Phoretic chernetid species newly recorded from Slovakia and Austria (Pseudoscorpiones: Chernetidae)

Authors: Červená, Martina, Kirchmair, Gabriel, and Christophoryová, Jana

Source: Arachnologische Mitteilungen: Arachnology Letters, 57(1) : 65-68

Published By: Arachnologische Gesellschaft e.V.

URL: https://doi.org/10.30963/aramit5712
Phoretic chernetid species newly recorded from Slovakia and Austria (Pseudoscorpiones: Chernetidae)

Martina Červená, Gabriel Kirchmair & Jana Christophoryová

Abstract. New cases of phoresy by chernetids (Pseudoscorpiones: Chernetidae) are documented from Slovakia and Austria. Pseudoscorpion phoresy involving Heteroptera as a host is documented for the first time in Slovakia, as well as a case of phoresy by the genus Pselaphochernes Beier, 1932. Three chernetid species were observed for the first time as phoretic in Austria on Mecoptera, Diptera and Hymenoptera.

Keywords: Central Europe, host, phoretic association, phoront, pseudoscorpion


Phoresy is the most common method of passive dispersal among arachnids. Pseudoscorpions have the ability to attach themselves to a wide variety of other, more mobile, arthropods and after that disperse into new habitats (White et al. 2017). Many authors consider that phoresy in pseudoscorpions evolved from predatory behaviour towards the host (Beier 1948, Cuthbertson 1984), or that it is behaviour functioning specifically for dispersal (Weygoldt 1969, Zeh & Zeh 1992). Generally, pseudoscorpions do not reduce the viability of their hosts. However, this depends on many factors such as: frequency of phoretic episodes, phoront and host specificity, number of individuals on the host and distance that hosts travel with their phoronts. These factors play a major role in the evolution of phoresy and might have some costs for the hosts. Pseudoscorpions can cause additional load and movement blocking (Athias-Binche 1994, Szymkowiak et al. 2007). Carl (1994) observed that pressure from the palpal teeth can cause low damage to the exoskeleton of the host. Pseudoscorpions have developed two strategies to avoid being dislodged by the host’s movement, flight or being brushed off (Jones 1978, Carl 1994). In the first strategy, species typically hide under the elytra, or among the feathers or fur, where they can feed on mites or where even mating takes place during dispersal (Zeh & Zeh 1992). In the second strategy, pseudoscorpions grasp the extremities, sternites or other body parts of the hosts (Jones 1978, Carl 1994).

Phoretic associations in Europe were documented by Poinar et al. (1998) between three families of Pseudoscorpiones and 21 families of Insecta, as well as two families of Opilionidae. In Europe, the most frequent phoretic pseudoscorpions are known from the families Chernetidae and Cheliferidae (e.g. Beier 1948, Legg & Jones 1988, Poinar et al. 1998). Poinar et al. (1998) observed just one case of phoresy from the family Neobisiidae, between Neobisium sylvaticum (C. L. Koch, 1835) and Musca domestica Linnaeus, 1758 (Diptera, Muscidae). Beyond Europe, phoresy was also recorded from many other families such as Chthoniidae, Geogarypidae, Atrinidiidae, Cheiriidiidae and Withididae in Brazilian Amazonia (Aguiar & Bühnheim 1998).

In Slovakia, ten cases of phoretic associations have been observed. Three chernetid and one cheliferid species were phoretic on four dipteran and one lepidopteran species. All recorded phoretic associations in Slovakia were summarised by Christophoryová et al. (2018).

In Austria, most records of phoresy are represented by the species Lamprocheres nodosus (Schrank, 1803). Beier (1948) summarised previously published data about phoresy between L. nodosus and dipteran species Physiphora alceae (Preysler, 1791) (as Chloria demandata) (Diptera, Ulidiidae) and M. domestica. Multiple phoresy was observed by Ressl (1965), where 124 specimens of L. nodosus were phoretic on 32 house-flies (M. domestica). At most, 11 pseudoscorpions were attached to one single house-fly. In addition, Ressl (1965) mentioned phoresy between one female of L. nodosus and Physiphora demandata (Fabricius, 1798) (Diptera, Ulidiidae) and between one female of Dinocheirus panzeri (C. L. Koch, 1837) and M. domestica. Later, Ressl (1970) documented another phoresy between three specimens of L. nodosus and P. demandata. New records of phoresy near a compost heap were added by Ressl (1983), in which 268 specimens of L. nodosus were phoretic on 111 Muscidae flies. The first record of phoresy by Mesochelifer resli Mahnert, 1981 was noticed by Hauser (1990); one female was found phoretic on tactile seta of the leg of a nun moth Lyantria monacha (Linnaeus, 1758) (Lepidoptera, Erebidae).

