Karyosystematic study of Fritillaria messanensis s.l. (Liliaceae)

Authors: Georgia Kamari, and Dimitrios Phitos

Source: Willdenowia, 36(1) : 217-233

Published By: Botanic Garden and Botanical Museum Berlin (BGBM)

URL:
https://doi.org/10.3372/wi.36.36118
GEORGIA KAMARI & DIMITRIOS PHITOS

Karyosystematic study of *Fritillaria messanensis* s.l. (*Liliaceae*)

Abstract

Fritillaria messanensis, in its wide circumscription, is studied karyosystematically across its entire geographical range, including Italy, Serbia-Montenegro, N Albania and Greece. Variation in morphological features, karyotype and ecological preferences are evaluated and its taxonomy is revised. Three subspecies are recognized and a key and descriptions presented. *F. sphaciotica*, a taxon previously considered synonymous with *F. messanensis*, is recognized at subspecific rank and the new combination *F. messanensis* subsp. *sphaciotica* validated. The occurrence of subsp. *gracilis* in Greece (Ionian Islands and W Sterea Ellas) is confirmed. The relationships of *F. messanensis* with taxa occurring in the Mediterranean region are discussed.

Key words: Balkans, S Italy, karyology, phytogeography, taxonomy.

Introduction

Fritillaria L., a genus of *Liliaceae* of considerable diversity in the northern hemisphere, comprises attractive, ornamental species. A total of 145 taxa of *Fritillaria* is recognized worldwide, of which c. 38 have been recorded from Turkey, c. 30 from China and c. 18 from California (Rix 1998). In Greece, the genus is represented by 24 species and 5 subspecies, all belonging to *F. subg. Fritillaria* (*F. sect. Eufritillaria* sensu Boissier 1884). Kamari & Phitos (2000) concluded that Greece constitutes a secondary evolutionary centre at least for subgenus *Fritillaria*, if not for the whole genus, confirming Rix (1971) who considered Turkey and Greece as secondary evolutionary centre for the genus when only 18 taxa in Greece were known. Its primary evolutionary centre (Rix 1971) is probably Iran, especially its northern parts, where the comparatively small number of 17 species and 4 subspecies (Rechinger 1990) represents four subgenera (*F. subg. Fritillaria* L., subg. *Petillium* Engl., subg. *Theresia* (C. Koch) Engl. and subg. *Rhinopetalum* (Fisch. ex Alexander) Engl.). The latter subgenus has recently been segregated as a separate genus by Bakhshi Khaniki & Persson (1997), mainly based on nectary morphology; however, most of the remaining morphological features and also karyological (Bakhshi Khaniki 1998, 2002) and molecular evidence (Rønsted & al. 2005) support its treatment as a subgenus of *Fritillaria* (Rix 2001).
Fritillaria taxa are distributed throughout Greece, but are particularly common and diverse on the Aegean islands (Kamari & Phitos 2000). On the Ionian Islands, on the contrary, only three Fritillaria taxa are found, and this coincides with the comparatively low rate of endemism in the Ionian flora.

Fritillaria messanensis Raf. (F. subsect. Trichostylae sensu Boissier 1884, Turrill 1937, Turrill & Sealy 1980) has the widest distribution among all Greek Fritillaria taxa and is the most common species in the Ionian Islands. It is the name giving member of the circum-Mediterranean F. messanensis group (Rix 1971), which comprises taxa with linear and alternate leaves, the uppermost being usually in a whorl of three, broadly campanulate flowers, tessellated perianth segments with or without fascia and a 3-fid style. These characters are shared by F. involucrata All. from Italy (Pignatti 1982). From this and other related taxa F. messanensis is easily distinguished by its narrow leaves and broadly ovate nectaries.

Here we present the first karyosystematic study of Fritillaria messanensis s.l., based on material from its entire geographical range, and a taxonomic revision of the group.

Material and methods

The present study is based on more than twenty years of observations of Fritillaria, during which about 260 populations have been sampled and cultivated, most of them from Greece. For F. messanensis s.l. alone representatives of 41 populations have been cultivated. Cultivation has been done in pots outdoors, in the experimental Botanical Garden of the University of Patras. The populations karyologically investigated are indicated by an asterisk in the specimen lists, with accession numbers at the end of the specimen citation. The slide preparation technique applied in the study of the karyotype has been described in previous papers (Kamari 1984, Constantinidis & al. 1997). All populations examined are listed under the respective taxa and mapped in Fig. 1. Populations not documented by vouchers and not kept in cultivation are noted as observed (obs.).

