A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta

Authors: Gudrun Kadereit, Sandra Hohmann, and Joachim W. Kadereit

Source: Willdenowia, 36(1) : 9-19

Published By: Botanic Garden and Botanical Museum Berlin (BGBM)

URL: https://doi.org/10.3372/wi.36.36101
A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta

Abstract
doi:10.3372/wi.36.36101 (available via http://dx.doi.org/)

A synopsis of the phylogeny and systematics of subfamily Betoideae of the Chenopodiaceae is provided and a modified subfamilial classification proposed. Betoideae contain five or six genera, i.e. Beta, Patellifolia, Aphanisma, Oreobliton and Hablitzia. The inclusion of Acroglochin in Betoideae is not clearly resolved by molecular evidence. The five genera (excl. Acroglochin) fall into two clades. These are Beteae with Beta only, and Hablitzieae with the remaining four genera. Of these four genera, Patellifolia formerly has been regarded as a section of Beta (B. sect. Procumbentes). The closer relationship of Patellifolia to Hablitzieae rather than to Beta is supported not only by molecular but also by flower morphological characters. Molecular evidence, in part newly generated, suggests that Beta can be divided into two well-supported groups. These are B. sect. Corollinae and B. sect. Beta. The often recognized unispecific B. sect. Nanae should be included in B. sect. Corollinae. In B. sect. Beta, probably only two species, B. macrocarpa and B. vulgaris, should be recognized.

Key words: angiosperms, beets, Patellifolia, phylogenetic systematics, ITS, morphology.

Introduction
The Betoideae are a small subfamily of the Amaranthaceae/Chenopodiaceae alliance, comprising between 11 and 16 species in five genera, dependent mainly on the classification of Beta L. sect. Beta. Recent family-wide molecular studies (Kadereit & al. 2003, Pratt 2003, Müller & Borsch 2005) based on cpDNA markers produced conflicting results concerning the position of Betoideae within the alliance, and raised doubts about the monophyly of the subfamily. In the rbcL study by Kadereit & al. (2003), three betoidean clades were part of a basal polytomy that also included Amaranthaceae s.str., Polycnemoideae, and the remaining Chenopodiaceae. In the ndhF analysis by Pratt (2003) the two genera included were also part of a basal polytomy, and in the matK analysis by Müller & Borsch (2005) representatives of Betoideae (except for Acroglochin Schrad.) were sister to a clade comprising Salicornioideae, Suaedoideae and Salsoloideae, and therefore were part of Chenopodiaceae s.str. These three studies, however, were based on a relatively small sample of Betoideae.
A more detailed molecular study by Hohmann & al. (2006), including all genera of the subfamily in its traditional circumscription (Ulbrich 1934, Kühn & al. 1993) and representatives of all sections of Beta, and using the same cpDNA markers as in the aforementioned family-wide studies plus the trnL intron and ITS as more variable markers, clearly showed that Betoideae are monophyletic and comprise Beta, Patellifolia A. J. Scott & al. (= Beta sect. Procumbentes Ulbr.), Aphanisma Nutt. ex Moq., Hablitzia M. Bieb. and Oreobliton Durieu. Only Acroglochin, always considered part of Betoideae (Volkens 1892, Ulbrich 1934, Kühn & al. 1993), belongs to the Chenopodioidae/Corispermoideae lineage according to the matK data (Müller & Borsch 2005, Hohmann & al. 2006), or is part of a basal polytomy within the Amaranthaceae/Chenopodiaceae alliance according to the rbcL data (Kadereit & al. 2003). In the ndhF data, Acroglochin is sister to the remaining Betoideae without bootstrap support (Fig. 1; Hohmann & al. 2006).