Summarizing all published data, four pseudoscorpion species in Slovakia and three species in Austria have been recorded as phoretic, mainly on dipterans. In the present study, new records of phoresy in chernetids are documented from both of the studied countries.

Material and methods
All pseudoscorpions were studied as temporary slide mounts using lactic acid and then rinsed in the water and returned to 70 % alcohol. The pseudoscorpion specimens were identified using the key in Christophoryová et al. (2011). Details about collecting the specimens are given in the results. Hosts were identified by specialists, also mentioned in the results.
the attachment mode of the pseudoscorpion to the host body had not been registered by the observer, this data is omitted. The Austrian material is deposited in the collection of the second author at the Institute of Biology, Karl-Franzens-Universität Graz and the Slovakian material in the collection of the third author at the Department of Zoology, Comenius University in Bratislava.

Results

Slovakia

14. Jun. 2017: One female of *Pselaphochernes scorioides* (Hermann, 1804) attached to an empidid fly (Diptera, Empididae; det. M. Kozánek) was found in the centre of Trenčín (48.89469°N, 18.04295°E; 230 m a.s.l.; leg. M. Dolínsky). Specimens were individually collected in a family house. During the observation, the female was attached to the host’s leg (unspecified which one). After putting the host into the tube with alcohol, the pseudoscorpion immediately detached from the fly.

22. May–30. May 2018: One phoretic female of *L. nodosus* was attached to the antenna of *Polymerus unifasciatus* (Fabricius, 1794) (Heteroptera, Miridae; det. P. Kmět; Fig. 1) and one female of the same species to the base of the third leg of *P. alceae* (Diptera, Ulidiidae; det. M. Semelbauer; Fig. 2). Specimens were collected using a Malaise trap situated in the garden of a farm in Podunajská nížina Lowland, at the locality of Virt belonging to cadastrale Radván nad Dunajom (47.76217°N, 18.33997°E; 125 m a.s.l.; leg. J. Kodada and M. Kozánek).

Austria

30. May 2017: One female of *Chernes hahnii* (C. L. Koch, 1839) was phoretic on a species from the *Chrysis ignita* group (Linnaeus, 1758) (Hymenoptera, Chrysididae; det. D. Fröhlich). Specimens were individually collected at the lakeside of Lange Lacke in Apetlon (47.75924°N, 16.86513°E; 118 m a.s.l.; leg. D. Fröhlich).

31. May 2017: One female of *C. hahnii* phoretic on a scorpion fly *Panorpa communis* Linnaeus, 1758 (Mecoptera, Panorpidae; det. S. Koblmüller) was individually collected at the locality of Andau between a group of trees (47.70750°N, 17.07622°E; 114 m a.s.l.; leg. S. Koblmüller).

9. Jun. 2017: One female of *P. scorioides* was phoretic on *Leptopeza flavipes* (Meigen, 1820) (Diptera, Hybotidae; det. A. Stark) and individually collected in an alluvial forest at the locality of Schönau an der Donau (48.13917°N, 16.61444°E; 150 m a.s.l.; leg. H. Heimburg).

11. Jul. 2017: One female of *Dendrochernes cyrneus* (L. Koch, 1873) was found attached to the antenna of the parasitoid wasp *Rhyssa persuasoria* (Linnaeus, 1758) (Hymenoptera, Ichneumonidae; det. G. Kirchmair, Fig. 3), while the wasp was ovipositing. This phoretic association was observed in a forest near the locality Pürgg bei Trautenfels (47.52861°N, 14.06194°E; 860 m a.s.l.; leg. G. Kunz). Specimens were collected by individual sampling.