Dried material was studied from the herbaria ATH, ATHU, B, C, G, G-BOIS, LIU, LY-Gandog., M, TAU, UPA, W, WU, WU-Hal. (abbreviations according to Holmgren & Holmgren 1998-), from the Museum of Natural History of Cefallonia-Ithaki (abbreviated here as MNHC-I) and the private herbarium of Pinatzi (herb. Pinatzi).

Results and discussion

Distribution

Fritillaria messanensis was originally described from Messina (Italy) and has a scattered distribution in Sicily (Messina), Calabria, Serbia & Montenegro, N Albania and large parts of Greece. The alleged occurrence of F. messanensis in Croatia and Herzegovina needs verification, since all the specimens checked by us do not belong to the taxon.

Fritillaria messanensis was first reported from Greece by Margot & Reuter (1839, 1841), from the island of Zakynthos. This report has been confirmed, whereas any reference of other Fritillaria taxa on Zakynthos island is erroneous. Boissier (1884: 181) indicated its existence in Peloponnisos (Orphanides 846, WU-Hal.), in Kriti above the village Anopolis (Heldreich), in Kerkira (Mazzari) and Levkas (Levoarneux). The presence of F. messanensis on the island of Kerkira has never been confirmed (see also Baxter & Baxter 1974). From Kefallinia island it was first reported by Knapp (1965 as “F. matthei”, nom. nud.), and later correctly reported by Phitos & Damboldt (1985: 145). The unexpected, somewhat isolated occurrence of F. messanensis on Mt Olimbos (its northernmost locality in Greece) is interesting, because these populations are morphologically closer to typical plants from Italy than to those from the Ionian area. In Kriti, F. messanensis grows all over the island, in a variety of altitudes and habitats.

According to Gramuglio & Arena (1973), Fritillaria messanensis has been the subject of a relatively recent and significant distribution reduction in the Mediterranean region, which frag-
mented its populations into small patches, surviving among or under the protection of fruticose perennials. This has been attributed to the major climatic changes that followed the last glacial period, reinforced by the recent, man-made large-scale woodland destruction. The disjunct distribution of *F. messanensis* on Mt Olimbos could be the result of the above process. *F. messanensis* is totally absent from the west, north and east of the Greek mainland, with the exception of Mt Olimbos, most areas of Peloponnisos (not in its N and NE parts) and W Sterea Ellas with Mt Boumistos. It is noteworthy that several other, mostly Ionian taxa (*Teucrium halacyanum* Heldr., *Heliotropium halacyyi* H. Riedl, *Mentha pulegium* subsp. *cephalonia* Kokkini) or even Italian-Ionian taxa (*Campanula garganica* Ten. s.l., *Lomelosia crenata* subsp. *dalaportae* (Boiss.) Greuter & Burdet) are also found on Mt Boumistos, demonstrating a floristic connection with the Ionian area.

Fritillaria messanensis forms small, scattered populations in various habitats, mostly favouring stony places under a dense shrub canopy. It is often found among bushes of *Arbutus andrachne* L., *A. unedo* L., *Pistacia lentiscus* L., in clearings of *Quercus coccifera* L., woodlands or rarely in openings of *Pinus* or *Fagus* forests and olive groves, usually on calcareous substrates. As an exception, we found *F. messanensis* growing as a weed in cereal plantations of Zakynthos island. Altitudinally, it ranges from almost sea level, as in most Dalmatian and Ionian localities, Peloponnisos and Kriti (Plakias gulf), up to 2000 m in Greece (Mt Olimbos), Italy (Mt Pollino) and Serbia-Montenegro (Cakor pass).

