The flora and vegetation of Gyali island, SE Aegean, Greece

Authors: George Brofas, George Karetsos, Maria Panitsa, and Michalis Theocharopoulos

Source: Willdenowia, 31(1) : 51-70

Published By: Botanic Garden and Botanical Museum Berlin (BGBM)

URL: https://doi.org/10.3372/wi.31.31104
GEORGE BROFAS, GEORGE KARETSOS, MARIA PANITSA & MICHALIS THEOCHAROPOULOS

The flora and vegetation of Gyali island, SE Aegean, Greece

Abstract

Gyali is a small volcanic island with a surface of 4.63 km² in the SE Aegean Sea. Flora and vegetation of its main natural ecosystems and their ecological conditions are examined. The main vegetation units on Gyali are: Pinus brutia forest, scrubs and phrygana, psammophilous and halophytic communities. A total of 241 native taxa (species and subspecies) are reported, including 149 new records for the island. Analysis of the flora based on ecological indicator values shows that 29 % of the taxa are indicators of extreme warmth and 72 % of very dry or dry habitats. 43 % are acidophilous or calcifuge taxa and 45.2 % halotolerant taxa, or facultative or obligatory halophytes.

Introduction

Gyali is a small volcanic island situated in the SE Aegean. The island is covered with forest, scrubs and phrygana, and lacks agricultural cultivation and permanent inhabitants, except workers of the pumice quarries. Traces of previous agriculture (old terraces) as well as few ancient ruins can be discerned in parts of the island and goats grazed on the island until the end of 1998. Presently, the only human activity affecting the environment is the open-pit exploitation of pumice stone on the SW hill.

Gyali belongs to the group of small SE Aegean islands whose flora is not well known and has, in many cases, floristic peculiarities. The knowledge of these peculiarities aids the comprehension of the distribution patterns of species in the Aegean area. The variety of vegetation types observed from one island to another could help comparative studies to estimate the influence of environmental and ecological factors on the present vegetation composition and physiognomy.

Papatsou (1975) has studied the flora of the island, mentioning all previously known floristic data including the references to Gyali in “Flora aegaea” (Rechinger 1943). All available references to the island were also incorporated in Davis (1965-88).

In this paper, the island’s flora is listed and its vegetation briefly discussed. The Pinus brutia forest, which is continuously receding from the Mediterranean region in general, covers roughly half the island and is of particular interest. It represents a natural, isolated population and is the only known forest of this species to grow on perlite and pumice substrates and on such a small island.
Study area

Gyali is situated between the islands Nisyros and Kos in the SE Aegean Sea. The island is characterized by two hills of 180 m altitude in the NE and 175 m in the SW, which are connected by a low, narrow ridge (Fig. 1). The island is orientated SW-NE, approximately 5.4 km in length and has a surface of 4.63 km².

Gyali is located on the eastern edge of the Aegean volcanic arc and composed of volcanic rocks (Pentarakis & Markoulis 1974). The NE hill consists of volcanic rocks and rhyolites (perlite) with small, scattered concentrations of glass (obsidian); on its southern slope is a small patch of pumice. It is to the obsidian that the island owes its present name (in Greek, gyali means glass). The SW hill consists of aeolian, intermediate and basic pumice rocks, suggesting a sedimentary pyroclastic geological sequence. Under the pumice are clay, calcarenite and fragments of various volcanic rocks (mainly pumice) cohesed with calcium carbonate. The northern half of the east slope has a narrow coastal strip of loose sedimentary material (sand and pebbles), and the ridge connecting the two hills is of the same material.

Three soil groups are found on the island, according to the parent material:

1) Soil on perlite. These soils are generally shallow (less than 30 cm deep), but reach 30-60 cm on some gentle slopes or sites covered with vegetation. They have a sandy or sandy-loamy texture and the pH (1:1 soil-H₂O ratio, determined by glass electrode) ranges between 6.14 and 7.2.

2) Soils on pumice. These soils are usually medium deep (30-60 cm) or deep, except those on the steep hill slopes which are shallow. Their texture is sandy to sandy-loamy and the pH values range from 7.5 to 8.3, increasing with depth.

3) Soils on coastal deposits. These are not real soils but consist of medium to coarse-grained sand, with very little loam and clay, and small quantities of calcium carbonate. They are very poor in organic matter and have a slightly basic pH.

There is no meteorological station on Gyali. The meteorological data of Kos (National Meteorological Service) are presented in Table 1 and are considered representative of the climate on Gyali. The mean annual precipitation is about 754 mm, of which 463 mm are received in winter, while the summer is almost dry (5 mm). The drought period is rather extensive and lasts from mid-April to September (Fig. 2). The dominant winds in the area blow from the north and severely affect the whole island due to its small size.
The bioclimate of Gyali was determined using the xerothermic index (Mavrommatis 1980) and the Emberger coefficient (Emberger 1955, 1959). According to the xerothermic index \(x\), the island belongs to an intense thermo-mediterranean type \(125 < x < 150\) biologically dry days, whereas the Emberger-coefficient assigns it to the wet zone with warm winter.

Material and methods

This paper is based on fieldwork of the authors carried out in spring and autumn between 1994 and 1999. After surveying the island and studying aerial photographs, we distinguished the main vegetation formations and made several plant sampling collections. Vouchers of the authors’ collection are deposited in the herbarium of the Institute of Mediterranean Forest Ecosystems and Forest Products Technology, in Athens.

Species were identified using “Flora europaea” (Tutin & al. 1968-93) and “Flora of Turkey” (Davis 1965-88). Nomenclature follows “Flora europaea” and “Med-Checklist” (Greuter & al. 1984, 1986, 1989). The definition of the chorological types follows Pignatti (1982), and Raunkiaer’s system (Raunkiaer 1934) was used to produce life-form spectra and rank taxa into life form categories.

The ecological preferences of the taxa were taken from Böhling (1995), so far available, since 213 (88.8 \%) of the taxa found on Gyali occur also on Naxos.

Table 1. Meteorological data of Kos station (1948-75).

<table>
<thead>
<tr>
<th>Month</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean temperature [°C]</td>
<td>12.0</td>
<td>12.2</td>
<td>13.3</td>
<td>16.5</td>
<td>20.3</td>
<td>24.0</td>
<td>25.6</td>
<td>25.9</td>
<td>23.7</td>
<td>20.1</td>
<td>16.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Precipitation [mm]</td>
<td>183.3</td>
<td>161.9</td>
<td>67.9</td>
<td>31.9</td>
<td>18.1</td>
<td>3.7</td>
<td>0.9</td>
<td>0.2</td>
<td>12.1</td>
<td>67.0</td>
<td>89.0</td>
<td>178.3</td>
</tr>
<tr>
<td>Relative humidity [%]</td>
<td>71</td>
<td>68</td>
<td>66</td>
<td>67</td>
<td>64</td>
<td>64</td>
<td>66</td>
<td>69</td>
<td>72</td>
<td>71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Ombrothermic diagram of Kos meteorological station.

The bioclimate of Gyali was determined using the xerothermic index (Mavrommatis 1980) and the Emberger coefficient (Emberger 1955, 1959). According to the xerothermic index \(x\), the island belongs to an intense thermo-mediterranean type \(125 < x < 150\) biologically dry days, whereas the Emberger-coefficient assigns it to the wet zone with warm winter.
Results
1. Plant list

Symbols and abbreviations used in the plant list

- Life forms = see Table 4
- Chorology = see Table 5
- * = taxa already reported by Papatsou (1975)
- ! = taxa observed
- W, F, R, S = indicator values for warmth (W), moisture (F), soil reaction (R) and salt stress tolerance (S), see Table 6
- “Kar.” + number = collection number of the plant samples gathered by the authors.