29. Apr. 2018: One female of *C. hahnii* was attached to *Brachyopa bicolor* (Fallén, 1817) (Diptera, Syrphidae; det. H. Heimburg). Specimens were individually collected in an alluvial forest near the locality of Schönau an der Donau (48.13917°N, 16.61444°E; 150 m a.s.l.; leg. H. Heimburg).
Discussion

The most common way for phoront and host to make contact is the fact that they occupy the same habitat and have the same activity and breeding season (Jones 1970, 1978, Poinar et al. 1998). Lampropelma nosophorae and P. scorpioides are frequently found in compost heaps and most of the dipterans are regular visitors to this habitat type (Jones 1978, Christophoryová et al. 2017). Jones (1978) mentioned that gravid pseudoscorpion females are more often phoretic than males or nymphs. These observations correspond with the presence of phoretic females in the present study. One of the reasons why phoresy is much more frequent in chernetid and cheliferid species (as compared to neobisiid or chthoniid species) is that some species are found in less stable habitats such as compost heaps or bird nests. In these habitat types, they have more possibility to attach themselves to mobile phoronts belonging to Insecta or Arachnida. Furthermore, Cheliferidae and in particular Chernetidae have evolved to be phoretic expert species that have developed morphologies adapted to this behaviour, i.e. additional chelal teeth in Chernetidae. Pseudoscorpions use phoresy for dispersion from less stable habitats towards more stable ones (Beier 1948, Jones 1978, Carl 1994).

In Central Europe, phoretic associations were recorded mainly in chernetid species, such as P. scorpioides, D. panzeri, D. cymneus, L. nodosus and Anthrenochernes stellae Lohmann, 1939 (e.g. von Helversen 1966, Droga & Lippold 2004, Ssymank & Muster 2010, Christophoryová et al. 2017, 2018, Karpinski et al. 2017). Phoresy of the genus Pselaphochernes Beier, 1932 was most recently documented from the Iberian Peninsula (e.g. Ricarte et al. 2016, Mederos & Zaragoza 2017, Ruiz de la Cuesta Santiago & Zaragoza 2017, Zaragoza & Ruiz de la Cuesta Santiago 2017). Only few records exist from Central Europe: von Helversen (1966) recorded three females of P. scorpioides phoretic on Musca Linnaeus, 1758. Droga & Lippold (2004) found one adult of P. scorpioides phoretic on an unspecified dipteran species. Three cases of phoresy between P. scorpioides and dipteran species in the present study are documented for the first time in both of the studied countries.

One case of phoresy in the genus Chernes Menge, 1855 in Europe was mentioned by Poinar et al. (1998), in which Chernes cinicioes (Fabricius, 1793) was phoretic on Dolichomitus mesentricus (Gravenhorst, 1829) (as Ephialtes m.). In Central Europe, phoresy records of Chernes species are rare. Optova & Šťáhlavský (2018) suggest phoretic dispersal for C. habnii but confirmed phoresy records of this species were missing in their paper. During the present study, three new cases of phoresy by C. habnii were documented from Austria. The phoretic association between C. habnii and Panorpa communis from Austria in the present paper represents the second known case. The first worldwide known phoresy between a pseudoscorpion and the common scorpionfly (Mecoptera) was presented by Christophoryová et al. (2017) from the Czech Republic. One female of D. panzeri was attached to the second leg of P. communis (Christophoryová et al. 2017). Phoresy on Syrphidae is known from L. nodosus on different host species and from Pselaphochernes lacertosus (L. Koch, 1873) (Jones 1978, Ricarte et al. 2016), but phoretic association between C. habnii and a host from Syrphidae represents the first such case in Austria in this study. No published data are yet available for a phoretic relationship between a pseudoscorpion and a cuckoo wasp (Chrysidae). Therefore, the phoresy of C. habnii on an individual of the Chrysis ignita group is treated as a first record for this host’s family.

Pseudoscorpion phoresy on ichneumonid hosts is only documented by a few records (Jones 1978, Legg 2015, Ruiz de la Cuesta Santiago & Zaragoza 2017). Legg (2015) recorded D. cymneus on Ephialtes manifestor (Linnaeus, 1758) from Britain. In the present paper, a phoretic association between D. cymneus and Rhyssa persuasoria is recorded for the first time in Austria.

