On the taxonomic status and the phylogenetic relationships of some unispecific Mediterranean genera of Compositae-Anthemideae I. Brocchia, Endopappus and Heliocauta

Author: Christoph Oberprieler

Source: Willdenowia, 34(1) : 39-57

Published By: Botanic Garden and Botanical Museum Berlin (BGBM)

URL: https://doi.org/10.3372/wi.34.34102

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
CHRISTOPH OBERPRIELER

On the taxonomic status and the phylogenetic relationships of some unispecific Mediterranean genera of Compositae-Anthemideae I. Brocchia, Endopappus and Heliocauta

Abstract

Sequences of the nrDNA internal transcribed spacer (ITS) region and the cpDNA trnL/trnF intergenic spacer (IGS) region were analysed for 67 representative species of 54 genera of Compositae-Anthemideae to ascertain the systematic position of the three unispecific Mediterranean genera Brocchia, Endopappus and Heliocauta. For Brocchia cinerea, which was considered to be closely related to Cotula due to its 4-lobed corolla of disc florets, a position among Mediterranean genera clearly distinct from Cotula but with unresolved sister group relationships is demonstrated. For Endopappus macrocarpus a close relationship with Tripleurospermum was suggested due to similarities in achene morphology; the molecular data, however, support its position distinctly distant from Tripleurospermum and among genera with a western Mediterranean centre of distribution characterized by a 5bp deletion in the trnL/trnF IGS. For Heliocauta atlantica, which was hitherto placed in the vicinity of Hippolytia from central Asia, the molecular data reveal its sister group relationship with the strictly Mediterranean genus Anacyclus. First efforts are made to date the diversification of members of the tribe based on sequence divergence rates (c. 1 % = 0.75 Myr) and assuming an origin of the tribe in the Middle Oligocene (c. 25 Myr). It is concluded that lineages within the clade of Mediterranean and Eurasian representatives characterized by a 17bp deletion in ITS2 diverged in the Middle Miocene (c. 15 Myr).

Introduction

According to the most recent conspectus of Compositae-Anthemideae in the Mediterranean and its adjacent European areas (Euro+Med project; Greuter & al. 2003) the tribe is represented in this region with 52 genera, corresponding to nearly the half of genera (111) assigned to this tribe by Oberprieler & al. (in press). The species number of around 620 for the above-mentioned area covered by Med-Checklist (Greuter & al. 1984-89) and Flora Europaea (Tutin & al. 1964-80) shows that this region plays a paramount role in the diversity of the whole tribe with its c. 1741 species...
(Bremer & Humphries 1993), the two other centres of diversity being southern Africa and central and eastern Asia.

Recent molecular studies have shown that many southern African and central and eastern Asian genera form a basal grade in the phylogeny of the tribe while a majority of the mentioned 52 genera forms a monophyletic group (Watson & al. 2000). If southern hemisphere genera, which have only been naturalized in the Mediterranean and adjacent Eurasian regions (Cotula, Eriocephalus, Soliva) or reach this area with only single species (Lasiospermum, Pentzia), are excluded, this group is reduced to 47 genera. With the previous studies concentrated on the molecular phylogeny of Mediterranean genera (Francisco-Ortega & al. 1997, Oberprieler & Vogt 2000, Francisco-Ortega & al. 2001, Oberprieler 2001, 2002) sequence information for the internal transcribed spacer region of the nuclear ribosomal repeat (nrDNA ITS) is now available for representatives of all but the six unispecific genera Brocchia, Daveaua, Endopappus, Heliocauta, Leucocyclus and Nananthea. With the present publication on Brocchia, Endopappus and Heliocauta, and a forthcoming paper on the remaining genera (Oberprieler, in prep.) this gap will be filled and a comprehensive discussion on the taxonomy of the Mediterranean Anthemideae and their evolutionary history is envisaged.

The genus Brocchia Vis. was described by Visiani (1836) based on the annual herb Cotula cinerea Delile. The species occurs in N Africa and the Near East. It is characterised by a dense indumentum of basifixed hairs, alternate, pinnatisect leaves, or lobed leaves, and distinctly pedunculate, discoid capitula with involucral bracts with narrow, pale membranous margins. The receptacle is hemispherical to conical and epealate. The yellow disc florets are apically 4-lobed and the obovoid achenes provided with 4 inconspicuous lateral and adaxial ribs, a marginally rounded apical plate, and a rather thin pericarp with large, elongated myxogenic cells but devoid of any resin canals or sacs.

Endopappus Sch. Bip. was described by Schultz [Bipontinus] (1860) with the sole species E. macrocarpus Sch. Bip., an annual glabrous herb endemic to Morocco, Algeria, Tunisia and Libya. The species is characterised by alternate, pinnatisect leaves, solitary, radiate pedunculate capitula and involucral bracts with pale to brown scarious margins. The receptacle is flat to slightly convex and devoid of receptacular scales. Ray florets are female and fertile, the limb colour (white or yellow) is used to discriminate between two subspecies [subsp. macrocarpum and subsp. maroccanus (Jahand. & al.) Ibn Tattou]. The disc florets have a 5-lobed corolla, and the achenes are dorso-ventrally flattened, 3-angled with one adaxial and two lateral ribs, an apical corona, and the pericarp is furnished with myxogenic cells on the abaxial side and along the ribs.

Heliocauta Humphries was described comparatively recently by Humphries (1977) who based it on the Moroccan endemic Anacyclus atlantica Litard. & Maire, a creeping perennial herb with a premorse caudex, an indumentum of basifixed hairs and 3-pinnatisect leaves in a basal rosette. The capitula are solitary, pedunculate and discoid, the involucral bracts having pale to dark brown scarious margins, and the conical receptacle is furnished with narrowly elliptical and moderately canaliculate paleas. Disc florets are again 5-lobed, and achenes are narrowly obovoid, somewhat dorso-ventrally flattened, and 4-5-ribbed with 2 distinct lateral ribs. The achene apex possesses a minute corona formed by a dentate rim, while the thin pericarp lacks myxogenic cells but is furnished with elongated resin sacs.