The Betoideae share a unique fruit type, a capsule that normally opens with a circumscissile lid. The fruits of other Amaranthaceae/Chenopodiaceae usually are nuts or achenes, or rarely berries. The presence of a capsule with a circumscissile lid in Acroglochin on the one hand and the molecular data just described on the other hand do not permit a final decision on the relationships of Acroglochin to Betoideae. This should await further data. The subfamily shows high diversity in habit by comprising annual, biennial or perennial herbs, vines and subshrubs, and also in ecology (see below). This may reflect its relatively old age estimated to 48.6-35.4 million years (my) by Hohmann & al. (2006). Old age of the subfamily may also account for its disjunct geographical distribution (Fig. 2, see also below). The position of the Betoideae within the Amaranthaceae/Chenopodiaceae alliance, however, remains unclear also in the study of Hohmann & al. (2006). The aim of this paper is to summarize the phylogenetic knowledge available for Betoideae, to translate this into a modified classification and to characterize its constituent taxa. We also will briefly comment on the taxonomy of Beta. For the latter purpose, ITS1 sequences of Beta by Shen & al. (1998), Hohmann & al. (2006), and eleven newly generated sequences are combined and analysed.

Material and methods

Herbarium specimens from M and MJG (abbreviations according to Holmgren & Holmgren 1998-) as well as material cultivated at the Botanical Garden of Mainz University (deposited at MJG) from seeds obtained from the Institut für Pflanzengetenik und Kulturpflanzenforschung (IPK) Gatersleben were used to verify or supplement the information found in the literature and to extract DNA.

Eight ITS sequences were obtained from GenBank (species and accession number): Aphanisma blitoides Nutt. ex Moq.: AY858591; Beta corolliflora Zosimovich ex Buttler: AY858598; B. nana Boiss. & Heldr.: AY858596; B. trigyna Waldst. & KIt.: AY858595; B. vulgaris L.: AY858597; Hablitzia tannoides M. Bieb.: AY858590; Oreobliton thesioides Durieu & Moq.: AY858592; Patellifolia procumbens (C. Sm.) A. J. Scott & al.: AY858594. Ten sequences were taken from Shen & al. (1998; species and accession number of the Beet Germplasm Collection of the University of Birmingham): Beta lomatogona Fisch. & C. A. Mey.: B0213; B. macrorhiza Steven: B0397; B. trigyna: B0367; B. corolliflora: B0537; B. maritima L.: B0334; B. adanensis Pamukç.: B0423; B. macrocarpa Guss.: B0588; B. vulgaris L. subsp. vulgaris var. vulgaris (spinach beet) B0051; B. vulgaris subsp. vulgaris var. altissima Döll (sugar beet): B0079; B. nana: FD19.

The 11 samples of the newly generated sequences were obtained from plants cultivated at the Botanical Garden of Mainz University. The seeds were kindly provided by the IPK Gaterleben. In the following, the samples are listed with the IPK Gaterleben seed collection number, voucher information and GenBank accession number: B. macrocarpa: BETA 331/98, Greece, DQ223061; BETA 220/97, Greece, DQ223062; B. vulgaris subsp. orientalis (Roth) Aellen: BETA 94/85, India, DQ223064; BETA 330/95, India, DQ223065; B. vulgaris subsp. maritima (L.) Thell.: BETA 308/98, Ireland, DQ223066; BETA 194/94, Libya, DQ223067; BETA 255/90, Spain, DQ223068;

The new sequences were generated using the same protocols for DNA extraction, PCR amplification, primer sequences and sequencing as described in Hohmann & al. (2006). All 29 sequences were aligned using SequencherTM 4.1. Alignment was unproblematic and required only few manual corrections.

The matrix of ITS sequences was executed in PAUP® 4.0b10 (Swofford 2002) and analysed under maximum parsimony (MP) and maximum likelihood (ML) criteria. MP analysis was performed using heuristic searches with 1000 replicates of random taxon addition and tree-bisection-reconnection (TBR) branch swapping. The appropriate model of DNA substitution for the inference of phylogenetic relationships under ML was estimated using Modeltest 3.06 (Posada & Crandall 1998). The GTR+G model was chosen with gamma distribution set to 0.7105. Base frequencies were set to A = 0.25, C = 0.25, G = 0.25, and T = 0.25. The rate matrix was set to AC 1.0, AG 1.37, AT 0.25, CG 0.25, CT 2.73, and GT 1.0. The heuristic search settings were 10 random additions of taxa and TBR swapping. The settings for the ML bootstrap analysis were the same as for the ML heuristic search running 100 replicates. For the MP bootstrap analysis also 10 random additions and 100 replicates were run under the same settings as the heuristic search.