Taxonomy

Fritillaria messanensis s.l. shows considerable variation across its geographical range. Several taxa at subspecific and varietal rank have been described (see Turrill 1937, Turrill & Sealy 1980), most of them attributed today to allies of *F. messanensis*. Because of similarities with related taxa and the difficulty to observe important characters in dry material (e.g., shape and size of the nectaries), plants of *F. messanensis* s.l. were frequently misidentified as *F. tenella* M. Bieb., *F.
Fig. 2. *Fritillaria messanensis* – A-B: subsp. *messanensis* from Peloponnisos (pop. no. 163-cult.); C: subsp. *gracilis* from Zakinthos, Ionian Islands (pop. no. 205-cult.).
Fritillaria messanensis Raf. in J. Bot. Agric. 4: 272. 1814. – Described from the meadows of Messina, Sicily

Bulb subglobose to globose, up to 2(-2.5) cm in diameter. *Stem* up to 70(-110) cm tall, glaucous-green or glaucous purplish green. *Leaves* 7-12(-14), glaucous-green or purplish green, shallowly canaliculate, linear to narrowly lanceolate, often suberect, all alternate or the uppermost in a whorl of 3, the lower 0.2-1(-1.4) cm broad and 5-17-10(-15) cm long. *Flowers* usually 1, rarely 2-3(-4), broadly campanulate to cylindrical, greenish or brownish to dark purplish brown outside, tessellated to obscurely tessellated, sometimes with more distinct purplish brown spots, with or without yellowish green fascia, colours paler inside, segments distinctly upturned at the mouth or not; *outer perianth segments* ovate-lanceolate, usually acute, 2.2-4(-4.5) × (0.9-)1-1.6 cm; *inner perianth segments* apiculate or rounded, 1.2-1.9(-2.2) cm broad. *Nectaries* 0.4-0.6 cm broad and without yellowish green fascia, colours paler inside, segments distinctly upturned at the mouth or not; *outer perianth segments* ovate-lanceolate, usually acute, 2.2-4(-4.5) × (0.9-)1-1.6 cm; *inner perianth segments* apiculate or rounded, 1.2-1.9(-2.2) cm broad. *Nectaries* 0.4-0.6 cm broad and without yellowish green fascia.
Fig. 3. *Fritillaria messanensis* – A: subsp. *messanensis* from Mt Olimbos, Greece (pop. no. 50-cult.); B: subsp. *sphaciotica* from Mt Psiloritis, Kriti (pop. no. 32-cult.); C: subsp. *gracilis* from Mt Orjen, Serbia-Montenegro (photo: V. Stevanović); D: subsp. *gracilis* from Kefallinia, Ionian Islands (pop. no. 84-cult.).
0.5-0.8(-9) cm long, ovate-lanceolate to broadly ovate, green to brownish green, situated 0.4-
0.5 cm above the tepal base. Filaments up to 1(-1.3) cm, sparsely papillose. Style 1-1.3 cm, 3-fid to
\(^1/3\) or more than halfway, smooth. Capsule cylindrical, unwinged. Chromosome number: \(2n = 24\).

Fritillaria messanensis is a polymorphic species, typically with narrow, usually long leaves,
rather broadly campanulate flowers and distinctive, large, broadly ovate (egg-shaped) nectaries,
by which it is usually easily distinguishable from its related taxa.

Key to the subspecies of Fritillaria messanensis
1. Flowers shortly campanulate, 2.2-2.8(-3.3) cm long, usually obscurely tessellated, with un-
 clear or without fascia; all leaves usually alternate b. subsp. gracilis
 - Flowers campanulate, (2.5-)3-4(-4.5) cm long, usually tessellated, with clear yellowish
 greenish fascia; the uppermost leaves usually in a whorl of 3 2
2. Stem 20-70(-110) cm tall, glaucous-green; leaves (0.5-)0.7-1(-1.4) cm broad, glaucous-
 green a. subsp. messanensis
 - Stem 10-20(-25) cm tall, purplish glaucous-green or often purple at the base; leaves 0.2-
 0.4(-0.6) cm broad, purplish glaucous-green c. subsp. sphaciota

\(\)a. subsp. messanensis
Stem usually tall (up to 110 cm in humid places), glaucous-green. Leaves (0.5-)0.7-1(-1.4) cm
broad, glaucous-green, usually narrowly lanceolate, often suberect, the uppermost usually in a
whorl of 3. Flowers campanulate, 3-4(-4.5) cm long, usually tessellated, with yellowish-greenish
fascia, segments distinctly upturned at the mouth. – Fig. 2A-B, 3A.