Material and methods

Plant material. – Sixty-seven representatives from 54 genera of Compositae-Anthemideae were included in at least one of the present analyses. For the nrDNA ITS and the cpDNA trnL/trnF IGS data set (data sets 1 and 2), the main aim was a comprehensive sampling of the Mediterranean and Eurasian genera with an addition of sequence information for Asian and southern hemisphere centred genera. Sequence information for most of the taxa came from former publications (Oberprieler & Vogt 2000, Oberprieler 2001, 2002) and from published and unpublished EMBL/GenBank/
DDBJ accessions (Table 1), while sequences for Brocchia cinerea, Endopappus macrocarpus, Heliocauta atlantica and Hippolytia doliophylla (data set 1 and 2) along with cpDNA trnL/trnF IGS sequences for Anthemisrigescens, Gonorhpermum fruticosum, Hymemostemma pseudanthemis, Ismelia carinata, Leucanthemella serotina and Lugoia revoluta (data set 2) are new to science and were obtained from herbarium specimens. Additionally, for the detailed analysis of the position of Heliocauta atlantica (data set 3) I included yet unpublished nrDNA ITS information for eight species of Anacyclus (Table 1). Following results of Watson & al. (2000), I used Ursinia anthenmoïdes (L.) Poir. as outgroup in the analysis of data set 1, and – due to the lack of sequence information for Ursinia – Pentzia flabelliciformis Willd. in the analysis of data set 2. Outgroup selection for the analysis of data set 3 followed the results of Oberprieler & Vogt (2000) and of the preceding analyses of data sets 1 and 2.

DNA isolation, PCR amplification, sequencing. – DNA was extracted from 30-40 mg dried and crushed leaf material according to Hellwig & al. (1999) and Oberprieler & Vogt (2000) using Qiagen tip-20 columns or Qiagen’s DNeasy Plant Kit (Qiagen Inc., Hilden, Germany). Amplification of nrDNA ITS and trnL/trnF IGS was performed using primers designed by White & al. (1990) and Taberlet & al. (1991), respectively, and following the protocols given by Oberprieler & Vogt (2000). Amplified products were purified with a Qiaquick PCR cleaning column and filtration kit (Qiagen Inc.). Sequences were obtained using an automated sequencer (ABI 377; at the sequencing facility maintained by the DLMBC sequencing company, Rüdersdorf bei Berlin, Germany) and the ABI Prism BigDye Terminator technology. All new nrITS and cpDNA trnL/trnF IGS sequences were submitted to the EMBL sequence data bank (Table 1).

Sequence alignment. – Sequences were aligned using CLUSTAL W (Thompson & al. 1994) and alignments subsequently corrected manually. For the maximum parsimony analyses, gaps in aligned sequences were treated as missing data, but phylogenetically informative indels were coded as additional binary characters. The alignments are deposited as electronic supplement at http://www.bgbm.org/bgbm/library/publikat/willd34/oberprieler-1.htm.

Phylogenetic reconstructions

Maximum parsimony analysis. – Maximum parsimony (MP) analyses of the data sets were performed using the heuristic search algorithm of PAUP* version 4.0b10 (Swofford 2002) with ACCTRAN, MULPARS and TBR branch swapping in action. Character states were specified unordered and unweighted. 1000 (data set 1) and 10 000 (data sets 2 and 3) random addition sequence replicates were performed to locate potential islands of most parsimonious trees. Limitations of computer memory made it necessary to constrain the maximum number of most parsimonious trees saved in each replicate to five (MAXTREES = 5) in the analysis of data set 2. Support for clades of the strict consensus tree of the MP analysis was evaluated using bootstrap (Felsenstein 1985) and decay analyses (Bremer 1988). Bootstrap analyses were performed using the following settings: 100 bootstrap replicates, 1000 random addition sequence replicates per bootstrap replicate, ACCTRAN, TBR, and MULPARS. In data set 1 and 2, MAXTREES was set to 2 per replicate. Decay analyses were carried out using AutoDecay 3.0 (Eriksson & Wikström 1995). For each constraint analysis, 1000 random addition sequence replicates were performed (MAXTREES = 2 in data set 2).

