took an average of 59 days to go from egg to adult (17 days as an egg, 23 days as a larva, and 19 days as a pupa). Finally, Chang (1985) found that *P. megacephala* minor workers raised at 26–27°C took 34–38 days to go from egg to adult (7–10 days as an egg, 16–17 days as a larva, and 7–11 days as a pupa).

Carnegie (1960) found that *P. megacephala* workers were not active outside the nest at temperatures below 5°C and the speed of workers along a foraging trail increased with temperature. Carnegie (1960) found that the greatest number of *P. megacephala* workers were active outside the nest at temperatures of 24–30°C, and as a result the amount of activity during different parts of the day and night varied at different times of the year.

Reproduction

Like most other species of dominant invasive ants, exotic populations of *P. megacephala* typically form “unicolonial supercolonies” (i.e., multiple-queen aggregations of interconnected nests that lack colonial boundaries and intraspecific aggression and act as a single cooperative unit [e.g., Hoffmann et al. 1999]). The absence of intraspecific aggression over large areas is thought to be important in allowing these ants to attain high densities and ecological dominance.

New colonies of *P. megacephala* are commonly founded through budding, with one or more fertile queens accompanied by a group of workers splitting off from the main colony (Beardsley et al. 1982). Reimer and González-Hernández (1993), however, found that new colonies may also be founded by single, inseminated queens. Chang (1985) found that individual *P. megacephala* queens laid 97 to 292 eggs in a 31-day period. Worker larvae or adults subsequently ate many eggs. On average only 38% of laid eggs developed into larvae.

Population Dynamics

For at least 125 yr, *P. megacephala* has maintained its status as the dominant ant in the lowlands of Hawai‘i. In some areas, *P. megacephala* may be virtually the only ant present. For example, at one site in Hawai‘i Jones et al. (2001) found that *P. megacephala* made up 96.6% of the ants collected. In three heavily infested gardens in Perth, Australia, Heterick et al. (2000) found that 99.9% of the ants collected in pitfall traps (6,885 of 6,889) were *P. megacephala*.

The rapid spread and rise to dominance of *P. megacephala* is well illustrated on the main Tongan island of Tongatapu. Although *P. megacephala* specimens were collected on Tongatapu by Maddison in 1975, contemporary collections from Tongatapu by Litsinger...
(in 1973–1974) and Watt (in 1975–1977) did not include *P. megacephala*, suggesting that *P. megacephala* populations in the 1970s were limited. By 1995, however, *P. megacephala* dominated vast areas of Tongatapu, where it occurred in almost every log and under almost every rock (Wetterer 2002). *Pheidole megacephala* appears to be in the process of marching across Guam (Schreiner 1991) and spreading to the other Mariana Islands (J.K.W. and O. Bourquin, unpubl. data).

Great outbreaks of *P. megacephala* are often followed by population crashes. The tremendous population explosion of *P. megacephala* on Madeira in the 1850s has long since crashed; Wetterer et al. (2006) estimated that *P. megacephala* now occupies only ~0.6% of the land area of Madeira. Wheeler (1910:155) described an outbreak of *P. megacephala* on the tiny tropical Caribbean island of Culebrita: “I was astonished to find [Culebrita] completely overrun with *Ph. megacephala*. This ant was nesting under every stone and log, from the shifting sand of the sea-beach to the walls of the light-house on the highest point of the island. The most careful search failed to reveal the presence of any other species. . . . It is highly probable that *Ph. megacephala*. . . had exterminated all the other ants which must have previously inhabited Culebrita.” Later surveys of Culebrita, however, found that the *P. megacephala* populations had greatly diminished (Torres and Snelling 1997). I do not know of any documented cases of great collapses of *P. megacephala* in the Pacific.

Response to Management

Reimer et al. (1990:45) reported that “bait formulations of hydramethylnon, fenoxycarb, and fluoroaliphatic sulfonamide have significantly reduced or eliminated *P. megacephala* populations in experimental field trials” (also see Chang and Ota 1990, Reimer and Beardsley 1990). Recently, the most commonly recommended chemical control agent for *P. megacephala* appears to be hydramethylnon in the form of Amdro (Ambrands, Atlanta, Georgia) or Maxforce (Bayer Environmental Science, Leverkusen, Germany) (e.g., Zerhusen and Rashid 1992, Heterick et al. 2000, Krushelnickky et al. 2005). When applied in bait stations, Amdro can remain effective for 12 weeks; when broadcasted, Amdro breaks down within 1 day in sunlight or in water (Taniguchi et al. 2005). Chemical control of *P. megacephala* in urban settings most commonly uses bait delivery. In houses and yards, Chin (1998) recommended applying Amdro or chlorpyrifos in granule form directly into the nest or along ant trails. In agriculture, control efforts usually involve broadcast application of Amdro. Taniguchi et al. (2005), however, recommended using bait stations in agriculture because the chemicals remain active longer and have less detrimental environmental impact.