Variation. – Fritillaria messanensis subsp. messanensis is a variable taxon, with local forms found
throughout its distribution area, and growing under different ecological conditions. The populations
on Mt Olimbos (Fig. 3A) are quite similar to those from the locus classicus, particularly with
respect to their robustness, the uppermost leaves, which are usually in a whorl of 3, and the usually
upturned perianth segments at the mouth of the flowers. Variation is found in the populations
growing in Peloponnissos, mainly referring to the number and position of the uppermost leaves. A specimen collected by Baenitz (M!) on the island of Kerkira (Corfu) was misidentified as F.
messanensis, but actually belongs to F. thessala subsp. ionica (Halácsy) Kamari. F. thessala
shares the feature of the uppermost leaves usually in a whorl of 3 and is often confused with subsp.
mesanensis in the Balkan Peninsula, where the distribution ranges of the two taxa overlap.

Specimens seen. – ITALY: PROVINCE CALABRIA: *Regione Basilicata, Monte Pollino (on Cala-
brien border), open limestone, W-facing slope, c. 2000 m, 18.6.1997, Jary 17375 & al., no.
206-cult. — SICILY: PROVINCE MESSINA: Messina, Nicotia (TAU; herb. Guadagno); *bulbs from
the Herbarium Univ. Panormitanae, 22.7.1991, Raimondo (UPA), no. 156-cult.; *Monti
Peloritani, in prossinuta della Caserma Brugnola (Casalveccio Siculo), sotto Pizzo Varma, 890 m,
13.5.1994, Raimondo & Gianguzzi (UPA), no. 190-cult.

GREECE: THESALIA: NOMOS PIERIAS: Mt Olimbos: 10.6.1951, Goulimis 7314 (herb. Pinatzi);
1 km SE of the village Kokkinoplos, 1200-1300 m, 20.6.1970, Strid & Bothmer 50 (C); supra coe-
ocbium Agios Dionisios, in ascensu ad refugium princeps (A), 1800-1900 m, 25.7.1971, Greater
9603 (ATH, B); Prionia, in grass among box bushes, 1000 m, 25.5.1972, Baxter 260 (ATH);
Abstieg von Hütte A bis Prionia, 2100-1000 m, 7.6.1972, Klaus & al. 241 (W); *infra refugium
EOS, in saxosis calcareis, 1800 m, 8.8.1973, Phitos & al. 26997 (UPA), no. 50-cult. (Fig. 3A, 4A);
N side, Papa Rema gorge, S of Vrondou, 500-650 m, 12.5.1974, Strid & Andersen 8392
(ATH); supralimnetica, 9603 (ATH, B); Prionia, in prossinuta della Caserma Brugnola (Casalveccio Siculo), sotto Pizzo Varma, 890 m,
13.5.1994, Raimondo & Gianguzzi (UPA), no. 190-cult. — PELOPONNISOS: NOMOS ARKADIAS: *Inter urbis Sparti et Tripolis,
c. 6.5 km, in fruticetosis, 800, 14.3.1988, Phitos & Kamari 20745 (UPA), no. 107-cult. (Fig. 4B).
— Nomos Ilias: From Pirgos to “Arhea Olympia” near the village Paleovarvasena, place called Mandres, 80-100 m, 30.3.1969, Stamatiadou 4975 (ATH); inter pagum Figalia et templum Vasai, in petrosis et in agris ad viam, 20.4.1975, Phitos & Kamari 18411 (UPA); *village Figalia, close to the branch of the river Neda, 26.3.1988, Phitos & Kamari 26999 (UPA), no. 163-cult. (Fig. 2A); *between Vasai and Perivolia, close to the branch of the river Neda, in schist, c. 650 m, 19.3.1989, Phitos & Kamari 26999 (UPA), no. 91-cult.; *Vasai, from the temple of Apollonos to Perivolia (on the right side of the street), Quercus forest, in chilly places, serpentine substrate, 650 m, 19.3.1989, Phitos & Kamari 27000 (UPA), no. 121-cult.; *in ditione pagi Iraklia, 29.3.1980, Katravas 19429 (UPA), no. 4-cult. (Fig. 4C); *in apertis silvae Pinus halepensis, 22.3.1987, Katravas 21896 (UPA), no. 91-cult. — Nomos Lakonias: In monte Malevo, prope Agios Ioannis, 1000 m, 20.4.1857, Orphanides 846 (WU-Hal.); Mt Parnon, Peleta bei, 20.4.1971, Hermjakob 9 (ATH); 7 km SSW of base of Monemvasia peninsula, 20-100 m, 30.3.1980, Strid & Baden 17193 (UPA); *of Monemvasia, along road from the village of Lampokampos to Kremasti, c. 8.5 km before Kremasti close to a chapel, stony slopes with phrygana, limestone, 650-800 m, 13.3.1998, Constantinidis 7270 (UPA), no. 211-cult.; *of Monemvasia, around the village of Agios Phokas and SW of it, small meadows, rocky slopes with recently burnt bushes and cliffs facing the sea, limestone, 2-60 m, 14.3.1998, Constantinidis 7300 (UPA), no. 212-cult. — Nomos Messinia: Mt Ithome, 23.5.1901, Zahn 324 (WU-Hal.); *village of Iamia to Charokopio (Methoni & Koroni), in macchia with Pistacia lentiscus and Acer sp., c. 250 m, 19.2.1989, Athanasiou & Athanasiou 2118 (UPA), no. 120-cult.; *from Kalamata to village Mesala, in Quercus forest, 13.6.1995, Kamari & al. (Iter Mediterraneum) (UPA), 195-cult.