The most frequently recorded phoresy in Central Europe is between L. nodosus and dipteran species, which has been demonstrated in many publications (e.g. Beier 1948, Ressl 1983, Mašán & Kristofík 1992, Droga & Lippold 2004, Christophoryová et al. 2018). Poinar et al. (1998) mentioned phoresy of L. nodosus on five species of Opiliones, one species of Coleoptera and 28 species of Diptera. In Slovakia, L. no-
dosus has been found phoretic until now only on three dipte-
ran species (Mašáň & Kríštofík 1992, Christophoryová et al.
2018). Phoresy of L. nodosus and P. alscæ was already ob-
erved in the past by Christhoryová et al. (2018). On the con-
trary, present data of phoresy of L. nodosus and P. unifasciatus
documented the first known record of a phoretic association of
pseudoscorpions with true bug in Slovakia.

Summarising the newly obtained data, phoresy of a pseudo-
scorpion on a host from Heteroptera and phoresy of the
genus Pielaphobernes were observed for the first time in Slo-
vakia. In Austria, phoretic associations of C. habnii, D. cyrrus
and P. scorpioides with their hosts were recorded for the first
time.

Acknowledgements
We are very thankful to all collectors for providing the material
of phoretic pseudoscorpions and to all specialists for identification
of the hosts. We would like to thank Katarina Krajkovičová (Comenius
University in Bratislava) for the technical assistance with the figures
and Gernot Kunz (Karl-Franzens-Universität Graz) for the provi-
ded photo. We are grateful to Juan A. Zaragoza and one anonymous
reviewer for all their suggestions and corrections which improved the
quality of the paper. The work was supported by the Slovak Research
and Development Agency under the contract no. APVV-15-0147.