PTERIDOPHYTA

Polypodiaceae

Anogramma leptophylla (L.) Link – Tcaesp, Cosmop.-subtrop., W 2, F 4, R 1-, S 1; Kar. 6000
Asplenium ceterach L. – Hros, Euras.-temp., Wx, F 2w, R 4, S 1; Kar. 5950
Cheilanthes maderensis Lowe – Hros, W-Medit.-Macarones., W 3, F 3w, R 1, S 1; Kar. 5853
Polypodium cambricum L. – Grhiz, Eurymedit., W 3, F 4, Rx, S 1

GYMNOSPERMAE

Cupressaceae

Juniperus oxycedrus subsp. *macrocarpa* (Sibth. & Sm.) Ball – Pcaesp, Eurymedit., W 4, F 3, R 5, S 2; !

Ephedraceae

Ephedra foeminea Forssk. – Pcaesp, E-Medit., W 3, F 2, Rx, S 2; Kar. 6146

Pinaceae

Pinus brutia Ten. – Pscap, E-Medit., W 3, F 3, Rx, S 2; Kar. 5482, 5493

ANGIOSPERMAE

DICOTYLEDONES

Anacardiaceae

Pistacia lentiscus L. – Pcaesp, S-Stenomedit.-Makarones., Wx, Fx, R 4, S 2; Kar. 5450, 5468

Boraginaceae

Alkanna orientalis (L.) Boiss. – Hscap, E-Medit.-Turan., W 2, F 3, R 3, S 1; Kar. 5686, 5856
Anchusa hybrida Ten. – Hscap, Stenomedit., W 3, F 4, R 3, S 1; Kar. 6084
Echium arenarium Guss. – Tscap, Stenomedit., W 4, Fx, R 4, S 1; Kar. 5685, 6163
Heliotropium dolosum De Not. – Tscap, Centromedit.-Turan., W 4, F 3, R 3, S 1; Kar. 6138
Myosotis ramosissima Rochels subsp. *ramosissima* – Tscap, Paleotemp., W 2-, F 3, R-, S 1, Kar. 5952, 6004

Campanulaceae

Campanula erinus L. – Tscap, Stenomedit., Wx, F 3, R 5, S 1

Capparidaceae

Capparis orientalis Veill. – NP, Eurymedit., W 3, F 3, R 5, S 2; Kar. 6139

Caryophyllaceae

Herniaria hirsuta L. – Tscap, Paleotemp., Wx, F 2, R 5-, S 2
Polycarpon tetraphyllum (L.) L. subsp. tetraphyllum – Tscap, Subcosmop., W 4, F 3, R 3-, S 1; Kar. 5615
* P. tetraphyllum subsp. diphyllum (Cav.) O. Bolòs & Font Quer – Tscap, Stenomedit., W 4, F 2, Rx, S 1; Kar. 6126
* Silene sedoides Poir. subsp. sedoides – Tscap, Stenomedit., W 4, F 2, R 3-, S 3; Kar. 5583
Stellaria media (L.) Vill. subsp. media – Trept, Cosmop., Wx, F 5, R 3-, S 1; Kar. 5953

Chenopodiaceae
* Atriplex halimus L. – NP, Medit.-Atl., W 3, F 5, R 5, S 4; !
Chenopodium murale L. – Tscap, Subcosmop., W 4, F 4, R 3-, S 2; Kar. 6035
* Salsola kali L. subsp. kali – Tscap, Paleotemp., W 4, F 2, Rx, S 3; Kar. 5584

Cistaceae

Cistus creticus L. subsp. creticus – Cfrut, E-Stenomedit., Wx, F 3, Rx, S 2; Kar. 5451
* C. parviflorus Lam. – Cfrut, E-Medit., W 4, F 2-, R 5, S 2; Kar. 5452, 5470
* C. salviifolius L. – Cfrut, Eurymedit., W 3, F 3, R 2, S 1; Kar. 5453
Fumana arabica (L.) Spach – Csuffr, S-Medit.-Turan., W 4, F 2, Rx, S 1; Kar. 5807
F. thymifolia (L.) Webb – Csuffr, Eurymedit., Wx, F 2, R 5, S 2; Kar. 5530, 6165
Helianthemum salicifolium (L.) Mill. – Tscap, Eurymedit., Wx, F 2, R 5, S 1; Kar. 5471
H. syriacum (Jacq.) Dum.-Cours. subsp. syriacum – Csuffr, Stenomedit., Wx, F 3, R 3, S 1; Kar. 6028
Tuberaria guttata (L.) Fourr. – Tscap, Eurymedit., Wx, F 2, R 2, S 1; Kar. 5768, 5783

Compositae

Aetheorhiza bulbosa subsp. microcephala Rech. f. – Gbulb, E-Stenomedit., Wx, F 4, Rx, S 2, Kar. 5723
Andryala integrifolia L. – Tscap, Stenomedit., W 4, F 3, R 3, S 1; Kar. 5484
* Anthemis pseudocotula Boiss. – Tscap, E-Medit., W 3, F 3, R 3, S 1
A. tomentosa L. subsp. tomentosa – Tscap, Stenomedit., Wx-, F 3-, R 4-, S 2; Kar. 5620
* Bellium minutum L. – Tscap, E-Medit., W 4, F 2-, R 4-, S 2; !
Carlina graeca Heldr. & Sart. – Hscap, NE-Stenomedit., Wx, F 3, R 4, S 2; Kar. 6088
Chrysanthemum coronarium L. – Tscap, Eurymedit., W 3, F 3, R 3, S 2; Kar. 5690
* Cichorium endivia subsp. divaricatum (Schousb.) P. D. Sell – Tscap, Stenomedit., W 4, F 4w, Rx, S 2
* C. pumilum Jacq. – Tscap, Stenomedit., W 4, F 4, Rx, S 2
* C. spinosum L. – Csuffr, Stenomedit., W 4, F 2, R 2, S 4

Conyza bonariensis (L.) Cronquist – Tscap, Trop.-Americ., W 4, F 2, R 3, S 1
Crepis micrantha Czerep. – Tscap, E-Medit., Wx, F 3, Rx, S 2; Kar. 5508
* C. multiflora Sm. – Tscap, E-Medit., Wx, F 3, Rx, S 2; Kar. 5454
C. neglecta L. subsp. neglecta – Tscap, Eurymedit.-N-Orient., Wx, F 2, Rx, S 2; Kar. 5485, 5724
Dittrichia graveolens (L.) Greuter – Tscap, Medit.-Turan., W 4, F 3, R 3, S 1; Kar. 6142
* D. viscosa (L.) Greuter – Tscap, Medit.-Turan., W 3, F 4, R 4-, S 1; Kar. 5646
Echinops spinosissimus subsp. bithynicus (Boiss.) Kozuharov – Hscap, E-Medit., W 4-, F 3-, R 3, S 2, Kar. 6145
Filago cretensis subsp. cycladum Wagenitz – Tscap, Aegean, W 2, F 2, R 3-, S 1; Kar. 5917
F. eriocarpa Guss. – Tscap, E-Stenomedit., W 3, F 2, R 2, S 1; Kar. 6089
Geropogon hybridus (L.) Sch. Bip. – Tscap, Stenomedit., W 4, F 2, R 5, S 1; Kar. 6170
Hedypnois cretica (L.) Dum-Cours. – Tscap, Stenomedit., Wx, Fx, Rx, S 2; Kar. 5593
* Helianthus annuus L. – Tscap, Cosmop., W 3, F 4, R 3, S 2
Helichrysum conglobatum (Viv.) Steud. – Csuffr, E-Stenomedit., W 3, F 4, R 4, S 2; Kar. 5532
Hypochaeris achyrophorus L. – Tscap, Stenomedit., Wx, F 2, Rx, S 2; Kar. 5957
H. glabra L. – Tscap, Eurymedit., W 1, F 3, R 2-, S 1; Kar. 5507
Logfia gallica L. – Tscap, Eurymedit., Wx, F 2, R 2, S 2; Kar. 5771, 5786
Otanthus maritimus (L.) Hoffmanns. & Link – Csuffr, Medit.-Atl., W 4, F 2, R 5, S 2; *Kar. 5642