Results and discussion

1. Phylogeny of Betoideae

The most comprehensive taxonomic treatment of Betoideae by Ulbrich (1934) divided the group into Hablitzieae with Hablizia, Aphanisma, Oreobliton and Acroglochin, and Beteae with only Beta (including Patellifolia as B. sect. Procumbentes). In contrast to this, the most recent treatment of Chenopodiaceae by Kühn & al. (1993) abandoned the subfamily status of Betoideae and combined all genera in one tribe, Beteae, within Chenopodioidae.

The molecular data by Hohmann & al. (2006), which did not clarify the relationships of Acroglochin to Betoideae, show a dichotomy within Betoideae (excl. Acroglochin): Beta (with sect. Beta, sect. Corolliniae and sect. Nanae) forms a clade that is sister to Hablizia, Aphanisma, Oreobliton and Patellifolia (Fig. 1). These findings agree with the tribal classification of Ulbrich (1934) with the notable exception of Patellifolia. This group, described (without rank) as Patellaires by Transhel’ (1927) and renamed as B. sect. Procumbentes by Ulbrich (1934), is not part of Beta and the Beteae but rather of the Hablitzieae. Patellifolia had first been separated from Beta by Scott & al. (1977), but this treatment was never generally accepted beyond the regional Flora level (Letschert 1993). Although various molecular analyses (summarized in Shen & al. 1998) of Beta had identified Patellifolia as a very distinct cluster within the genus, the absence of other genera of Betoideae from all these analyses could not reveal the true relationships of this group.

Following Ulbrich (1934), Hablitzieae are characterized by an epignous ovary, a membranous fruiting perianth and stamens that are basally united into a membranous ring. In contrast, Beteae have a partly hypogynous ovary, a fruiting perianth that becomes woody at the base, and stamens that are basally united into a fleshy bulge. According to our own observations, Patellifolia like Beta has perigynous ovaries, but shares a membranous fruiting perianth and a membranous ring at the base of the stamens with the other genera of Hablitzieae. Accordingly, the latter two characters support the molecular finding of a closer relationship of Patellifolia to Hablitzieae than to Beta (Fig. 1). Patellifolia further differs from Beta in having short tepals that do not overtop the fruit (Ulbrich 1934, Letschert 1993).

Within Hablitzieae, Aphanisma and Oreobliton always are sister to each other in the molecular analyses. The relationships of the Aphanisma/Oreobliton clade to Patellifolia and Hablizia, however, are not unambiguously resolved. In the trnL intron and matK analyses Hablizia/Patellifolia are sister to Aphanisma/Oreobliton, and in the ITS and ndhF analyses Hablizia is sister to the remaining Hablitzieae (Fig. 1 and 3, Hohmann & al. 2006). These conflicting topologies result from the fact that Hablizia shares a number of mutations with both Patellifolia and Apha-
Fig. 1. Maximum Likelihood tree based on 37 ndhF sequences of the Amaranthaceae/Chenopodiaceae alliance including ten representatives of Betoideae taken from Hohmann & al. (2006). The tree was rooted with two representatives of Archatocarpaceae, values above and below branches are bootstrap values of the ML and MP analyses, respectively.
nisma/Oreobliton. All three clades are old (32.7-18.6 my according to Hohmann & al. 2006), morphologically and genetically heterogeneous and species-poor. Therefore, they are best interpreted as relict taxa as suggested by Kadereit & al. (2003). The Hablitzieae probably experienced dramatic extinction, which might obscure the true interrelationships of the three clades found.