Model-based phylogenetic reconstructions. – In addition to the above described cladistic (MP) analyses, data set 1 (with gap coding excluded) was also analysed with two model-based approaches to phylogenetic inference, the Maximum-Likelihood (ML) method (Felsenstein 1981, Kishino & Hasegawa 1989) and a Bayesian Inference (BI) approach (Lewis 2001). Since both methods are dependent on assumptions about the process of DNA substitution (a model of DNA evolution), the program MODELTEST version 3.06 (Posada & Crandall 1998) was used to find the model (among the 56 models tested) that best fits the underlying sequence information. This resulted in the acceptance of the model of Tamura & Nei (1993) with a gamma distribution of substitution rates over the sites (TrN + Γ), the base frequencies being freqA = 0.2670, freqC = 0.2019, freqG = 0.2155 and...
Table 1. List of taxa and sources of plant material analysed. Unless otherwise stated, the cited vouchers are in the herbarium of the author.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Accession</th>
<th>EMBL/GenBank/DDBJ accession number</th>
<th>ITS1</th>
<th>ITS2</th>
<th>trnL/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. linearilobus Boiss. & Reuter</td>
<td>Algeria, Bou-Sfer, 24.5.1980, Dubuis 15595 (M)</td>
<td>AJ748766</td>
<td>AJ748767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ajania pacifica (Nakai) Bremer & Humphries</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77787</td>
<td>L77787</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arctanthis arcticum (L.) Tsvelev</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77756</td>
<td>L77756</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argyranthemum foeniculaceum (Willd.) Sch. B.,</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77799</td>
<td>L77799</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athanasia crithmifolia (L.) L.</td>
<td>Francisco-Ortega & al. (2001)</td>
<td>AF155241</td>
<td>AF155278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brocchia cinerea (Del.) Vis.</td>
<td>Tunisia, Tozeur, 30.3.1998, Bauke & al. 509</td>
<td>AJ748778</td>
<td>AJ748786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. indicum L.</td>
<td>Zhao & al. (unpubl.)</td>
<td></td>
<td>AF314606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cota rigescens (Willd.) Holub</td>
<td>Oberprieler (2001)</td>
<td>AJ312801</td>
<td>AJ312830</td>
<td>AJ748787</td>
<td></td>
</tr>
<tr>
<td>Cotula coronopifolia L.</td>
<td>Wagstaff & Breitwieser (2002)</td>
<td>AF422118</td>
<td>AF422118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxon</td>
<td>Accession</td>
<td>EMBL/GenBank/DDBJ accession number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glebionis corruaria (L.) Spach</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77741 L77741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Maire) Maire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gynospermum fruticosum (C. Smith ex Link) Less.</td>
<td>Francisco-Ortega & al. (2001)</td>
<td>AF155245 AF155282</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteranemis visciduliria Schott</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77761 L77761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippolydellia dolichophylla (Kitam.) Bremer & Humphries</td>
<td>Pakistan, Bulan-ridge, 4100 m, 28.7.1993, Nätzer 174 (B)</td>
<td>AJ748784 AJ748785 AJ748791</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulanthera calva (Hutch.) Kållersjö</td>
<td>Francisco-Ortega & al. (2001)</td>
<td>AF155251 AF155288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ismelia carinata (Schousboe) Sch. Bip.</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77764 L77764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moroco, S Agadir, 26.4.1994, Kilian 3384 (B)</td>
<td>AJ748793</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepinaria serratula (D. G. Lloyd) D. G. Lloyd & C. J. Webb</td>
<td>Wugstaff & Breitwieser (2002)</td>
<td>AF422125 AF422125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucanthemella serotina (L.) Tzvelev</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77766 L77766</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucanthemum vulgare subsp. palrifolium Sennenn</td>
<td>Oberprieler & Vogt (2000)</td>
<td>AF155252 AF155289</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonas annua (L.) Vines & Druce</td>
<td>Francisco-Ortega & al. (2001)</td>
<td>L77776 L77776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nipponanthemum nipponicum (Maxim.) Kitam.</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77772 L77772</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolongea hispanica G. López & C. E. Jarvis</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>AJ3296479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursinia anthemoides (L.) Poir.</td>
<td>Francisco-Ortega & al. (1997)</td>
<td>L77783 L77783</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1. Strict consensus tree of 337 equally most parsimonious trees (1248 steps; CI = 0.379, autapomorphies excluded; RI = 0.568), based on nrDNA ITS sequence information (data set 1). Numbers above the lines are bootstrap values, numbers below the lines are decay values. Subtribal affinities according to Bremer & Humphries (1993) are indicated by bar patterns.

Endopappus macrocarpus
Rhodanthemum hosmaniense
Leucanthemum vulgare
Chrysanthoglossum deserticola
Glossopappus macrothus
Mauranthemum gaetulum
Coleostephus myconis
Plagiis fontanensis
Otospermum glabrum
Heteromerera fuscata
Chlamyphora tridentata
Leucanthemopsis alpina
Prolongoa hispanica
Hymenostemma pseudanthemis
Castreanthemum decebuxii
Phalacrocarpum oppositifolium
Anthemis cretica
Triplereurispernum inodorum
Anthemis chia
Anthemis odontostephana
Cota rigescens
Gonospermum fruticosum
Lugo revoluta
Tansacetum corymbosum
Anacyclus radiatus
Heliocauta atlantica
Otanthus maritimus
Achilea ptarmica
Matricaria discoidtea
Brocchia cinerea
Ajania pacifica
Chrysanthemum coreanum
Arctanthemum arcticum
Artemisia vulgaris
Nipponanthemum nipponicum
Leucanthemella serotina
Hippolyta dolichophylla
Cymbopappus adenosolen
Aphanasia crithmifolia
Cotula coronopifolia
Leptinella serrata
Ursinia anthemoides
Inulanthera calva

Glebionis coronaria
Ismelia carnata
Argyranthemum foeniculaceum
Heteranthemis viscidiflora
Aronsothia pubescens
Nivellea nivei
Rheinolepis ionadoides
Melcoschis halimioldus
Santolina rosmarifolia
Chamaemelum nobile
Clandanthis arbuscis
Lepidophorum repandum
Lonas annuus

Fig. 1. Strict consensus tree of 337 equally most parsimonious trees (1248 steps; CI = 0.379, autapomorphies excluded; RI = 0.568), based on nrDNA ITS sequence information (data set 1). Numbers above the lines are bootstrap values, numbers below the lines are decay values. Subtribal affinities according to Bremer & Humphries (1993) are indicated by bar patterns.

Using these parameters, a heuristic ML search was performed with PAUP* version 4.0b10 (Swofford 2002) with TBR branch swapping, 100 random addition sequence replicates and the number of rearrangements tried limited to 1000 per replicate.

The same parameters of the TrN + Γ model were also used in the BI approach performed with the software programme MRBAYES version 2.01 (Huelsenbeck & Ronquist 2001a-b). Four Metropolis-coupled Markov chain Monte Carlo (MCMC) chains with incremental heating temperature of 0.2 were run for 201 000 generations and sampled every 10th generation. The burn-in period was determined graphically, and the first 200 of the 20 100 sampled trees were discarded. Estimation of tree topology and posterior probabilities of clades were based on the remaining 19 900 trees.