Phagnalon graecum Boiss. – Csuffr, NE-Medit., Wx, F 3, Rx, S 2; *Kar. 5552

P. rupestre (L.) DC. – Csuffr, SW-Medit., W 3, F 3, R 2-, S 1; *Kar. 5531

Picnomon acarna (L.) Cass. – Tscap, E-Medit.-Atl., W, F 3, Rx, S 1; *Kar. 6140

Scolymus hispanicus L. – Hscap, E-Medit., W, F 3, Rx, S 1; *Kar. 6143

Senecio bicolor (Willd.) Tod. subsp. *bicolor* – Csuffr, Stenomedit., Wx-, F 3-, R 5-, Sx-; *Kar. 5589

S. vulgaris L. – Tscap, Cosmop., W 4, F 2, Rx, S 1

Sonchus asper subsp. *glaucescens* (Jordan) Ball – Hscap, Eurasiat., Wx, F 5, R 3, S 1; *Kar. 5688, 6167

S. oleraceus L. – Tscap, Subcosmop., Wx, F 3, R 3, S 1-; *Kar. 5486, 5509

S. tenerrimus L. – Tscap, Subcosmop., Wx, F 3, R 3, S 1; *Kar. 5597

Tyrimnus leucographus (L.) Cass. – Tscap, Stenomedit., W 2, F 4, R 1, S 1; *Kar. 5691

Uroserpium picroides (L.) Scop. ex F. W. Schmidt – Tscap, Eurymedit., W, F 3, R 4, S 2; *Kar. 5510, 5553

Convolvulaceae

Calystegia soldanella (L.) R. Br. – Grhiz, Cosmop., W 3, F 2, R 5, S 3; !

Convolvulus altheoides L. subsp. *altheoides* – Hscand, Stenomedit., W 3, F 3, Rx, S 1; *Kar. 5486, 5509

Cuscuta palaestina Boiss. subsp. *palaestina* – Tpar, SE-Medit., Wx, F 2, R 4-, S 1; *Kar. 5597

Crassulaceae

Sedum pallidum M. Biëb. – Tscap, SE-Eur. – Gbulb, E-Medit., Wx, F 1, Rx, S 2; *Kar. 5962

Umbilicus horizontalis (Guss.) DC. – Gbulb, Eurymedit., W 3-, F 2, Rx, S 1; *Kar. 5961

Cruciferae

Arabidopsis thaliana (L.) Meynh. – Tscap, Cosmop., W 2, F 3, R 2, S 1; *Kar. 5964

Biscutella didyma L. – Tscap, S-Medit.-Turan., Wx, F 2, Rx, S 2; *Kar. 5955

Brassica tournefortii Gouan – Tscap, Eurymedit., W 4, F 3, R 5, S 2; *Kar. 6171

Cakile maritima Scop. subsp. *maritima* – Tscap, Medit.-Atl., W 4, F 3, R 5, S 3; *Kar. 6147

Cardamine hirsuta L. – Tscap, Cosmop., W 2-, F 3, R 3-, S 1; *Kar. 5963

Diplotais muralis (L.) DC. – Tscap, N-Medit.-Atl., W 4, F 3, R 5, S 1; *Kar. 5969

Matthiola tricuspida (L.) R. Br. – Tscap, Stenomedit., W 4, F 3, R 5, S 2; *Kar. 5587

Raphanus raphanistrum L. subsp. *raphanistrum* – Tscap/Hscap, Paleotemp., W 4, F 3, R 2, S 1; *Kar. 6094

Sisymbrium orientale L. – Tscap, Eurymedit., W 4, F 4, R 4-, S 1; *Kar. 6096

Cucurbitaceae

Bryonia dioica Jacq. – Grhiz/Hscand, Eurymedit., W 3-, F 4, R 3, S 1; *Kar. 5965

Ericaceae

Arbutus unedo L. – Pcaesp, Stenomedit., W 3, F 5, R 1, S 1; *Kar. 5499

Erica manipuliflora Salisb. – Cfrut, E-Medit., Wx, F 3, Rx, S 2; *Kar. 5456

Euphorbiaceae

Chrozophora obliqua (Vahl) A. Juss. ex Spreng. – Tscap, S-Medit.-Turan., W 4, F 3, R 3, S 1; *Kar. 6147

Euphorbia dendroides L. – Crept, E-Stenomedit.-Makarones., W 3, F 3, R 5, S 2; *Kar. 6012

E. myrsinites L. – Crept, E-Stenomedit., W 3, F 3, R 4, S 2; *Kar. 5674

E. paralias L. – Cfrut, Stenomedit.-Atl., W 4, F 2, R 4, S 3; *Kar. 5588

E. peplus L. – Crept, Eurymedit., W 3, F 5, R 5, S 4; *Kar. 6148
E. peplus L. – Tscap, Cosmop., Wx, Fx, Rx, S 1; *Kar. 5487

Mercurialis annua L. – Tscap, Paleotemp., Wx, F 3, R 4, S 1; *Kar. 5698

Fagaceae

Quercus coccifera L. – Tscap, Stenomedit., Wx, F 4, R 5, S 1; *Kar. 5967

Frankeniaceae

Frankenia hirsuta L. – Csuffr, Medit.-Turan., W 4, F 2, Rx, S 4; *Kar. 5580, 6172

Gentianaceae

Centaurium erythraea Rafn subsp. *erythraea* – Hbienn, Paleotemp., W 4, Fx, R 4, S 2; *Kar. 6064

C. tenuiflorum subsp. *acutiflorum* (Schott) Zeltner – Tscap, Eurymedit., W 4, F 2, R 4, S 2; *Kar. 5835

Geraniaceae

Erodium cicutarium (L.) L'Her. – Hros, Subcosmop., Wx, F 2, Rx, S 1; *Kar. 6098

Geranium robertianum subsp. *purpureum* (Vill.) Nyman – Tscap, Eurymedit., Wx, F 2, Rx, S 1; *Kar. 5513

G. robertianum L. subsp. *robertianum* – Tscap, Eurymedit., W 1, F 3, Rx-, S 2; *Kar. 5757, 5920

G. rotundifolium L. – Tscap, Paleotemp., W 4, F 5w, R 3, S 1; *Kar. 6149

Guttiferae

Hypericum empetrifolium Willd. subsp. *empetrifolium* – Cfrut, E-Medit., W 4, Fx, R 5, S 1; *Kar. 5462

Labiatae

Ajuga chamaepitys subsp. *chia* (Schreb.) Arcang. – Hscap, Eurymedit., Wx-, F 3-, Rx-, S 1

A. iva (L.) Schreb. – Csuffr, Stenomedit., Wx, F 4, R 4-, S 1; *Kar. 6153

Ceridothymus capitatus (L.) Reichenb.f. – Cfrut, E-Stenomedit., Wx, F 3, R 5, S 2; *

Lavandula stoechas L. subsp. *stoechas* – Cfrut, Stenomedit., W 3, F 3, R 2, S 1; *Kar. 5479

Satureja nervosa Desf. – Cfrut, Stenomedit., Wx, F 2, R 4, S 1; *Kar. 5515

S. thymbra L. – Cfrut, E-Medit., Wx, F 3, Rx, S 2; *Kar. 5464

Sideritis lanata L. – Tscap, E-Medit. (Aegean region & S Balkan peninsula), W 4, F 1, R 5, S 1