1.1. Hablitzieae

Aphanisma and Oreobliton. – The unispecific Aphanisma (A. blitoides Nutt. ex Moq.) occurs in coastal habitats in California (Munz 1974, Shultz 2003). Aphanisma is an annual plant with prostrate and erect branches. The inflorescences consist of three to five (or fewer) flowers tightly aggregated in the axils of foliose bracts. The flowers have only three tepals and one stamen. This is unique in Betoideae, which normally have five tepals and five stamens. In fruit the tepals are not spreading as in Oreobliton and Hablitzia but tightly enclose the lower half of the fruit. The unispecific N African Oreobliton (O. thesioides Durieu & Moq.) is sister to Aphanisma. Oreobliton is found in the Algerian and Tunesian Atlas (Maire 1961), where it grows in calcareous rock fissures at 400-1000 m altitude. It is a subshrub, and the pentamerous flowers are arranged in few-flowered thyrses in the axils of foliose bracts. It shares some morphological characters with Aphanisma, including tepals with only one nerve, a globose, longitudinally compressed capsule opening above the lower third with a smooth-rimmed lid, and seeds with a crustaceous testa.

The peculiar North American/N African disjunction of the Aphanisma/Oreobliton clade was estimated to be 15.4-9.2 my old by Hohmann & al. (2006). These authors, also considering the possibility of long distance dispersal, interpret this disjunction as a remnant of a Beringian ancestral range. Such interpretation implies that the evolution of the two genera into dry habitats took place in parallel in western Eurasia and western North America.

Hablitzia. – The perennial Hablitzia is unispecific (H. tammoides M. Bieb.) and one of the very few vines in Chenopodiaceae. The genus is restricted to the Caucasian floristic region (Meusel & al. 1965), where it grows in mesic deciduous forests (Grossgeim 1945). Apart from its climbing habit, Hablitzia is characterized by a persistent fleshy root whereas the above-ground stems die off in autumn. The pentameros flowers are arranged in often many-flowered thyrses in the axils.
of foliose bracts. In each terminal cyme, the lateral flowers are present only as vestigial buds below the terminal flower. *Oreobliton* and *Hablistzia* are similar in flower morphology and share the star-like arrangement of the persistent tepals in fruit.

Patellifolia. – *Patellifolia* comprises two or three species, *P. patellaris*, *P. procumbens* and *P. webbiana* (Moq.) A. J. Scott & al. Whereas the latter two species are restricted to the Canary Islands, *P. patellaris* is also found in southern Spain, the Balearic Islands, Sicily, Algeria and Morocco (Fig. 2). *Patellifolia* comprises perennial procumbent plants with glomerules of 1-3 flowers in the axils of foliose bracts. *P. procumbens* and *P. patellaris* form a strongly supported monophyletic group (Fig. 1). A 600 bp fragment of *ndhF* of the third species (*P. webbiana*) sequenced from the more variable 3’ end of the gene is identical with that of *P. procumbens*, and therefore was not included in further analyses (S. Hohmann, unpubl. data). Curtis (1968) doubted whether *P. procumbens* and *P. webbiana* are separate species. His experiments showed that the tetraploid (2n = 36) *P. patellaris* is self-compatible and that the other two species are diploid and self-incompatible. Whereas attempts of hybridisation between *P. patellaris* and the other two species failed, *P. procumbens* and *P. webbiana* could be hybridized easily. The three species also differ in their resistance to eelworms (*Heterodera schachtii* Schm.). Whereas the resistance of *P. patellaris* is not complete, eelworms never develop to maturity in the other two species (Curtis 1968). An isozyme analysis by Wagner & al. (1989) revealed no differences between *P. procumbens* and *P. webbiana*, and very little difference was found in an RFLP analysis of total RNA by Mita & al. (1991). These and similar results from other molecular studies (summarized in Shen & al. 1998) can be regarded as support of Curtis’ (1968) observations.