Stem up to 60 cm, glaucous-green. Leaves (0.4-)0.6-0.8(-1) cm broad and 6-9(-13) cm long, glaucous-green, usually linear to narrowly lanceolate, often suberect, the uppermost usually alternate. Flowers 2.2-2.8(-3.3) cm long, rarely or obscurely tessellated, usually with unclear or without fascia and their segments not upturned at the mouth. – Fig. 2C, 3C-D.

Notes. – The confirmation of the occurrence of Fritillaria messanensis subsp. gracilis on most of the Ionian Islands is significant, because it extends considerably its geographical range from Montenegro and N Albania to the south (Fig. 1). Ronniger (1941), after studying 36 individuals of Fritillaria from Zakintos, commented on the variability of the flower colour, the variation in shape and size of the perianth segments, the unclear fascia, etc., and concluded that these features correspond to F. gracilis. We confirm the variation of these morphological characters and add the variable number of the uppermost leaves, which may range from 1 to 3 in several populations of the Ionian Islands, especially in no. 205-cult. from Zakintos (Fig. 2C). Certain Ionian plants sometimes recall subsp. messanensis in that they have a clear fascia (Fig. 2C). This variation may be attributed to gene infiltration or old hybridisation events and gene flow between subsp. gracilis and subsp. messanensis, a common feature, even between different species of Fritillaria that grow sympatrically and/or parapatrically, which may sometimes result in speciation (Rix 1971, Turrill & Sealy 1980, Zaharof 1987, Kamari 1991). The plants of Kefallinia island are all typical subsp. gracilis and usually have dark purplish, shortly campanulate flowers without fascia (Fig. 3D).

Specimens seen. – SERBIA-MONTENEGRO: Montenegro: Djinova Breta, 6.1907, Bierbach (M); Straße zwischen Budva und Cetinje, 20.4.1962, Merxmüller & Wiedmann 5881(M); Grenzgebirge
(Bertiscus), Umgeb. d. Cakor passes, 1900-2000 m, Kalk, 6.1969, Leute 821 (W); in declivitate septentrionali montis Vrsuta (Rumija), supra pag. Virpazar, c. 850 m, 16.5.1982, Mayer & Mayer 10920 (LIJU, M); 1000 m, 16.5.1982, Mayer & Mayer 10921 (LIJU, M); *Mt Orjen, 23.7.1990, Stévanović (UPA), no. 146-cult. (Fig. 3C).

ALBANIA: In alpinen Steingerölle zwischen Vermoš und Širokar, c. 1800 m, 12.6.1914, Dörfler 255 (M); Distr. Scutari, in pratis elatiorm., Mt Cukali, 16.6.1897, Baldacci 43 (M).