Teucrium capitatum L. – Csuffr, Stenomedit., W 4, F 2, Rx, S 2; *Kar. 5463

Leguminosae

Anthyllis hermanniae L. – Cfrut, NE-Stenomedit., Wx, F 3, Rx, S 2; *Kar. 5466

Astragalus pelecinus (L.) Barneby – Tscap, Eurymedit., W 4, F 2, R 2-, S 1; *Kar. 5575

Calicotome villosa (Poir.) Link – Pcaesp, Stenomedit., Wx, F 3, Rx, S 2; *Kar. 5682

Ceratonia siliqua L. – Pcaesp, S-Medit., W 4, F 3, R 4, S 1; *Kar. 5577

Genista acanthooclada DC. – Cfrut, Stenomedit., Wx, F 4, Rx, S 2; *

Hippocrepis ciliata Willd. – Tscap, Stenomedit., W 3, F 2, R 4, S 1; *Kar. 5568

Hymenocarpos circinnatus (L.) Savi – Tscap, Eurymedit., Wx, F 2, R 4, S 1; *Kar. 5569

Lotus corniculatus L. – Hscap, Cosmop., W 4, F 2, R 2-, S 1; *Kar. 5707

L. clytoides L. – Csuffr, Stenomedit., W 4, F 3, R 4, S 2; *

L. edulis L. – Tscap, Stenomedit., W 4, F 3, Rx, S 1; *Kar. 6156

L. halophilus Boiss. & Spruner – Tscap, S-Medit., W 4, F 2, R 5, S 2; *Kar. 5606

L. peregrinus L. – Tscap, E-Stenomedit., W 4, F 2, R 5, S 1; *Kar. 5576

Lupinus angustifolius L. – Tscap, Stenomedit., W 4, F 3, R 2, S 1; *Kar. 6154

L. pilosus L. – Tscap, Paleotemp., W 3, F 4, R 4, S 1; *Kar. 6015

Medicago littoralis Rohde ex Lois. – Tscap, Eurymedit., Wx, F 2, Rx, S 2; *Kar. 5607

M. marina L. – Crept, Eurymedit., W 4, F 2, R 5-, S 2; *Kar. 5608, 5631

M. polymorpha L. – Tscap, Subcosmop., Wx, Fx, Rx, S 2; *Kar. 5577

M. tuberculata (Retz.) Willd. – Tscap, Stenomedit., W 3, F 3, R 4, S 1; *Kar. 6157
Melilotus indicus (L.) All. – Tscap, Eurymedit., W 4, F 3, R 4, S 2; Kar. 5574, 5660
Onobrychis caput-galli (L.) Lam. – Tscap, Eurymedit., Wx, F 2, Rx, S 2; Kar. 5567, 6109
* Ononis diffusa Ten. – Tscap, S-Medit., W 4, F 3, R 4-, S 2; Kar. 5545, 5571
Ornithopus pinnatus (Mill.) Druce – Tscap, Medit.-Atl., W 3-, F 5w, R 2-, S 1; Kar. 6132
Trifolium angustifolium L. – Tscap, Eurymedit., Wx, F 2, Rx, S 1; Kar. 5543, 5564
* Tr. arvense L. – Tscap, Paleotemp., Wx, F 2, R 1-, S 1; Kar. 5543
* Tr. caput-galli – Tscap, Paleotemp., Wx, F 2, Rx, S 1; Kar. 5566
Tr. glomeratum L. – Tscap, Eurymedit., W 3, F 5w, R 1-, S 1; Kar. 5779
* Tr. hirtum All. – Tscap, Eurymedit., W 4-, F 2, R 1-, S 1; Kar. 5573
Tr. lappaceum L. – Tscap, Eurymedit., W 3, F 3, R 4, S 2; Kar. 6114
* Tr. scabrum L. – Tscap, Eurymedit., Wx, F 2, Rx, S 1; Kar. 5578, 5632
T. tomentosum L. – Trept, Eurymedit., Wx, F 2, R 2, S 1; Kar. 6118
Vicia cretica Boiss. & Heldr. – Tscap, NE-Medit., Wx, Fx, R 4, S 1-; Kar. 5492, 5516
* V. lathyroides L. – Tscap, Eurymedit., W 2, F 3, R 3-, S 1; Kar. 5945
* V. villosa subsp. eriocarpa (Hausskn.) P.W. Ball – Tscap, Stenomedit.-Orient., Wx, F 3, R 3, S 2; Kar. 6078

Malvaceae
* Malva nicaeensis All. – Tscap, Stenomedit., W 4, F 3, R 3, S 1
* M. parviflora L. – Tscap, Eurymedit., W 4-, F 2, Rx, S 1; Kar. 6159

Myrtaceae
* Myrtus communis L. subsp. communis – Pcaesp, Stenomedit., W 3, F 6w, R 2, S 1; Kar. 5519

Oleaceae
* Olea europaea subsp. oleaster (Hoffmanns. & Link) Negodi – Pcaesp, Eurymedit., Wx, F 2, Rx, S 2; Kar. 5743

Orobanchaceae
Orobanche oxyloba (Reut.) G. Beck – Tpar, Eurymedit., Wx, F 2, R 5, S 1; Kar. 5764
O. ramosa L. subsp. ramosa – Tpar, Paleotemp., W 3, F 5, R 3-, S 1; Kar. 6161

Papaveraceae
* Fumaria officinalis L. subsp. officinalis – Tscap, Subcosmop., Wx, F 3, R 3-, S 1; Kar. 5521
* Glaucium flavum Crantz – Hscap, Eurymedit., W 4, F 3, R 3, S 2; Kar. 5710
Papaver dubium L. subsp. dubium – Tscap, Medit.-Turan., W 2, F 2, R 4-, S 1; Kar. 6119

Plantaginaceae
Plantago afra L. – Tscap, Eurymedit., Wx, F 2, Rx, S 1; Kar. 6121
* P. albicans L. – Csuffr, Stenomedit., Wx, F 1, Rx, S 2; !
P. coronopus L. subsp. coronopus – Tscap/Hros, Eurymedit., Wx, F 2, Rx, S 2; Kar. 6122, 6135

Plumbaginaceae
Limonium echiooides (L.) Mill. – Tros, S-Medit., W 4, F 2, R 5, S 2; Kar. 5844
L. graecum (Poir.) Rech. f. subsp. graecum – Csuffr, E-Medit., W 4, F 2, R 5, S 4; Kar. 5610, 5634
L. graecum subsp. ammophilon Papatsou & Phitos – Csuffr, E-Aeg., W 4, F 2, R 5, S 4; Kar. 5611, 5635

Polygonaceae
* Polygonum maritimum L. – Trept, Subcosmop., W 3, F 5, R 5, S 4; Kar. 5590
* Rumex bucephalophorus subsp. gallicus (Steinh.) Rech. f. – Tscap, Stenomedit., Wx, F 2, R 2, S 2; Kar. 5664
Primulaceae
* Anagallis arvensis (L.) L. – Trept, Subcosmop., Wx, Fx, Rx, S 2; Kar. 5823, 5845
*Asterolinon linum-stellatum (L.) Duby – Tscp, Eurymedit., Wx, F 2, Rx, S 2; Kar. 5523
* Cyclamen hederifolium Aiton – Gbulb, Eurymedit., Wx, Fx, R 5, S 1; !

Rafflesiaceae
* Cyttinus hypocistis (L.) L. subsp. hypocistis – Grad, Medit.-Macarones., W 3-, F 3-, Rx-, S 1; Kar. 5988

Ranunculaceae
Anemone coronaria L. – Gbulb, Eurymedit., W 3, F 3, R 5, S 1; Kar. 5989
* Clematis cirrhosa L. – Plian, Stenomedit.-Turan., Wx, F 4, R 4, S 1; !