Results

Nuclear ribosomal DNA ITS (data set 1).

- The ITS alignment is 513 bp long (278 bp for ITS1 and 235 bp for ITS2) with 325 variable positions including 228 phylogenetically informative substitutions, 44 phylogenetically informative indels of 1 to 5 bp length, and an additional, informative 17 bp-deletion in ITS2. The heuristic MP search yielded 337 equally most parsimonious trees (in 212 islands) with a length of 1248 steps, a consistency index (CI, with autapomorphies excluded) of 0.3789, and a retention index (RI) of 0.5679. The strict consensus tree of all equally most parsimonious trees is shown in Fig. 1. The three unspecific Mediterranean genera under study are consistently nested within a moderately supported (89 % bootstrap support, decay value of 2 steps) clade of genera with a Mediterranean and/or Eurasian centre of distribution. This clade is also supported by the above-mentioned 17bp deletion in ITS2. While sister group relationships are well supported below this node (e.g. 96 % bootstrap support and a decay value of 7 for the sister group relationship between the Mediterranean/Eurasian group and the *Artemisia* group of genera), the tree topology within the 17bp deletion clade is not well settled; thus leaving the phylogenetic relationships of *Brocchia* and *Endopappus* unresolved and the sister group relationship of *Heliocauta* and *Anacyclus radiatus* weakly supported (74 %/4 steps).

The ML search yielded the tree depicted in Fig. 2 (56 896 rearrangements examined, $-\ln L = 6248.16037$). Its main topology is congruent with the consensus tree of the MP analysis. Main differences are the positions of *Matricaria discoidea*, *Lonas annua*, and *Lepidophorum repandum*, the latter two taxa consistently forming a monophyletic group in the MP analysis but with deviating positions and long branches in the ML tree. The positions of the three genera in question found in the MP analysis, however, are supported by this method of phylogenetic reconstruction.

Finally, the Bayesian analysis gave the tree topology in Fig. 3. Most of the monophyletic groups with bootstrap support values higher than 70 % from the MP analysis receive statistical support by a posterior probability of at least 95 % in this analysis. However, there are several exceptions to this observation: while the sister group relationships of *Rhetinolepis* / *Mecomischus* and *Chrysanthoglossum* / *Glossopappus* are supported by high bootstrap values, the posterior probabilities for these clades are not significant. Conversely, two large assemblages of genera (i.e. the group of *Gleobionis* through *Phalacrocarpum* and the clade of *Anthemis* through *Matricaria* in Fig. 1) with bootstrap values below 50 % receive significant statistical support in the Bayesian analysis (posterior probabilities of 95 % and 96 %, respectively). Finally, the 17bp deletion clade with its moderate bootstrap support of 89 % in the MP analysis receives no support from the Bayesian analysis (posterior probability of 60%). Low support values for further subclades render the phylogenetic relationships of *Endopappus* and *Brocchia* unsettled, while the position *Heliocauta* receives further corroboration.

Chloroplast DNA trnL/trnF IGS (data set 2).

- The trnL/trnF IGS alignment is 469 bp long with 135 variable positions, including 52 phylogenetically informative substitutions and 17 phylogenetically informative indels of one to 14 bp length. The restricted (see Material and Methods,
Fig. 2. Phylogenetic tree from a maximum likelihood analysis of nrDNA ITS sequence data (data set 1, indel information excluded) based on the TrN + Γ model of DNA substitution (Tamura & Nei 1993) with base frequencies, gamma distribution parameter α, and substitution rate matrix given in the text.
Fig. 3. Phylogenetic tree from a Bayesian analysis of nrDNA ITS sequence data (data set 1, indel information excluded) based on the TrN + Γ model of DNA substitution (Tamura & Nei 1993) with base frequencies, gamma distribution parameter α and substitution rate matrix given in the text. Tree topology and posterior probabilities ($\times 100$) of clades were based on 19 900 trees from a MCMC chain run for 201 000 generations.
above) heuristic MP search yielded 20,145 equally most parsimonious trees (in 4029 islands) with a length of 239 steps, a consistency index (CI, with autapomorphies excluded) of 0.6111, and a retention index (RI) of 0.7358. The strict consensus tree of all equally most parsimonious trees is shown in Fig. 4. Despite the relatively high CI and RI values of the trees found, most of the monophyletic groups of the consensus tree receive very low support, the exceptions being the clade of Leucanthemopsis, Hymenostemma and Prolongoa (100% / 11), the clade of subtribe Chrysantheminae sensu Bremer & Humphries (1993; i.e. Argyranthemum, Chrysanthemum, Heteranthemis and Ismelia; 84% / 3) and the sister group relationships of Glossopappus and Mauranthesm (97% / 4), Lepidophorum and Lonas (73% / 3), Aaronsohnia and Nivellea (99% / 4) and Mecomischus and Rhetinolepis (75% / 1). All taxa characterised by a 5bp-deletion at alignment positions 337-341 form a monophyletic, though scarcely supported group, the only exception being the representative of Anacyclus, which falls within this clade despite the lack of this deletion.

Nuclear ribosomal DNA ITS of Anacyclus species and Heliocauta (data set 3). – The ITS alignment of this data set is 467 bp long with 144 variable positions including 63 phylogenetically informative substitutions and eight informative indels of one to seven bp length. The heuristic MP search yielded 11 equally most parsimonious trees (in one island) with a length of 258 steps, a consistency index (CI, with autapomorphies excluded) of 0.5497 and a retention index (RI) of 0.6546. The strict consensus tree of all equally most parsimonious trees is shown in Fig. 5. It shows the consistent, but only weakly supported (74% / 3 steps decay) placement of Heliocauta atlantica as the sister group of a monophyletic, moderately supported (88% / 3 steps decay) genus Anacyclus.