GREECE: Sterea Ellas: Nomos Aitolias-Akarnanias: In Abieto-Quercetis deccivium boreali-orientalium cacuminis Boumistos, c. 1100 m, 9.6.1963, Phitos 1050 (M). — Ionian Islands: LEVKAS: *Inter pagum Eugiros et locum Skidi, 7.5.1979, Phitos & Kamari 18873 (UPA), no. 45-cult. (Fig. 5C). — ITHAKI: *Above the village Ihaki (Vathy), 15.4.1972, Phitos & Hauser, no. 47-cult. (Fig. 5B); *ad pagum Perachorion, in silva Quercus ilicis, 300-400 m, 18.4.1967, Phitos 5865 (UPA), no. 47a-cult.:Mt Niritos, above the village Anogi, 450 m, 7.4.2000, Katsouni (obs.).

— KEFALLINIA: Above Sami, next to the monastery at Agali, in bushes, c. 250 m, 11.4.1974, Fischer (UPA); *Argostoli, in loco Phanari, in silva Pinus halepensis, 15.4.1975, Phitos & Kamari 27001 (UPA), no. 48-cult.; close to the city of Argostoli, area Kataforothes, in opening of Pinus halepensis forest, 3.4.2004, Katsouni (obs.); N-NW slopes of Mt Gioupari (Roudi), 3-4 km of the crossroad to Enos-Sami, place called Vatouna, maquis and Abies cephalonica forest, 15.3.1999, Baldacci 43 (UPA); *between the lighthouse and the village (in fruit), 13.10.1991, Phitos & al. 26994 (UPA), no. 204-cult.; *close to the village of Anafonitria, clay soil in an olive grove and among crops, 600-1100 m, limestone, 1.4.1982, Stamatiadou 22672 (ATH); *in declivibus borealius cacuminis Roudi, 500 m, 4.9.1985, Phitos & Kamari 19552 (UPA), no. 84-cult. (Fig. 3D, 5A); *ibid., 19.5.1986, Phitos & Kamari 27002 (UPA), no. 84a-cult.; between the villages Halitotata and Poulata, close to the road, Brousalis (obs.); close to the village Zarata, at the place Kiklopia, in Pinus halepensis forest, 15.3.1999, Katsouni 251 (UPA; MNHC-I), *ibid., 2.4.2000, Phitos & al. 26471 (UPA; MNHC-I), no. 147-cult.; *between Sami and Karavomilos, 30 m, 20.3.2000, Katsouni 252 (UPA; MNHC-I); between Argostoli and Sami, at the place Lanou, 25.3.2004, Katsouni 253 (UPA; MNHC-I); close to the village Valsamata, 13.4.2000, Katsouni 255 (UPA; MNHC-I); close to the village Pastra, at the place named Agios Georgios, Katsouni (obs.); close to the monastery Agia Paraskevi Tafiou, Katsouni (obs.); close to the village Hravatia, Katsouni (obs.); *close to the village Vathi Erissou, 24.3.2004, Katsouni 459 (UPA; MNHC-I), no. 249-cult. — ZAKINTHOS: Zante, Fuß des Vrachionas, östlich von Mariés, 21.3.1936, Ronniger (W); zwischen Kilioménou und Hag. León, 22.3.1936, Ronniger (W); Nordseite der Insel Pelouso, 23.3.1936, Ronniger (W); s. loc., 3.4.1952, Goulimis 7919 (herb. Pinatzi); *in ditione pagi Volimae, in Pinetis, 31.3.1973, Tzanoudakis 588 (UPA), no. 43-cult.; *NW part of the island, just SE of Volimes, at the place named Veronika, calcareous substrate, 300-350 m, 6.4.1997, Phitos & al. 26994 (UPA), no. 205-cult. (Fig. 2C, 5D); *in ditionem pagi Gyri, prope locum Megali Spilia, 15.5.1974, Tzanoudakis 1346 (UPA), no. 44-cult.; *close to the village Gyri, at the edges of uncultivated fields, 5.4.1998, Phitos & al. 27003 (UPA), no. 216-cult.; *ad Pharos prope pagum Keri, 25.3.1988, Tzini (UPA), no. 108-cult.; *between the village Keri and its lighthouse, in clearing of Pinus forest and macchie, 5.4.1997, Phitos & al. 26996 (UPA), no. 203-cult.; *village Korithi, between the lighthouse and the village (in fruit), 13.10.1991, Phitos & Kamari 27004 (UPA), no. 157-cult.; *ad pagum Korithi, in agris incultis, 45 m, 26.5.1997, Phitos & Kamari 25434 (UPA), no. 204-cult.; *close to the village of Anatoni, clay soil in an olive grove and among crops, 3.4.1998, Phitos & al. 25985 (UPA), no. 215-cult.

cicotiorum”, 650 m, 20.4.1914, Gandoger 4349 (LY!).