Rosaceae
Sarcopoterium spinosum (L.) Spach – Cfrut, E-Medit., Wx, Fx, Rx, S 1; Kar. 5580

Rubiaceae
Galium aparine L. – Tscp, Paleotemp., Wx, F 3, Rx, S 2; Kar. 5714
G. murale (L.) All. – Tscp, Eurymedit., Wx, F 2, Rx-, S 1; Kar. 5992
G. recurvum Req. – Tscp, E-Medit., Wx, F 2, R 2, S 1; Kar. 6162
Rubia tenuifolia D'Urv. – Pcaesp, E-Medit., Wx, F 3, R 5, S 1; Kar. 5847
* Valantia hispida L. – Tscp, Eurymedit., Wx, F 2, Rx, S 2; Kar. 5467
V. muralis L. – Tscp, Stenomedit., Wx, F 2, R 5-, S 1; Kar. 6021

Santalaceae
Thesium bergeri Zucc. – Csuffr, E-Medit., Wx-, F 3-, Rx-, S 1; Kar. 5876

Scrophulariaceae
Misopates orontium (L.) Raf. – Tscp, Eurymedit., Wx, F 2, Rx, S 1; Kar. 5794
* Scrophularia heterophylla Willd. – Csuffr, S-Balkan-Aeg., W 4, F 2, R 4, S 1; Kar. 6023
S. peregrina L. – Tscp, Eurymedit., W 4, F 4, R 4, S 1; Kar. 5994
* Veronica cymbalaria Bodard – Trept, Eurymedit., Wx, F 2, Rx, S 1; Kar. 5993

Solanaceae
* Solanum nigrum L. – Tscp, Cosmop., Wx, F 3, R 3, S 1; Kar. 5766

Theligionaceae
Theligionum cynocrambe L. – Tscp, Stenomedit., W 2, F 3, R 4, S 1; Kar. 5525

Thymelaeaceae
* Daphne gniodoides Jaub. & Spach – NP, E-Medit., Wx, F 3, Rx, S 2:-; Kar. 5878, 5995
* Thymelaea tartonraira subsp. argentea (Sm.) Holmboe – Cfrut, E-Medit., Wx, F 3, Rx, S 2; Kar. 5548

Umbelliferae
* Crichthum maritimum L. – Csuffr, Medit.-Atl., W 4, F 2, Rx-, S 3; !
Daucus involucratus Sm. – Tscp, E-Stenomedit., W 4, F 1, R 4-, S 2; Kar. 5549, 5825
* Eryngium maritimum L. – Grhiz, Medit.-Atl., W 4, F 2, R 5, S 3; Kar. 5591
Orlaya daucorlaya Murb. – Tscp, E-Medit., W 2, F 4, R 3, S 1; Kar. 5883

Urticaceae
* Parietaria cretica L. – Hscap, E-Stenomedit., W 3, F 3, R 4, S 1; Kar. 5636
P. lusitanica L. – Trept, Eurymedit., Wx, F 2, R 4-, S 1; Kar. 5947
Urtica pilulifera L. – Tscp, Eurymedit., Wx, F 4, R 3, S 1; Kar. 5998
Valerianaceae
Centranthus calcitrapae (L.) Dufr. subsp. calcitrapa – Tscap, Stenomedit., Wx, F 2, R 4, S 1; Kar. 5936, 5999

MONOCOTYLEDONES

Amaryllidaceae
Pancratium maritimum L. – Gbulb, Stenomedit., W 4, F 2, R 5, S 2; Kar. 5609

Araceae
Arisarum vulgare Targ.-Tozz. subsp. vulgare – Grhiz, Eurymedit., Wx, F 3, R 4, S 1; Kar. 5502

Cyperaceae
Carex distans L. – Hcaesp, Eurymedit., Wx, F 6, R 3, S 1; Kar. 5534
Cyperus capitatus Vand. – Grhiz, Stenomedit., W 4, F 3, R 4, S 2; Kar. 5599

Gramineae
Aegilops neglecta Req. ex Bertol. – Tcaesp, Medit.-Turan., W 4, F 2, R 5, S 2; Kar. 6102
Aira caryophyllea L. – Tscap, Paleosubtrop., W, Fx, R 2, S 2; Kar. 5923
* A. elegantissima Schur subsp. elegantissima – Tcaesp, Eurymedit., Wx, Fx, R 2, S 2; Kar. 5775, 5789
Avellinia michelli (Savi) Parl. – Tscap, Stenomedit., W 3-, F 2, R 2-, S 1; Kar. 5927
Avena barbata subsp. atherantha (C. Koch) Rocha Afonso – Tcaesp, Eurymedit., Wx, Fx, Rx, S 2; Kar. 5457, 5536
A. barbata Pott ex Link subsp. barbata – Tcaesp, Eurymedit.-Turan., Wx, Rx, S 2; Kar. 5969
A A. elegantissima Schur subsp. elegantissima – Tcaesp, Eurymedit., Wx, Fx, R 2, S 2; Kar. 5457, 5536

A. barbata Pott ex Link subsp. barbata – Tcaesp, Eurymedit.-Turan., Wx, Rx, S 2; Kar. 5969

Briza maxima L. – Tcaesp, Paleosubtrop., Wx, F 2, Rx, S 1; Kar. 5972
Bromus diandrus Roth – Tcaesp, Eurymedit., W 3, F 5, R 3, S 1; Kar. 5702, 5970
B. fasciculatus C. Presl – Tcaesp, S-Medit., Wx, F 2, Rx, S 2; Kar. 5457, 5488
B. intermedius Guss. – Tcaesp, Eurymedit., Wx, F 2, Rx, S 1; Kar. 6151
B. rubens L. – Tcaesp. – S-Medit.-Turan., W 3, F 1, R 5, S 2; Kar. 5706
* B. tectorum L. – Tcaesp, Paleotemp., Wx, F 2, Rx, S 2; Kar. 5461
* Catapodium rigidum* (L.) C. A. Hubb. subsp. rigidum – Tcaesp, Eurymedit., Wx, F 2, Rx, S 2; Kar. 6070, 6104

* Corynephorus divaricatus* (Pourr.) Breistr. – Tscap, Stenomedit., W 3, F 2, R 4, S 2; Kar. 6129
Cynodon dactylon (L.) Pers. – Grhiz, Cosmop., W 4, F 3, R 3, S 1; Kar. 6150
Dactylis glomerata subsp. hispanica (Roth.) Nyman – Hcaesp, Eurymedit., Wx, F 2, Rx, S 2; Kar. 5559
Elymus farctus subsp. rechingeri – Grhiz, E-Medit., W 4, F 3, R 5, S 3; Kar. 5601, 5625
* Gastridium ventricosum* (Gouan) Schinz & Thell. – Tcaesp, Eurymedit.-Turan., W, F 3, R 3-, S 2; Kar. 5975, 6072
Hyparrhenia hirta (L.) Stapf – Hcaesp, Paleotrop., Wx, F 3, Rx, S 1; Kar. 5972
* Hordeum murinum* L. subsp. murinum – Tscap, Circumbor., Wx, F 3, Rx, S 2; Kar. 5604
* Hordeum vulgare* L. – Tscap, Cosmop., Wx, F 3, Rx, S 1!
Hypharrhena hirta (L.) Stapf – Hcaesp, Paleotrop., W, F 4, F 3, R 3-, S 1; Kar. 5560, 5816
* Lagurus ovatus* L. – Tcaesp, Eurymedit., Wx, F 3, F 2, S 2; Kar. 5476
Lolium perenne L. – Hcaesp, Circumbor., Wx, Fx, Rx, S 2; Kar. 6152
Lolium rigidum Gaudin subsp. rigidum – Tcaesp, Paleosubtrop., W, F 4, R 5, S 3; Kar. 5974, 6071
Parapholis marginata Runemark – Tscap, E-Medit., W 4, F 3, Rx, S 4; Kar. 5589
Phleum crypsoides (d’Urv.) Hackel – Tscap, E-Medit., W, F 4, R 5, S 2; Kar. 5600
* Piptatherum miliaceum* (L.) Cosson – Hcaesp, Eurymedit.-Turan., Wx, F 4, R 3-, S 2; Kar. 5561
Poa bulbosa L. – Hcaesp, Paleotemp., Wx, F 3, Rx, S 1; Kar. 5894
Psilurus incurvus (Gouan) Schinz & Thell. – Tcaesp, Eurymedit., Wx, F 2, R 2, S 1; Kar. 5460, 5474
2. Flora