Discussion

The present study adds nrDNA ITS and cpDNA trnL-trnF IGS sequence information for three unspecific Mediterranean Anthemideae genera to the data sets published by Francisco-Ortega & al. (1997) and Oberprieler & Vogt (2000). With the exception of Daveaua Willk. ex Mariz, Leucocyclus Boiss. and Nananthea DC. (Oberprieler, in prep.), sequence information for these two markers is now available for all Mediterranean genera of the tribe (when genera with distribution centres in the southern hemisphere that have been either naturalised in the Mediterranean, i.e. Soliva, Eriocephalus, or reach this area with only single species, i.e. Lastiospermum, Pentzia, are excluded from consideration).

In accordance with the results of previous studies by Francisco-Ortega & al. (1997) and Oberprieler & Vogt (2000) based on nrDNA ITS and on nrDNA ITS and cpDNA trnL-trnF IGS sequence information, respectively, and Watson & al. (2000) based on ndhF sequences, the present analysis adds further corroboration to the observation that most of the genera with a centre of distribution in western Eurasia and the Mediterranean region (including Macaronesia) form a monophyletic group. This clade receives a considerable bootstrap and decay index support in the MP analysis (89% / 2) of the nrDNA data but lacks a significant posterior probability (PP) in the BI approach (PP = 0.6). This is considered to be mainly due to the inclusion of gap information in the MP analyses and the omission of this information in the ML and BI analyses.

In contrast to former, less comprehensive studies of cpDNA trnL-trnF IGS sequence variation in Mediterranean Anthemideae (Oberprieler & Vogt 2000), the MP tree received from the present sampling of genera is highly unresolved and contributes little to our understanding of the phylogeny of Anthemideae in the Mediterranean and Eurasian region. Nevertheless, this marker provides a highly informative character, a 5bp deletion, which characterises a monophyletic group also found in the BI analyses of the nrDNA ITS data set.

Evolutionary history of Mediterranean Compositae-Anthemideae. – Recently published, calibrated nrDNA ITS rates in different families of flowering plants were found to be around 1% = 1 Myr (Gossypium; Wendel & al. 1995), 1% = 0.6-1.1 Myr (Gentianella; Von Hagen & Kadereit 2001), 1% = 0.6-1.3 Myr (Soldanella; Zhang & al. 2001), 1% = 0.6 Myr (Robinsonia; Sang & al. 1995)
Fig. 4. Strict consensus tree of 20,145 equally most parsimonious trees (239 steps; CI = 0.611, autapomorphies excluded; RI = 0.736), based on sequence information from the cpDNA trnL/trnF IGS region (data set 2). Numbers above the lines are bootstrap values, numbers below the lines are decay values.
Fig. 5. Strict consensus tree of 11 equally most parsimonious trees (258 steps; CI = 0.55, autapomorphies excluded; RI = 0.6546), based on sequence information from nrDNA ITS of *Anacyclus* spp. and *Heliocauta* (data set 3). Numbers above the lines are bootstrap values, numbers below the lines are decay values.
and 1 % = 0.6-1.1 Myr (Lepidium; Mummenhoff & al. 2004). Maximum divergence [based on the Kimura two parameter (K2P) model of DNA evolution] in the present Anthemideae data set was found to be 33.6 % (between Cotula coronopifolia and Lepidophorum repandum), thus arguing for a minimum age of the tribe of 20.2 to 37 Myr (Tertiary, Late Eocene to Early Miocene). Since it is hypothesized that the Compositae diverged from their sister family (Calyceraceae) in South America in the Late Eocene to Early Oligocene (c. 38 Myr; DeVore & Stuessy 1995, Bohm & Stuessy 2001) and that from these early origins in South America have rapidly dispersed into the rest of the world giving rise to the present subfamilies and tribes until the Middle Miocene (c. 10 Myr; Graham 1996), a minimum age of Anthemideae of around 20 Myr appears more plausible than the upper boundary of 37 Myr. Taking into account, however, that the earliest fossil pollen record of representatives of this tribe is based on an Artemisia type from Late Oligocene (Europe) to Early (western North America) or Middle Miocene (eastern North America) as given in Graham (1996), and following molecular phylogenies (Watson & al. 2000) that point to a S African origin of the tribe (from where data on fossil pollen are lacking) and a relatively derived position of Artemisiinae within the tribe, we have to assume that the divergence of the southern hemisphere genera around Cotula and the rest of the tribe dates to at least the Middle Oligocene (c. 25 Myr), thus resulting in a nrDNA ITS divergence rate of 1% = 0.75 Myr for the Anthemideae.

Nuclear ribosomal DNA ITS sequence divergence within the monophyletic group of Mediterranean and Eurasian genera (characterized by the 17bp deletion in ITS2) ranges from 0.4 to 20.4 % (10.8 % mean; K2P sequence divergences). Using the rate calculated above as a rough estimate of the age of the Mediterranean and Eurasian lineage under study, we could assume that this monophyletic group dates back to around 15 Myr; hence to a Tertiary (Middle Miocene) origin.