Stem short, up to 15(-25) cm, slender, purplish green or often purple at the base. Leaves 0.2-0.4(-6) cm broad and 8-12(-15) cm long, purplish glaucous-green, linear and long, often curved
downwards, the uppermost often in a whorl of 3. Flowers (2.5-)2.8-3.5 cm long, rarely or ob-
scurely tessellated, usually with clear fascia and their segments not upturned at the mouth. – Fig.
3B.

Note. – As a rule, subsp. sphaciota is a slender, dwarf plant throughout its distribution, having
the longest and narrowest leaves of any Fritillaria messanensis taxon and a purple colour prevail-
ing on stems and leaves (Fig. 3B). A similar, considerable size reduction has also been observed in
other plants of Kriti, e.g. in several Crepis species (Kamari 1992), and is probably an adaptation to
the more xeric climate, which developed in Kriti after its separation from the mainland (Greuter
1972, 1979). At lower altitudes (as in Samaria gorge or at Plakias bay) the plants of subsp. spha-
ciotica are somewhat taller but always remain slender and retain the characteristic long, linear
leaves, which are often curved downwards. It is noteworthy that no other Fritillaria taxon occurs
in Kriti.

Specimens seen. – Greece: Kriti: Nomos Chanion: Levka Ori, in saxosis calc. ad marginem
australem altiplanitiei Omalos, c. 1100 m, 26.4.1942, Rechinger 12373 (W); N-Hänge der Weis-
ser Berge s.d. ob. Kambi am Weg zum EOS-Katafjio, 850 m, 9.4.1962, Greuter 4114 (ATH, B,
UPA, W); in rupestris calc. faucium Samaria, 12.5.1963, Phitos 751 (M); *Samaria gorge, at
the end of Kiloskalo, in the base of calcareous rocks, c. 750 m, 28.5.1972, Kamari & Papatsou
21912 (UPA), no. 31-cult.: between Kiloskalo pass and the chapel of Agios Nikolaos, 1300-
700 m, 28.5.1972, Petamidis 1407 (ATH); Sfakia, road from Anopoli to the Levka Ori, 8.2 km
above junction with road to Aradhena in Anopoli, rocky slopes with phrygana, in Cupressus
woodland, partially rich in soil, 14.4.1994, Bergmeier & Matthäs 3733 (B, UPA); peninsula
Titiron, in saxosis calc., prope Selia, c. 300 m, 21.4.1942, Rechinger 12231 (W); distr. Kidonia,
village Malaxa, 470 m, 13.4.1974, Goulandri 149 (ATH). — Nomos Rethimnis: Infra pagum
Myrthios, in saxosis litoreis, 14.4.1974, Phitos & al. 16749 (UPA), no. 30-cult.: *ad pagum
Plakias, in declivibus maritimis, 10-30 m, 14.4.1974, Phitos & al. 26992 (UPA), no. 30-cult.
(Fig. 6A); above the village Alones, 20.4.1983, Tzanoudakis 1097 (UPA). — Nomos Irakliou:
Mt Psiloritis: *Supra pagum Gergeri, in faucibus Gafari, prope silvam Rouva (Quercus coccifera),
1200-1300 m, 23.4.1972, Phitos & Kamari 11173 (UPA), no. 32-cult. (Fig. 3B, 6B); *in loco
Voskero, 1300-1350 m, 22.4.1974, Tzanoudakis 1080 (UPA), no. 32a-cult.; in loco Tiganolakos,
c. 1300 m, 22.4.1974, Tzanoudakis 1096 (UPA); in silva Rouva, 1000-1100 m, 22.4.1974,
Tzanoudakis 1097 (UPA); Iraklion, am Berg Strubula bei Marathos, Kalkhänge, 10.4.1954,
Mersmüller & Wiedmann 5886 (M); am Youchtas-SO-Hang, 5.4.1981, Rehder (M). — Nomos
Lasithiou: Kalamafka, Bachufer bzw. licht e Föhrenbestände, 650 m, 11.4.1971, Malicky-Rei-
sen 7 (W); between the villages Krousta and Kritsa, 4.4.1974, Goulardi 145 (ATH); *Prinias
hill, with low phrygana and rocks, c. 750 m, 8.5.1994, Anagnostopoulos & Athanasiou (UPA),
no. 122-cult.