The vascular flora of the island Gyali comprises 241 native taxa of vascular plants belonging to 55 families, 178 genera, 196 species and 45 subspecies. Four of the taxa are pteridophytes and 237 are spermatophytes (Table 2). 149 taxa are new records for the island, compared to Papatsou (1975) and Davis (1965-88) who reported 92 taxa. Our floristic inventory does not include species introduced by the mining company for land reclamation and landscaping, such as *Eucalyptus camaldulensis*, *Cupressus sempervirens*, *Robinia pseudoacacia*, *Acacia cyanophylla*, *Nerium oleander*, *Medicago arborea*, *Tamarix* sp. and *Spartium junceum*.

Of the 55 vascular plant families present on Gyali, seven dicotyledonous and two monocotyledonous families, thus 16.3 % of the families recorded, are represented by more than five species or subspecies. Together these nine families comprise 150 taxa (Table 3) or 62.2 % of the island’s vascular plant flora. *Leguminosae, Compositae* and *Graminae* and the other families of Table 3 are among those best adapted to the ecological conditions of the Mediterranean region. Indeed, many other floristic studies of insular and continental Greece (Brofas & Karetsos 1992, Carlström 1987, Christodoulakis 1986, Georgiadis 1983, Georgiadis & al. 1986, Panitsa 1997, Panitsa & al. 1994, etc.) have confirmed that these families are the richest in taxa in the Greek flora.

The life-form spectrum of the island’s flora is presented in Table 4. Therophytes dominate and make up 58.9 % of the flora; chamaephytes follow with 14.9 % and hemicryptophytes with 10.4 %.

For the chorological analysis, all taxa were classified into three chorological units. The widespread unit includes mainly cosmopolitan-subcosmopolitan, paleotemperate, paleotropical-paleosubtropical and Mediterranean-Turanian taxa. The Mediterranean unit consists mainly of eury-Mediterranean, steno-Mediterranean and E Mediterranean taxa, and the endemic unit consists of taxa endemic to the Aegean islands. The results of the floristic analysis are presented in Table 5 and show that the Mediterranean unit dominates with 70.1 %. Widespread taxa account for 29.1 % of the flora. The endemic unit has only 0.8 % and is represented by *Limonium graecum* subsp. *ammophilon* (E Aegean endemic) and *Filago cretensis* subsp. *cycladum* (Aegean endemic).

Limodorum abortivum (L.) Swartz – Grhiz, Eurymedit., W 2-, F 4-, R 4-, S 1 ;
Neotinea maculata (Desf.) Stearn – Gbulb, Eurymedit., W 2, F 4, R 4, S 1 ;
Orchis coriophora subsp. *fragrans* (Pollini) Surde – Gbulb, Eurymedit., W 3, F 3, R 5, S 1 ;
Orchis sancta L. – Gbulb, E-Medit., W 3, F 3, R 5, S 1 ;
Urginea maritima (L.) Baker – Gbulb, Eurymedit.-Makarones., W 1, F 4, R 4, S 1 ;

Liliaceae

Allium staticiforme Sm. – Gbulb, E-Medit., W 4, F 2, R 5, S 2 ;
Gagea graeca (L.) Teracc. – Gbulb, Eurymedit., Wx, F 3, Rx, S 1 ;
Muscari commutatum Guss. – Gbulb, Eurymedit., W 4, F 2, R 5, S 1 ;
M. comosum (L.) Mill. – Gbulb, Eurymedit., W 4, F 1, R 5, S 1 ;
M. neglectum Guss. – Gbulb, Eurymedit., W 2, F 4, R 5, S 1 ;

Orchidaceae

Limodorum abortivum (L.) Swartz – Grhiz, Eurymedit., W 2-, F 4-, R 4-, S 1 ;
Neotinea maculata (Desf.) Stearn – Gbulb, Eurymedit., W 2, F 4, R 4, S 1 ;
Orchis coriophora subsp. *fragrans* (Pollini) Surde – Gbulb, Eurymedit., W 3, F 3, R 5, S 1 ;
Orchis sancta L. – Gbulb, E-Medit., W 3, F 3, R 5, S 1 ;
Table 2. Numbers of vascular plant taxa in the flora of Gyali.

<table>
<thead>
<tr>
<th>Systematic unit</th>
<th>Families</th>
<th>Genera</th>
<th>Species</th>
<th>Subspecies</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteridophyta</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>–</td>
<td>4</td>
<td>1.7</td>
</tr>
<tr>
<td>Gymnospermae</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Dicotyledones</td>
<td>43</td>
<td>144</td>
<td>147</td>
<td>38</td>
<td>185</td>
<td>76.8</td>
</tr>
<tr>
<td>Monocotyledones</td>
<td>6</td>
<td>37</td>
<td>44</td>
<td>5</td>
<td>49</td>
<td>20.3</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>178</td>
<td>196</td>
<td>45</td>
<td>241</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3. The nine largest families in the flora of Gyali.

<table>
<thead>
<tr>
<th>Families</th>
<th>Number of taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Compositae</td>
<td>38</td>
</tr>
<tr>
<td>2 Gramineae</td>
<td>35</td>
</tr>
<tr>
<td>3 Leguminosae</td>
<td>32</td>
</tr>
<tr>
<td>4 Cruciferae</td>
<td>10</td>
</tr>
<tr>
<td>5 Cistaceae</td>
<td>8</td>
</tr>
<tr>
<td>6 Labiatae</td>
<td>8</td>
</tr>
<tr>
<td>7 Euphorbiaceae</td>
<td>7</td>
</tr>
<tr>
<td>8 Rubiaceae</td>
<td>6</td>
</tr>
<tr>
<td>9 Liliaceae</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 4. Life form spectrum of the flora of Gyali.

<table>
<thead>
<tr>
<th>Life forms</th>
<th>Species and subspecies</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therophytes (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tscap: scapose t.</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Tcaesp: caespitose t.</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Tros: rosulate t.</td>
<td>1</td>
<td>58.9</td>
</tr>
<tr>
<td>Trept: reptant t.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Tpar: parasite t.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hemicryptophytes (H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hscap: scapose h.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Hcaesp: caespitose h.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Hros: rosulate h.</td>
<td>4</td>
<td>10.4</td>
</tr>
<tr>
<td>Hrept: reptant h.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hscand: scandent h.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hbienn: biennial h.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chamaephytes (C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cfrut: fruticose c.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Csuffr: suffruticose c.</td>
<td>19</td>
<td>14.9</td>
</tr>
<tr>
<td>Chrept: reptant c.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geophytes (G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gbulb: bulbose g.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Grhiz: rhizomatose g.</td>
<td>9</td>
<td>9.6</td>
</tr>
<tr>
<td>Gpar: parasite g.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Phanerophytes (P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP: Nano-p.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pscap: scapose p.</td>
<td>1</td>
<td>6.2</td>
</tr>
<tr>
<td>Pcaesp: caespitose p.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>241</td>
<td>100.0</td>
</tr>
</tbody>
</table>
An additional analysis was made with respect to the indicator values proposed by Böhling (1995) for Naxos. These values seem to be transferable to the Gyali flora. The vascular flora of Gyali was accordingly assigned to ecological groups on the basis of warmth (W), moisture (F), soil reaction (R) and salt stress tolerance (S), as presented in Table 6. Our results show that 29 % of the taxa are indicators of extreme warmth and 72 % indicators of very dry or dry habitats. Acidophilous or calcifuge taxa account for 43 % of the taxa, and 45.2 % are halotolerant, facultative or obligatory halophytes.