Sequence divergence within the monophyletic group of genera with a western Mediterranean centre of distribution was found to range from 0.4 to 19.7 % (11.47 % mean; K2P sequence divergences), indicating that this clade characterized by the 5bp deletion in cpDNA trnL/trnF IGS has its origin around 14.8 Myr ago (Tertiary, Middle Miocene). This may show that the deep split between genera with a predominantly eastern Mediterranean and Eurasian distribution (the species-rich genera Achillea, Anthemis/Cota, Tanacetum) and those genera with a predominantly or exclusively western Mediterranean distribution (e.g. Lepidophorum, Leucanthemum, Lonas, Santolina) emerged soon after the diversification of the whole monophyletic group of Mediterranean and western Eurasian Anthemideae (see above). Further, it is tempting to speculate on the Late Miocene (Messinian, i.e. 5.3-5.6 Myr) desiccation of the Mediterranean basin (“Messinian salinity crisis”, Hsü 1972) and its following flooding as a driving force of diversification in both lineages (species-richness in Achillea, Anthemis/Cota, Tanacetum; genera-richness in the western Mediterranean clade): some arguments for this hypothesis may be the mean sequence divergence among the representatives of Anthemis and Cota being 5.84 and 4.13 %, respectively (Oberprieler 2001, Lo Presti & Oberprieler, unpubl.) corresponding to mean ages of 4.4 and 3.1 Myr), the sequence divergence between Tanacetum corymbosum and Gonospermum/Lugoa (the latter two genera being endemics of the Canary Islands) of around 4.1 % (~3.1 Myr), and the separation of Leucanthemum (Iberian peninsula, Central Europe) and Rhodanthemum (N Africa) at around 3.4 Myr (4.53 % sequence divergence).

However, as may be seen from the different branch lengths in the phylograms from the ML and BI analyses, it appears reasonable that there is a considerable amount of rate heterogeneity in the molecular marker (nrDNA ITS) which may be attributable to the wealth of different life forms (annuals vs. perennials) and different breeding systems (selfing vs. outcrossing; cf. Uitz 1970) in the Mediterranean representatives of the Anthemideae. Therefore, the above-mentioned dating must be considered highly speculative until sound calibrations of a molecular clock for the ITS marker are made for this group.

2001) showing that most of the subtribes erected or accepted by Bremer & Humphries (1993) based on morphological, anatomical, cytological and phytochemical evidence are far from being monophyletic assemblages. This is especially obvious for the subtribe Matricariinae to which two of the three genera of special interest of the present paper (i.e. *Brocchia* sub *Cotula*, *Endopappus*) were assigned by Bremer & Humphries (1993). Members of this subtribe are found scattered all over the phylogenetic trees based on nrDNA ITS sequences, with the southern hemisphere representatives (*Cotula, Leptinella* and *Cymbopappus*) close to the base of the tree and the northern hemisphere genera as members of the clade characterized by a 17bp deletion in ITS2. This shows that the subtribe is considerably polyphyletic and that the characters used by Bremer & Humphries (1993) to circumscribe this entity (achenes with myxogenic cells on abaxial surface and on the ribs of the adaxial surface, corona adaxially long) are highly homoplasious.

The same holds true for the subtribe Tanacetinae, which was provisionally adopted by Bremer & Humphries (1993) to comprise *Tanacetum* and some of its alleged close relatives, being aware, however, of the probable paraphyly of this entity. According to our present results it appears obvious that the *Tanacetinae* sensu Bremer & Humphries are even a polyphyletic assemblage of genera, with at least one of them (*Hippitylia*) being more closely related to members of the subtribe Artemisiinae. Following the phylogenetic reconstructions of Watson & al. (2000) based on ndhF sequence information, the genus *Lepidolopha* may be also closer related to this subtribe with its centre of distribution in central and eastern Asia. As noted by Bremer & Humphries (1993), both the genus *Tanacetum* and the generic complex around it is in need of detailed investigations since several other genera and even subtribes may have their sister group within *Tanacetum*. Molecular and morphological studies to solve this “key question” in the Anthemideae are on the way (Oberprieler, unpubl.) and may contribute to a more natural infratribal classification.

Brocchia Vis. – The phylogenetic position of *Brocchia cinerea* in the present analyses is unequivocal. In all trees based on nrDNA ITS sequence variation (MP, ML, BI analyses) the species is member of the monophyletic group of Mediterranean and western Eurasian genera (89 % bootstrap support in MP, PP = 0.6 in BI, see discussion above), but appears to be the first split-off at the base of this clade. While the latter receives little support from the MP analysis (bootstrap support < 50 %, 1 step decay), it is significantly backed by the BI analysis (PP = 0.95). On the other hand, due to the unresolved and badly supported topology received from the phylogenetic analysis (MP) of cpDNA *trnL/trnF* IGS sequence variation (Fig. 4), this marker contributes little to the further understanding of the relationships of *Brocchia*.