Complete extirpation of an exotic ant from an island has proven to be extremely difficult. Great efforts in the Galápagos appear to have succeeded in exterminating the little fire ant, *W. auropunctata*, from two small islands, Santa Fe and Marchena (Abedrabbo 1994, Causton et al. 2005). Krushelnickky et al. (2005) reported that one application of Amdro on Moku‘auia islet off O‘ahu successfully eradicated *P. megacephala*. Unfortunately, another pernicious pest ant, *Solenopsis geminata* (Fabricius), subsequently colonized the islet. Hoffmann and O’Connor (2004) described the complete eradication of *P. megacephala* from Kakadu National Park in Australia using Amdro. Additional research confirming the long-term success of these eradication efforts would be valuable.

Natural Enemies

The main natural enemies of *P. megacephala* are other dominant ant species, including *Linepithema humile* (Mayr) and *Anoplolepis gracilipes* (Smith). Where *P. megacephala* co-occurs with these species, they maintain mutually exclusive territories (Fluker and Beardsley 1970, Jones et al. 2001). Wetterer (1998) found extremely high densities of *P. megacephala* and *A. gracilipes* occupying mutually exclusive territories in the geothermal area next to the headquarters in Hawai‘i Volcanoes National Park. *Pheidole megacephala* occupied the eastern part of the geothermal...
area (e.g., Sulfur Banks), and *A. gracilipes* occupied the western part (e.g., Steaming Bluff). In a number of places, *L. humile* has come to be preeminent in areas previously dominated by *P. megacephala*, including parts of Hawai‘i and Bermuda, and in houses of Madeira (e.g., Fluker and Beardsley 1970, Wetterer and Wetterer 2004, Wetterer et al. 2006). Wilson and Taylor (1967) noted that *P. megacephala* generally does not co-occur with other dominant *Pheidole* species in the Pacific, such as *P. fervens* and *P. oceanica*.

Although many parasitoids and parasites are known for ants of the genus *Pheidole*, few have been found that attack *P. megacephala*. One parasitoid of *P. megacephala* is a eucharitid wasp, *Orasema fraudulenta* (Reichensperger), recorded from Ethiopia and Yemen (Heraty 1994). Social parasites include *Pheidole neokohli* Wilson, a workerless ant that parasitizes colonies of *Pheidole megacephala melanobolica* in Africa (Wilson 1984).

A variety of vertebrates has been recorded to prey on *P. megacephala*. Kido et al. (1993) found *P. megacephala* in the diet of an endemic Hawaiian goby fish. Wheeler (1922) recorded *P. megacephala* in the diets of frogs and toads in Africa. F. J. Simmonds (1958) and Wingate (1965) found that *P. megacephala* was a common prey in the diets of *Anolis* lizards in Bermuda. It is likely that many insectivorous vertebrates in the Pacific prey on *P. megacephala*.

Prognosis

Pheidole megacephala is already known from virtually every tropical island group in the Pacific. This ant, however, has not yet invaded many isolated, unpopulated islands within these island groups. Spread of *P. megacephala* to such islands would almost certainly have a catastrophic impact on the native fauna. Quarantine efforts might be successful in keeping *P. megacephala* off these islands. Studies are needed to evaluate whether islands without *P. megacephala* serve as important repositories of native invertebrate species driven extinct elsewhere. Whereas quarantine is unlikely to be successful on heavily trafficked populated islands, setting aside relatively undisturbed habitat may be effective in protecting native invertebrates from attack because *P. megacephala* often does not readily invade or dominate intact natural areas.

Acknowledgments

I thank Andrea Wetterer, Margaret Wetterer, Stefan Cover, Brian Heterick, Neil Reimer, and Glenn Taniguchi for comments on the manuscript; Edward O. Wilson and Stefan Cover for advice and encouragement; Stefan Cover for identifying all my Pacific ants; Gary Alpert for his excellent photographs of *Pheidole megacephala*; Florida Atlantic University for financial support.

Literature Cited

Krushelnycky, P. D., L. L. Loope, and N. J.

Oswald, S. 1991. Application of the selective fire ant bait Andro against the harmful brown house ant, Pheidole megacephala, for the improvement of the biological control of the coconut bug, Pseudotheraptus zeyi, by the beneficial red weaver ant, Oecophylla longinoda. Z. Pflanzenschutz. 98:358–363.

Zerhusen, D., and M. Rashid. 1992. Control of the bigheaded ant Pheidole megacephala Mayr (Hym., Formicidae) with fire ant