References
Aguiar NO & Bührnheim PF 1998 Phoretic pseudoscorpions as-
associated with flying insects in Brazilian Amazonía. – Journal of
Arachnology 26: 452-459
Arias-Binche F 1994 La phoréie chez les acariens, aspects adaptatifs
Beier M 1948 Phoresie und Phagophile bei Pseudoscorpionen. –
Österreichische Zoologische Zeitschrift 1: 441-451
Carl M 1994 Injurious effects on the exoskeleton of
Musca domestica (Diptera) of phoresy by
Dendrochernes cyrneus (L. Koch, 1873) (Pseudoscor-
pionidae, Chernetidae) and the possible functional significance
of accessory teeth on the chelal fingers. – Bulletin of the British
Arachnology Society 9: 246-248
Christophoryová J, Grula D & Krajkovičová K 2017 New records
of pseudoscorpions (Arachnida: Pseudoscorpionidae) associated
with animals and human habitats in Slovakia and Czech Repub-
l. – Arachnologische Mitteilungen 53: 67-76 – doi: 10.5431/
aramit5311
Christophoryová J, Štáhlavský F & Fedor P 2011 An update identi-
fication key to the pseudoscorpions (Arachnida: Pseudoscorpionidae)
of the Czech Republic and Slovakia. – Zootaxa 2876: 35-48 – doi:
10.11646/zootaxa.2876.1.4
Christophoryová J, Vidlička L & Krajkovičová K 2018 New cases of
phoresy of Lamprochernes nodosus (Schröcken) (Pse-
doscorpiones, Chernetidae) phoretic on
Lamprochernes nodosus (Schrank) – an example of
phoresy in Pseudoscorpiones. – Bulletin of the British Arachnolo-
Legg G 2015 Dendrochernes cyreneus (L. Koch, 1873) (Pseudoscor-
pionidae, Chernetidae) phoretic on Ephialtes mediator (Lin., 1758)
(Hymenoptera, Ichneumonidae, Pimplinae). – Newsletter of the
British Arachnological Society 132: 5-7
Legg G & Jones RE 1988 Pseudoscorpions (Arthropoda; Arachnida).
Keys and notes for the identification of the species. Synoposes of
the British Fauna (New Series), No. 40. Brill/Backhuys, Leiden. 159 pp.
Mašáň P & Kríštofík J 1992 Phoresy of some Arachnids (Acarina and
Pseudoscorpionidae) on synanthropic flies (Diptera) in the south
Slovakia. – Biológia 47: 87-96
Mederos J & Zaragoza JA 2017 Nueva cita de Pielaphobernes scorpioides
(Lin., 1758) (Pseudoscorpionidae: Chernetidae) en asociación forética con
Achlyomyia decennaculata (Loew, 1873) (Diptera: Ligyiniidae). – Revista Ibérica de Aracnología 31: 133-135
Opata V & Šrálívsky F 2018 Phoretic or not? Phylogeography of
the pseudoscorpion Chernes habnii (Pseudoscorpiones: Cherneti-
042.1
Poinar GO, Ćurčić BPM & Cokendolpher JC 1998 Arthropod
phoresy involving pseudoscorpions in the past and present. – Acta
Arachnologica 47: 79-96 – doi: 10.2476/asaaj.47.79
Ressl F 1983 Die Pseudoskorpion-Funde aus dem Bezirk
Scheibbs. pp. 174-202
Ressl F 1985 Weitere Pseudoskorpion-Funde aus dem Bezirk
Scheibbs (Niederösterreich). – Berichte des Naturwissenschaft-
lich-Medizinischen Vereins in Innsbruck 58: 249-254
Ressl F 1983 Die Pseudoskorpionen Niederösterreichs mit besonderer
Berücksichtigung des Bezirks Scheibbs. – Berichte des Naturwissenschaft-
lich-Medizinischen Vereins in Innsbruck 58: 249-254
Ricarte A, Zaragoza JA & Marcos-Garcia M 2016 First record of a
phoretic association between a hoverfly (Diptera, Syrphidae) and
a pseudoscorpion (Arachnida, Pseudoscorpionida) in the Iberian
Peninsula. – Boletín de la Asociación Española de Entomología 40: 527-530
Ruiz de la Cuesta Santiago JL & Zaragoza JA 2017 Primera cita de
fororción para Europa sobre un énvido (Hymenoptera, Evanidiae)
y nuevos casos sobre icneumónidos (Hymenoptera, Ichneumonidae)
por pseudoscorpiones (Pseudoscorpiones, Chernetidae). – Boletín de la Asociación Española de Entomología 41: 293-309
Szymkowiak P, Górski G & Bajerlein D 2007 Passive dispersal in
Jones PE 1978 Phoresy and commensalism in British pseudoscor-
pions. – Proceedings and Transactions of the British Entomological
and Natural History Society 11: 90-96
Karpinski 1, Rutkowski T & Szczepański WT 2017 First record of
phoresy of Dendrochernes cyreneus (L. Koch, 1873) (Pseudoscor-
pionidae, Chernetidae) on Cerambyx cerdo Linnaeus, 1758 (Cole-
optera, Cerambycidae) and their potential value as biotmarkers. –
Animal Biodiversity and Conservation 40: 187-192 – doi:
10.32800/abc.2017.40.0187
Poinar GO, Ćurčić BPM & Cokendolpher JC 1998 Arthropod
phoresy involving pseudoscorpions in the past and present. – Acta
Arachnologica 47: 79-96 – doi: 10.2476/asaaj.47.79
Ressl F 1965 Über Verbreitung, Variabilität und Lebensweise einiger
österreichischer Afterskorpion. – Deutsche Entomologische
Ressl F 1970 Weitere Pseudoskorpion-Funde aus dem Bezirk
Scheibbs (Niederösterreich). – Berichte des Naturwissenschaft-
lich-Medizinischen Vereins in Innsbruck 58: 249-254
Ricarte A, Zaragoza JA & Marcos-Garcia M 2016 First record of a
phoretic association between a hoverfly (Diptera, Syrphidae) and
a pseudoscorpion (Arachnida, Pseudoscorpionidae) in the Iberian
Peninsula. – Boletín de la Asociación Española de Entomología 40: 527-530
Ruiz de la Cuesta Santiago JL & Zaragoza JA 2017 Primera cita de
fororción para Europa sobre un énvido (Hymenoptera, Evanidiae)
y nuevos casos sobre icneumónidos (Hymenoptera, Ichneumonidae)
por pseudoscorpiones (Pseudoscorpiones, Chernetidae). – Boletín de la Asociación Española de Entomología 41: 293-309
Szymkowiak P, Górski G & Bajerlein D 2007 Passive dispersal in