All nrDNA ITS analyses definitively argue against a close relationship of *Brocchia cinerea* with *Cotula* to which the species was ascribed by Delile (1813), but also in the most recent generic revision of the tribe by Bremer & Humphries (1993). The latter authors, however, already considered the species as “aberrant within *Cotula*” (Bremer & Humphries 1993: 158) and noted that “the matter requires further studies.” Support for the generic independence of *Brocchia* from *Cotula* comes from cytological evidence: while *Brocchia cinerea* was found to have a diploid chromosome number based on \(x = 9 \) (Reese 1957, Oberprieler & Vogt 1993), *Cotula* is characterized by an extensive ploidy series with a basic chromosome numbers of \(x = 8, 9, \) and 10. Additionally, the occurrence of 4-lobed corollas of tubular florets that are found in *Brocchia* and in *Cotula* does not point to a close relationship of these two genera since similar corollas are observed both in the southern hemisphere genera *Foveolina, Hillardia, Inezia, Leptinella, Lidbeckia, Myxopappus, Schistostephiium, Oncosiphon, Soliva* and *Thaminophyllum* and in the Eurasian genera *Artemisiella, Filifolium, Lepidolopsis, Matricaria, Nananthea* and *Phaeostigma* (Bremer & Humphries 1993, Oberprieler & al., in press). Finally, achene morphological and anatomical features add further evidence to the distinction and the distant relationship of *Brocchia* and *Cotula*. Published (Brühl & Quinn 1990) and unpublished (pers. obs.) studies show that all surveyed species of *Cotula* and its relative *Soliva*, along with most species of the equally closely related genus *Leptinella*, have dorso-ventrally flattened achenes with two distinct, lateral wing-like ribs, while
achenes of *Brocchia* are circular in cross-section and have around four inconspicuous lateral and adaxial ribs (Giroux 1930, Oberprieler, unpubl.). Furthermore, specialized (myxogenic) epicarpic cells are completely different in the two groups. While in *Cotula*, *Leptinella* and *Soliva* these cells contain a lumen that stains dark-blue with toluidine blue and that is surrounded by thickened outer and anticlinal walls with a gelatinous appearance, mucilaginous cells in *Brocchia* have a strongly reduced lumen and extremely thick outer walls, which readily swell and burst during the preparation of microtome sections. In their appearance and the described behaviour they appear to be very similar to mucilage cells found in many northern hemisphere genera of *Anthemideae*, such as in the so-called *Leucanthemum* group of genera (i.e. *Chlamydophora*, *Chrysanthoglossum*, *Coleostephus*, *Glossopappus*, *Leucanthemum*, *Maurantherum*, *Plagiis* and *Rhodanthemum*). Similar mucilage cells, however, are also observed in *Matricaria* and the occurrence of 4-lobed corollas of tubular florets in some members of this genus (i.e. *M. aurea*, *M. dioscoidea* and *M. occidentalis*, Bremer & al. 1996) may further argue for a closer relationship with *Brocchia*. On the other hand, our present molecular data along with preliminary achene anatomical comparisons of *Brocchia* (pericarp with vascular bundles in two of the four inconspicuous ribs) with *Matricaria recutita* (vascular bundles in all of the two lateral and three adaxial ribs) point to the independence of the two entities from each other.

Endopappus Sch. Bip. – In their cladistic analysis of *Compositae-Anthemideae* based on morphological, anatomical, phytochemical and cytological information, Bremer & Humphries (1993: 154) found “no obvious close relatives” of *Endopappus*, because sister group relationships of this unspecific genus were unresolved in the strict consensus tree of their analysis of subtribe *Matricariae*. Based on the external shape of the achenes with two lateral and one adaxial thick and protruding rib they considered some closer relationship to *Tripleurospermum* (Bremer & Humphries 1993). There is, however, no support of this interpretation from our present molecular data. While *Tripleurospermum perforatum* is found among members of genera with a more eastern Mediterranean and/or Eurasian distribution (e.g. *Anthemis*, *Cota*, *Tanacetum*) and a tetrasporic embryonic sac development (Harling 1950, 1951, 1960), *Endopappus macrocarpus* appears to be a member of the monophyletic group of genera characterized by the diagnostic 5bp-deletion in cpDNA *trnL/trnF* IGS and by a distinctly western-centred distribution range (e.g. *Argyranthemum* group, *Santolina* group, *Leucanthemum* group). The position of *Endopappus* within this monophyletic group, however, is highly unstable because high bootstrap and PP support values are only found for the surrounding monophyletic assemblages of the *Leucanthemum* group and the *Argyranthemum* group of genera. This uncertainty it shares with two other unspecific genera of this monophyletic group, i.e. *Lepidophorum* and *Lonas*, both being also annuals and having their centre of distribution in the western Mediterranean region. Further investigations of molecular, morphological and anatomical characters are needed to solve these problems of generic relationships.

Heliocauta Humphries – Originally described as a member of the genus *Anacyclus* by Litardière & Maire (1924), *A. atlantica* Litard. & Maire was moved to an independent genus by Humphries (1977). In this publication, Humphries presents also a comprehensive discussion of the generic relationship of *H. atlantica*, mainly using morphological and anatomical characters of the achene and phytochemical data provided by Greger (1977). According to this discussion, the closest relationships of *Heliocauta* should be with *Achillea*, mainly based on the joint occurrence of only moderately flattened achenes with two vascular bundles in the pericarp, the lack of wing-like ribs, and an identical flavonoid profile (Greger 1977). On the other hand, Humphries (1977) refrained from inclusion of *Heliocauta* in *Achillea* because of the position of vascular bundles in the ribs of achenes, the scalariform thickenings of epicarpic cells, and the occurrence of additional pericarpic ribs and of a small, erose apical corona in achenes of *Heliocauta*. Additionally, Humphries (1977) found that the epicarpic mucilage cells of *Heliocauta* were rather filled with dark resin instead of being colourless as in *Anacyclus*, *Matricaria*, *Tanacetum* or *Achillea*; in this respect he suggested also a closer relationship with the genus *Sclerorrhachis* from Iran and Afghanistan where similar specialized epicarpic cells are observed.
In contrast to the findings of Humphries (1977), Bremer & Humphries (1993) in their generic monograph of the Compositae-Anthemideae placed Heliocauta neither in their subtribe Achilleinae (including Achillea and Anacyclus) nor in their subtribe Handelinae (including Sclerorrhachis) but in the highly artificial subtribe Tanacetinae for which they assumed a paraphyletic nature. Within this subtribe, the authors discuss the genus Hippolytia (central Asia, Mongolia, China, Himalaya) as another possible relative of Heliocauta and/or a joint close relationship of the two genera with some representatives of Tanacetum (Bremer & Humphries 1993).