Although *Patellifolia* appears to be a rather old genus (30.9-15.3 my) based on different markers), its diversification took place only in the late Pliocene or early Quarternary (*ndhF*: c. 1 mya, *trnL*-intron: c. 3.5 mya; Hohmann & al. 2006). The geographical distribution of the three (or two) species, with *P. procumbens* and *P. webbiana* growing only in the Canary Islands, and *P. patellaris* in the Canary Islands and the W Mediterranean area, in combination with ploidy level, raises the interesting and unusual possibility that the Mediterranean area was colonized from the Canary Islands by the tetraploid selfer *P. patellaris*.

1.2. Betae

Beta. – *Beta* comprises annual, biennial and perennial herbs. Similar to *Patellifolia*, 1-3 flowers are arranged in tight axillary glomerules, but bracts can be either bracteose or foliose. Transhel’” (1927) divided *Beta* into three informal groups, i.e. *Vulgares, Corollinae* and *Patellares*. Ulbrich (1934) treated these three groups at sectional rank and introduced *B.* sect. *Nanae* with only *B. nana* from Greece as a fourth section. He also renamed Transhel’”s (1927) *Patellares* as *B.* sect. *Procumbentes*. His naming of *B.* sect. *Vulgares*, containing the type of the genus, was corrected to *B.* sect. *Beta* by Coons (1954). As discussed above, *B.* sect. *Patellares* needs to be excluded from the genus and classified as a separate genus, *Patellifolia*. Different problems are related to the remaining sections.

Beta sect. *Corollinae* is the least problematic, and most authors have considered this group to contain four species, *B. lomatogona*, *B. macrorhiza*, *B. corolliflora* and *B. trigyna*, growing at inland localities mostly above 300 m (Ford-Lloyd & Williams 1975) in the E Mediterranean area and SW Asia. Tepals are corolla-like and whitish, yellowish or reddish in *B. trigyna* and *B. corolliflora* but greenish in *B. lomatogona* and *B. macrorhiza*. The inclusion of *B. trigyna* in *B. corolliflora* by Buttler (1977a) is not supported by several molecular analyses (summarized in Shen & al. 1998) including our own. The species appears to be more closely related to *B. macrorhiza* than to *B. corolliflora* (Fig. 3).

Although the specific status of the Greek mountain endemic *Beta nana*, a perennial plant with small rosettes and procumbent inflorescences with 1-flowered partial inflorescences (Tan 1997), has never been doubted, its classification in a section of its own (*B.* sect. *Nanae*) is questionable. Thus, the studies by, e.g., Shen & al. (1998) and Jung & al. (1993) resolve *B. nana* in a position within *B.* sect. *Corollinae*. Our sequence data are not conclusive at this point. Here, *B. nana* is part
Fig. 3. ML tree of Beteae based on 29 ITS1 sequences including four members of Hablitzieae which served as outgroup (best score 1040.4.5; bootstrap values (MP value/ML value) below branches, number of character changes above branches). The data matrix comprised 251 characters of which 147 were invariable, 47 variable but uninformative, and 57 parsimony informative. The MP analysis (not shown because of nearly identical topology) found four shortest trees of 157 steps length with CI = 0.841 and RI = 0.885. The data matrix contained eight informative indels. If these were coded in a 0/1 matrix and included in the MP analysis, again four shortest trees with the same topology but of 167 steps length were found.
of an unresolved trichotomy with *B. trigyna/B. macrorhiza* and *B. corolliflora/B. lomatogona* (Fig. 3). Considering these results and the distribution of *B. nana* well within the range of *B. sect. Corollinae*, we here suggest to merge the two sections as earlier suggested by Zosimovic (1940). In all molecular analyses (summarized by Shen & al. 1998), *B. sect. Corollinae* plus sect. *Nanae* are clearly distinct from *B. sect. Beta*. This is supported by our results, where the basal dichotomy in the genus separates *B. sect. Beta* from *B. sect. Corollinae* and sect. *Nanae*. These two clades are in fact the only supraspecific clades with acceptable bootstrap support (Fig. 3).