3. Vegetation

Four different vegetation formations, which are distinguished by vegetation structure and dominant species, characterize the island (Fig. 3): a) Pinus brutia forests, b) scrubs and phrygana, c) psammophylic, and d) halophytic formations covering very restricted areas.

Each formation and its main characteristics are briefly described below.

a. Pinus brutia forest

The Pinus brutia forest represents the only natural arboreal vegetation on Gyali. It occurs in broken stands and scattered trees on the NE hill, mainly on the eastern and northeastern slopes, while it covers the entire SW hill except the pumice stone quarry and a narrow coastal strip where bushes prevail.

The forest is generally of uneven age with various degrees of canopy cover, although small, evenly aged stands may be found. Maximum measured tree age (by increment borer) is one hundred years. The forest grows from sea level to the hill tops and trees are (3-)6-7(-9) m tall with tabular crowns. In deep soils of ravines on the NE slope and the wind protected plateau of the SW hill, some trees reach 12 meters in height and have conical crowns. In contrast, on lower, northern slopes, which are exposed to strong winds, the trees have a bushy form and a height of less than three meters. Their canopies are flag-shaped and branches reach the ground. Based on the physiognomy of the understorey shrub layer and dominant species, the following vegetation types were distinguished:

a1. Type with Pistacia lentiscus: It is found in restricted, non-degraded areas on the northwestern slope of the SW hill and is characterized by the dominance of P. lentiscus. Several other species participate in this formation, with lower frequency and coverage degree, such as Olea europaea subsp. oleaster, Ceratonia siliqua, Quercus coccifera, Arbutus unedo, Myrtus communis and Erica manipuliflora.

a2. Type with Erica manipuliflora: This type is found on the eastern slopes of the NE hill and the western slope of the SW hill, on shallow soils, and occupies roughly half the Pinus brutia forest. This understorey vegetation is thick and consists almost exclusively of E. manipuliflora. In some small openings, dispersed herbaceous species such as Psilurus incurvus and Aira elegan-tissima grow.

a3. Type with phryganic species: It occurs on the eastern and northeastern slopes of the NE hill and constitutes the open Pinus brutia formations (broken stands, scattered trees). It is characterized by the dominant phryganic species Cistus salviifolius, C. parviflorus, C. incanus subsp. creticus, Hypericum empetrifolium and Lavandula stoechas. Erica manipuliflora also grows in this type and is sometimes associated with species such as Olea europaea subsp. oleaster, Ceratonia siliqua, Quercus coccifera, Satureja thymbra, Anthyllis hermanniae and Thymelaeae tarton-raira.

According to their floristic composition, as referred above, the Pinus brutia forests belong to the association Ceratonio-Pistacetum lentisci Zohary & Orshan 1959 of the alliance Ceratonio-Rhamnion Barbero-Quézel 1979 and the order Pistacio-Rhamnetalia Rivas-Martinez 1974. Open Pinus brutia stands participating in a vegetation complex with phrygana communities could be assigned to the alliance Cistion orientale (Cisto-Micromerietea (-etalia) Oberdorfer 1954). Pinus halepensis forests with similar floristics have been reported from the island of Euboea (Krause & al. 1963).
Table 5. Chorological spectrum of the flora of the island Gyali.

<table>
<thead>
<tr>
<th>Chorological unit</th>
<th>Chorological group (abbreviation)</th>
<th>Number of taxa</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Widespread</td>
<td>Cosmopolitan-Subcosmopolitan (Cosmop., Subcosmop., Cosmop.-subtrop.)</td>
<td>25</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Paleotropical-Paleosubtropical (Paleotrop., Paleosubtrop.)</td>
<td>4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Paleotemperate (Paleotemp.)</td>
<td>15</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Eurasian, Eurasian-temperate (Eurasiat., Euras.-temp.)</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Circumboreal (Circumbor.)</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Southeast-European (SE-Europ.)</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Tropical-American (Trop.-Americ.)</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Mediterranean-Atlantic (Medit.-Atl.)</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Mediterranean-Turanian (Medit.-Turan.)</td>
<td>4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Stenomediterranea-Turanian (Stenomedit.-Turan.)</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>South Mediterranean-Turanian (S-Medit.-Turan.)</td>
<td>3</td>
<td>1.3</td>
</tr>
<tr>
<td>2. Mediterranean</td>
<td>East Mediterranean (E-Medit.)</td>
<td>26</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>Eurymediterranean (Eurymedit.)</td>
<td>57</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>Stenomediterranean (Stenomedit.)</td>
<td>58</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>East Stenomediterranean (E-Stenomedit.)</td>
<td>11</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>South Mediterranean (S-Medit.)</td>
<td>9</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>South Balkan-Aegean (S-Balkan-Aeg.)</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>NE-Medit., NE-Stenomedit., SW-Medit., SE-Medit.</td>
<td>6</td>
<td>2.5</td>
</tr>
<tr>
<td>3. Endemic</td>
<td>Aegean (Aeg.)</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>East Aegean (E-Aeg.)</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>241</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6. Percentages of indicator values after Böhling (1995) for warmth (W), moisture (F), soil reaction (R) and salt stress (S) in the flora of Gyali.

The indicator value scales comprise eight units for moisture (F), five units for soil reaction (R) and four units for warmth (W) and salt tolerance (S). Value 1 reflects the lowest expression of a site factor, 4, 5 or 8 the highest. – Abbreviations: W 1: indicators of moderate cold, W 2: moderate warmth, W 3: warmth, W 4: extreme warmth; F 1: indicators of extremely dry habitats, F 2: very dry habitats, F 3: dry habitats, F 4: moderately dry habitats, F 5: medium moist (fresh) habitats; R 1: basiphilous species, R 2: calcicolous, R 3: slightly acid-slightly alkaline, R 4: acidophilous, R 5: calcifuge; S 1: halophobe species, S 2: halotolerant, S 3: facultative halophytes, S 4: obligitory halophytes; x = indifferent (no indicator properties).

<table>
<thead>
<tr>
<th>W (%)</th>
<th>F (%)</th>
<th>R (%)</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>37.6</td>
<td>8.1</td>
</tr>
<tr>
<td>3</td>
<td>17.1</td>
<td>34.4</td>
<td>13.6</td>
</tr>
<tr>
<td>4</td>
<td>29.0</td>
<td>11.7</td>
<td>20.4</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>5.0</td>
<td>22.6</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>0.9</td>
<td>–</td>
</tr>
<tr>
<td>x</td>
<td>48.0</td>
<td>7.2</td>
<td>32.6</td>
</tr>
</tbody>
</table>
Fig. 4. *Pinus brutia* forest on Gyali island, NE hill, SE aspect. – Photograph by G. Brofas, 1995.
b. Scrubs and phrygana

Scrub and phrygana vegetation is mostly mixed in varying degrees. Pure bush formations are restricted; they are dominated by Pistacia lentiscus, while Erica manipuliflora, Ceratonia siliqua, Olea europaea subsp. oleaster, Myrtus communis, Quercus coccifera, Arbutus unedo, etc. occur with lower frequencies. Juniperus oxycedrus subsp. macrocarpa grows near the coast and in some sites it is the dominant species. Small, relic stands of Juniperus are also found in the interior of the island. In some areas on the northwestern slope of the perlite hill, Daphne gnidioides and Euphorbia dendroides dominate the vegetation, and on the rocky outcrops of the northeastern hill scattered Ephedra foeminea and Capparis orientalis plants are found.