According to the present results based on nrDNA ITS and cpDNA trnL/trnF IGS sequence variation the situation appears to be quite clear. Neither the alleged close relationship of Heliocauta with Achillea nor with Tanacetum or Hippolytia is found. In the case of the latter genus, the occurrence of a 17bp deletion in ITS2 in Heliocauta places it in the monophyletic group of strictly Mediterranean and Eurasian genera and rules out a close relationship with Hippolytia, which is consistently placed among the genera of subtribe Artemisiinae with rather eastern and central Asian centres of distribution. Following unpublished results (Oberprieler, in prep.), the genus Sclerorrhachis is also characterized by the lack of the mentioned deletion and is therefore not available as candidate for a close relative, accordingly. Conversely, the analyses suggest a (moderately supported) sister group relationship of Heliocauta with Anacyclus, which was ruled out by both Humphries (1977) and Bremer & Humphries (1993). Indeed, there are a number of differences between the two genera. Especially the strongly dorso-ventrally flattened achenes of Anacyclus contrast conspicuously with the only moderately flattened achenes in Heliocauta. Furthermore, the formation of stolons and the pre mortem caudex of the latter are also not observed in Anacyclus representatives, which are either characterized by an annual life form or by solitary, woody rootstocks in the sole perennial species A. pyrethrum. Humphries (1977) mentions also differences in the shape and texture of receptacular scales (paleas), in the shape of corolla lobes of tubular florets, and in achene anatomical features. However, there are also characters that may serve as synapomorphies for the clade of Heliocauta and Anacyclus seen in the molecular phylogenetic reconstructions. First, in both genera the number of vascular strands in the pericarp is reduced to two (sometimes three in Anacyclus; Khandijan 1992, pers. obs.) while in Anthemis, Cota, Tanacetum and Tripleurospermum we observe five bundles in the first three genera (Oberprieler 1998) and three in the last (Kynčlová 1970, Reitbrecht 1974). Since the reduction to two (or sometimes three) vascular bundles also appears in some representatives of Achillea (Briquet 1916, Reitbrecht 1974, Khandijan 1992) but not in Otanthus and Matricaria (4-5 vascular bundles; Kynčlová 1970, Reitbrecht 1974, Khandijan 1992) this monophyletic group may also comprise the former genus. Second, while cotyledons are dorso-ventrally orientated in Anacyclus and Heliocauta (together with Otanthus and Cota; Reitbrecht 1974, Humphries 1977, pers. obs.), laterally (transversely) orientated ones are observed in Achillea (Reitbrecht 1974) and Matricaria (Kynčlová 1970, Reitbrecht 1974) while the character is variable within Anthemis and Tripleurospermum (Reitbrecht 1974; pers. obs.). Again, a comprehensive morphological and anatomical study together with further information from additional molecular markers is needed in the case of Heliocauta to have stronger evidence for its taxonomic placement. For the time being, the position as sister to Anacyclus seen in the present molecular study seems plausible and supported by some achene anatomical features. Additionally, inclusion of genera with hitherto unknown nrDNA ITS sequence information (especially of Leucocyclus; Oberprieler, in prep.) may further clarify the picture considerably.

Acknowledgements

Laboratory work for the present publication was partly conducted at the Institut für Spezielle Botanik of Friedrich-Schiller-University Jena (Germany) during a course on molecular systematics taught by the author in spring 1999. My cordial thanks go to the students of this course, Anke Bauke, Carmen Schultze, Eva Rothe and Benjamin Kilian. For further technical support at the Botanic Garden and Botanical Museum Berlin-Dahlem (Germany) I would like to thank the tech-
nical assistant in the molecular laboratory, Jana Bansemer. Comments of the two reviewers, Dr Robert Vogt (Berlin) and Prof. Dr Daniel J. Crawford (Lawrence, Kansas), improved the manuscript considerably and are gratefully appreciated.

References

Bremer, K. 1988: The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. – Evol. 42: 795-803. [CrossRef]

— 1985: Confidence limits on phylogenies: an approach using the bootstrap. – Evol. 39: 783-791. [CrossRef]

Hellwig, F. H., Nolte, M., Ochsmann, J. & Wissemann, V. 1999: Rapid isolation of total cell DNA from milligram plant tissue. – Haussknechtia 7: 29-34.

Huelsenbeck, J. P. & Ronquist, F. 2001a: MrBAYES: Bayesian inference of phylogenetic trees. – BioInFormatics 17: 754-755. [CrossRef]

Lewis, P. O. 2001: Phylogenetic systematics turns over a new leaf. – Trends Ecol. Evol. 16: 30-37. [CrossRef]

Oberprieler, C. 2001: Phylogenetic relationships in Anthemis L. (Compositae, Anthemideae) based on nrDNA ITS sequence variation. – Taxon 50: 745-762. [CrossRef]

— 2002: A phylogenetic analysis of Chamaemelum Miller (Compositae, Anthemideae) and related genera based upon nrDNA ITS and cpDNA trnL/trnF IGS sequence variation. – Bot. J. Linn. Soc. 138: 255-273. [CrossRef]

— (in prep.): On the taxonomic status and the phylogenetic relationships of some unspecific Mediterranean genera of Compositae-Anthemideae. II. Daveaua, Leucocyclus and Nananthea.

— & — 2000: The position of Castri lanthenum Vogt & Oberprieler and the phylogeny of Mediterranean Anthemideae (Compositae) as inferred from nrDNA ITS and cpDNA trnL/trnF IGS sequence variation. – Pl. Syst. Evol. 225: 145-170. [CrossRef]

Visiani, R. de 1836: Plantae quaedam Aegypti ac Nubiae enumeratae atque illustratae. – Padua.

Von Hagen, K. B. & Kadereit, J. W. 2001: The phylogeny of Gentianella (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variation. – Organisms, Diversity & Evol. 1: 61-79.

Zhang, L.-B., Comes, H. P. & Kadereit, J. W. 2001: Phylogeny and quaternary history of European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. – Amer. J. Bot. 8: 2331-2345. [CrossRef]

Address of the author:
Prof. Dr Christoph Oberprieler, Institute of Botany, University of Regensburg, Universitätsstr. 31, D-93040 Regensburg, Germany; e-mail: christoph.oberprieler@biologie.uni-regensburg.de