The subdivision of *Beta sect. Beta*, characterized by greenish tepals that are dorsally ridged, have hooded tips and are partly appressed to the fruit, with their free upper parts being mostly longer than the fruit, is most problematic. As summarized by Buttler (1977b), between one and seven wild and cultivated species and between five and 35 wild and cultivated infraspecific taxa have been recognized by different authors. It seems very likely that all wild plants of *B. sect. Beta* either grow in coastal or in saline habitats (Ford-Lloyd & Williams 1975, Jalas & Suominen 1980, Greuter & al. 1984, Lange & al. 1999) and that inland plants from other than saline habitats are either cultivated or feral. Although we realize that our sampling of *B. sect. Beta* is far from ideal, the major taxa recognized by most modern authors are contained in our ITS1 analysis (e.g., Letschert 1994). The results of this analysis suggest that at least *B. macrocarpa* is different from the *B. vulgaris* group and should be treated at specific rank (Fig. 3). *B. adanensis* Pamukç., recognized by Ball & Akeroyd (1993), groups among the *B. vulgaris* accessions. The status of *B. patula* Aiton, recognized by Letschert (1993, 1994), remains unclear in the absence of material of this taxon. Although we most certainly do not want to suggest a re-classification of *B. sect. Beta* based on a limited sample and very few molecular characters, and without critical examination of phenotypic variation of a large sample of plants, we note that the recognition in sect. *Beta* of only *B. macrocarpa* and *B. vulgaris* would be fully congruent with the approach taken by Ball (1964) in the first edition of Flora Europaea. *Beta macrocarpa* is a coastal taxon from the southeastern Iberian Peninsula and NW Africa, Sicily and Italy, and Greece, Crete and the Aegean as well as Israel (Jalas & Suominen 1980, Greuter & al. 1984). Different authors use partly different characters to distinguish this species (at whatever rank) from *B. vulgaris*. Thus, Aellen (1960) mainly relies on tepal shape and texture, Ball (1964) on the presence and distribution of bracts in the inflorescence, Gutiérrez Bustillo (1990) on the relative length of bracts and partial inflorescences, and Tan (1997) on habit, inflorescence bracts and tepal texture.

A phylogenetic study with the aim to fully resolve relationships within *Beta* should be able to cope with hybridisation, polyploidisation as well as apomixis (Jassem 1976, 1980, Boudry & al. 1993).

2. Taxonomy

Betoideae Ulbr., Nat. Pflanzenfam., ed. 2, 16c: 455. 1934

Beteae Moq. in Candolle, Prodr. 13(2): 43, 49. 1849

Betea L., Sp. Pl.: 222. 1753

Beta sect. *Beta*

Hablitziae Ulbr., l.c.

-Aphanisma* Nutt. ex Moq. in Candolle, Prodr. 13(2): 43, 54. 1849

-Oreoibion* Durieu in Rev. Bot. Recueil Mens. 2: 428. 1847

-Patellifolia* A. J. Scott & al. in Taxon 26: 284. 1977

position uncertain: *Acroglochin* Schrad. in Schultes, Mant. 1: 69: 227. 1822

Key to tribes, genera and sections of *Betoideae* (incl. *Acroglochin*)

1. Terminal branches of inflorescence needle-like and without flowers, tepals sparsely covered with hairs .. *Acroglochin*
Terminal branches of inflorescence not needle-like, tepals glabrous

2. Stamens basally inserted on a thickened bulge surrounding the visible part of the ovary; tepals conspicuously modified in fruit; flowers fused at their indurated bases

3. Tepals not hooded at apex, often petaloid, white, yellowish, reddish or greenish

4. Vine; one or two vestigial buds present beneath each terminal flower (Caucasia and Transcaucasia)

5. Tepals 3; stamen 1 (California)

6. Free part of tepals spreading in fruit (mountains of Tunesia and Algeria)

Acknowledgements

We acknowledge the IPK Gatersleben (Germany) for providing seed material, H. Freitag (Kassel) and B. V. Ford-Lloyd (Birmingham) for helpful reviews of the manuscript, D. Franke and L. Klöckner for help with the figures, and the Deutsche Forschungsgemeinschaft (DFG) for financial support to G. Kadereit (Cl188/1-1 and KA1816/1-3).