Degradation of scrub formations in large areas has led to the decline of shrubs and the dominance of phryganic species such as Erica manipuliflora, Cistus creticus subsp. creticus, C. parviflorus, Cistus salviifolius, Lavandula stoechas subsp. stoechas, Hypericum empetrifolium, Phagnalon graecum, Anthyllis hermanniae, Thymelaea tartonraira subsp. argentea and Teucrium
capitatum. The dominant species depends on the site; for example, Anthyllis hermanniae dominates the isthmus, Cistus creticus subsp. creticus and C. parviflorus dominate the northwestern slopes of the perlite hill, Lavandula stoechas subsp. stoechas prevails on the old terraces, and in some areas Erica manipuliflora grows in pure formations. Coridothymus capitatus is generally absent from the island except for the vegetation on the southeast coast.

c. Psammophilous formations
Psammophilous vegetation is found on the northern and southern coasts of the isthmus and the narrow coastal strip to the east of the SW hill. It is found on coastal sands between high tide drift line and the inland shrubs and composed of mainly psammophilous and nitrophilous species such as: Otanthus maritimus, Elymus farctus subsp. rechingeri, Cyperus capitatus, Parapholis marginata, Pancratium maritimum, Medicago marina, Eryngium maritimum, Euphorbia paralias, Limonium graecum subsp. ammophilum, Cakile maritima, Matthiola tricuspidata, Polygonum maritimum, Medicago littoralis, Lotus halophilus, Salsola kali subsp. kali, Silene sedoides, Lagurus ovatus, Anthemis tomentosa subsp. tomentosa, Urospernum picroides, Crepis micrantha, Hordeum murinum subsp. murinum, Phleum crypsoideas, Hedypnois cretica and Vulpia fasciculata.

The Ammophiletum arundinaceae (class Ammophiletetum) seems to be absent on Gyali, while the Eryngio-Elymetum farcti Gehu 1986 (Agropyretum mediterraneum Br.-Bl. 1933) is well represented. Species of the Cakiletea are also present but do not form their typical plant communities.

d. Halophytic formations
Halophytic vegetation is found only in very restricted areas. The only saline soils on Gyali cover an area of about 0.1 ha on the eastern edge of the SW hill, near the isthmus. This area is flooded periodically and dry during the summer.

Halophytic vegetation does not cover all the saline soil but grows in scattered patches. The vegetation of the inner area consists only of Limonium graecum subsp. graecum and subsp. ammophilon, while around the edges and on steep slopes Frankenia hirsuta and Parapholis marginata occur. Halophytic vegetation it also present on some low coastal areas covered periodically by waves.

Discussion and conclusions
Compared to other islands of the same size, the vegetation of Gyali is considerably diverse and this is mainly due to the Pinus brutia forest, which is the only one known to grow on perlite and pumice substrates and on such a small island. Small islands are covered usually with degraded bushes and phrygana only. The preservation of this forest is probably associated to the lack of permanent human inhabitants and the easily weathering substrate, which aids the creation of topsoil and easy root penetration and regeneration.

The Gyali Pinus brutia forest represents an isolated natural population. It is among the lowest forests of the species and falls into the lowest site-quality class of P. brutia in Greece (Tziovaras & Apatsidis, unpublished data). The forest is dominated by trees with tabular crowns, while in few parts of the island with deep soils some trees reach 12 meters in height and have conical crowns. According to Nahal (1983), the tabular crown form appears in old age but it is also associated with site fertility. In sites with low fertility, height growth stops early (50-60 years) and tree crowns become tabular in shape. In fertile sites height growth continues further (80-90 years) and the crown remains conical.

The understorey vegetation differs from that of other Pinus brutia forests known presently in Greece. It shows some affinity with degraded P. brutia forests on Crete (Barbero & Quezel 1980) but is very similar to the understorey of Ceratonio-Pinetum brutiae on the Aegean coastal region of Anatolia (Zohary 1973).
Pure scrub formations have a very limited distribution on Gyali and consist of typical species of the Ceratonio-Pistacietum association. They are usually mixed, in various degrees, with phrygana communities that cover much larger areas. The restricted bush formations and significant presence of phrygana have resulted from the combination of harsh ecological conditions and human activities, lasting from the Neolithic period up to present (Samson 1988). This combination has greatly affected the physiognomy and composition of the vegetation. The island’s phrygana is secondary and represents degraded stages of the *Pinus brutia* forest and scrub communities. Their presence in abandoned fields shows the progressive re-establishment of the natural vegetation. On Gyali, abandoned fields are dominated by *Lavandula stoechas* and other phrygana species, but not by *Sarcopoterium spinosum* (Rechinger 1951, Panitsa & al. 1994). It is possible that *L. stoechas* communities constitute a successive stage of a previous plant community, since the fields have been abandoned for many years. *L. stoechas* is a characteristic species of acidic soils but grows on Gyali on soils with a pH >7.

The absence of *Juniperus phoenicea* from Gyali is rather surprising, as this species is very common in the East Aegean islands. However, *J. phoenicea* is also absent from the neighbouring island of Nisyros, which has a similar geology (Papatsou 1975). Its absence is either due to the soil conditions or the destruction of a previous community and its subsequent inability to re-establish from elsewhere, due to its hardly dispersable diaspores. The absence of *Quercus macrolepis*, which grows on Nisyros and Kos, can be explained in the same way. Whereas the extinction of a species on the mainland may be temporary, on an island it may rather turn out to be permanent due to the lesser probability of its re-establishing.

On Gyali, vegetation of the sandy beaches is represented mainly by the Eryngio-Elymetum farcti association. The absence of the Ammophiletum arundinaceae association is due to the lack of well-developed dune formations. Halophytic formations are very restricted and with low species diversity. The dominant taxon is the local endemic *Limonium graecum* subsp. *ammophilon*, and low species diversity is probably due to the lack of more extended halophytic habitats.

The high proportions of the Mediterranean species and therophytes in the flora of Gyali indicate the Mediterranean character of the island. High numbers of therophytes are also attributed to human activities, especially grazing pressure (Barbero & al. 1990), which can cause important changes in floristic composition and vegetation structure (Pettit & al. 1995).

The very low percentage of endemic taxa and the absence of chorological elements with distributions restricted to the East Aegean and the neighbouring coasts of Asia minor was rather expected. This can be attributed to the recent geographical isolation of the area. The low altitude (180 m maximum) and rather uniform geomorphology and climate of the island minimize the role of isolation as a floral differentiation factor even further.

Classification of the flora of Gyali based on the ecological factors of warmth, moisture, soil reaction and salt stress shows that about one third of the taxa are indicators of extreme warmth and more than two thirds of the taxa are indicators of extremely, very dry or dry habitats. These results reinforce the argument of harsh ecological and climatic conditions of the island.

Future studies on Gyali should include vegetation monitoring to help comprehending the ecological succession process in the harsh conditions affecting, particularly, small islands. For this reason, inventories of the flora and of taxa with special demands for warmth, moisture, soil reaction and salt stress, should be extended. This would provide the necessary data for an ecological evaluation of the Aegean islands, which is indispensible for the future conservation and management of this very sensitive insular region.

References

Barbero, M., Bonin, G., Loisel, R. & Quézel, P. 1990: Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean Basin. – Vegetatio 87: 151-173.

Zohary, M. 1973: Geobotanical foundation of the Middle East 1-2. – Stuttgart.

Adresses of the authors:
G. Brofas & G. Karetsos, Institute of Mediterranean Forest Ecosystems and Forest Products Technology, Terma Alkmanos, 11528, Ilissia, Athens, Greece; e-mail: nana@ath.forthnet.gr
M. Panitsa & M. Theocharopoulos, Division of Plant Biology, Department of Biology, University of Patras, 26500 Patras, Greece.