References

Curtis, G. J. 1968: Observations on fruit shape and other characters in the species of the section *Patellares*, genus *Beta*. – Euphytica 17: 485-491. [CrossRef]

nian disjunctions: evidence from Chenopodiaceae-Betoideae. – Taxon.
http://sciweb.nybg.org/science2/IndexHerbariorum.asp
Jassem, B. 1976: Embryology and genetics of apomixis in the section Corollinae of the genus
— 1980: Origin and reproduction of higher polyploids within the Corollinae section of the gen-
Jung, C., Pillen, K., Frese, L., Fähr, S. & Melching, A. E. 1993: Phylogenetic relationships be-
tween cultivated and wild species of the genus Beta revealed by DNA “fingerprinting”. –
Amaranthaceae
and
Chenopodiaceae
and
the
evolution
of
C4 photosynthesis. – Int. J. Pl. Sci. 164:
959-986. [CrossRef]
Kühn, U., Bittrich, V., Carolin, R., Freitag, H., Hedge, I. C., Uotila, P. & Wilson, P. G. 1993:
Chenopodiaceae. – Pp. 253-281 in: Kubitzki, K., Rohwer, J. G. & Bittrich, V. (ed.), The
families and genera of vascular plants 2. – Berlin, etc.
Lange, W., Brandenburg, W. A. & de Bock, T. S. M. 1999: Taxonomy and culton of beet
(Beta vulgaris L.). – Bot. J. Linn. Soc. 130: 81-96. [CrossRef]
Lange, W., Frese, L. & Berg, R. G. van den 1994: Taxonomy of
Beta Section
Beta. – J. Sugar
Beet Res. 31: 69-85.
Meusel, H., Jäger, E. & Weinert, E. 1965: Vergleichende Chorologie der zentraleuropäischen
Flora 2. – Jena.
Mita, G., Dani, M., Casciari, P., Pasquali, A., Selva, E., Minganti, C. & Piccardi, P. 1991: As-
ssessment of the degree of genetic variation in beet based on RFLP analysis and the taxonomy
of Beta. – Euphytica 55: 1-6. [CrossRef]
Müller, K. & Borsch, T. 2005: Phylogenetics of
Amaranthaceae
based
on
matK/trnK sequence

data – evidence from parsimony, likelihood, and Bayesian analyses. – Ann. Missouri Bot.
Munz, P. A. 1974: A Flora of southern California. – Berkeley, etc.
Posada, D. & Crandall, K. A. 1998: Modeltest: testing the model of DNA substitution. – Bioin-
formatics 14: 817-818.
Pratt, D. 2003: Phylogeny and morphological evolution of
Chenopodiaceae-Amaranthaceae
alliance. – Ph. D. Thesis, Iowa State University, Ames.
Scott, A. J., Ford-Lloyd, B. V. & Williams, J. T. 1977: Patellifolia, nomen novum (Chenopodi-
aceae). – Taxon 26: 284. [CrossRef]
determined using both PCR-based marker and DNA sequencing techniques. – Heredity 80:
624-632. [CrossRef]
Swofford, D. L. 2002: PAUP*: Phylogenetic analysis using parsimony (*and other methods),
Version 4.0.beta 10. – Sunderland, MA.
stein.
lichen Pflanzenfamilien, ed. 2, 16c. – Leipzig.

Zosimovich, V. P. 1940: Dikie vidy i proishozhdenie kul’turoj svekly. – Sveklovodstvo 1: 17-85.

Address of the authors:
Gudrun Kadereit, Sandra Hohmann, Joachim W. Kadereit, Institut für Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universität Mainz, D-55099 Mainz; e-mail: Kadereit@uni-mainz.de