Karyology
Fritillaria messanensis shares the chromosome number of 2n = 24 and its karyotype with most
other species of the genus (see Kamari 1991, 1996 for previous references). The standard
Fritillaria karyotype is asymmetrical, bimodal, consisting of two symmetric (usually one meta-
centric and one submetacentric) and ten asymmetric (acrocentric to subtelocentric in varying pro-
portions) pairs. Only two taxa of subgenus Fritillaria, i.e. F. montana and F. ruthenica Wikström,
have 2n = 18 chromosomes (Fedorov 1969). This chromosomal reduction is probably the result of
successive chromosomal reconstructions and fusion of acrocentric chromosomes into metacentric
chromosomes (Darlington 1930, 1936, La Cour 1978a-b, Kamari 1991). The presence, shape and
size of satellites on chromosomes vary significantly among members of the genus, and even within
the same taxon (Runemark 1970, Bentzer & al. 1971, Mehra & Sachdeva 1976, Koul & Wafai
occasionally not visible in all metaphase plates. They are mostly situated on the short arms of the
Fig. 4. Microphotographs of mitotic metaphase plates of *Fritillaria messanensis* subsp. *messanensis* – A: Mt Olimbos (pop. no. 50-cult.); B: Nomos Arkadias, Peloponnisos (pop. no. 107-cult.); C: Nomos Ilias, Peloponnisos (pop. no. 4-cult.). – Arrows indicate SAT-chromosomes and arrowheads B-chromosome and secondary constrictions. Scale bars = 10 µm.

For *Fritillaria messanensis* important karyological information has been published using both Feulgen and C-banding preparations. The first reports were given by La Cour (1951, 1978a-b) in material of *F. messanensis* (sub *gracilis*) from the Balkan coast and N Africa. With respect to the N African populations, the data of La Cour (1951, 1978a-b) and the triploid karyotypes ($2n = 3x = 36$) of Humphries & al. (1978) from the Antiatlas Mts probably refer to the related *F. oranensis* Pomel, which replaces *F. messanensis* in that area. Typical *F. messanensis* has been examined from Messina in Italy by Gori (1958), who presented karyotypes and also a karyogram. A karyotype with $2n = 24$ chromosomes, given by Chichiricò & Tammaro (1982) under the name *F. orsiniana* Parl. (= *F. montana*), probably belongs to *F. messanensis* and not to *F. montana*, which is characterized by $2n = 18$ chromosomes. Confusion between these taxa is quite common in plants from Italy and the N Balkan, especially when the determination is purely based on dry herbarium specimens. Lovka (1975) gave the number of $2n = 24$ and a description of the karyotype for plants from former Yugoslavia that should now be attributed to *F. messanensis* subsp. *gracilis*.

The first chromosome count of *Fritillaria messanensis* in Greece was made by Strid & Franzén (1981) from Mt Olimbos. Kamari & Matthäus (1986) studied material from Kriti (pop. 32-cult.) and published the photograph of a karyotype attributable to subsp. *sphaciotica*. Zaharof (1987, 1989) also studied five populations of *F. messanensis* (two from Mt Olimbos and three from Peloponnisos), and observed that the karyotypes from Olimbos are characterized by two satellite chromosome pairs, in contrast to those of Peloponnisos, where only one pair bears satellites. Similar results have been presented by Kamari (1991), who further reported two pairs of SAT-chromosomes in populations from the Ionian Islands and Kriti. Moreover, she found one B-chromosome in plants from Kefallinia.

The karyotype formula of all *Fritillaria messanensis* subspecies is stable and $2n = 2m + 2sm + 2st-sat + 8st + 2t-sat + 8t = 24$ chromosomes. The same karyotype formula was already found by Gori (1958) in material from Messina in Italy and by Zaharof (1987, 1989) in material from Mt Olimbos.

Chromosome counts in 16 populations of *Fritillaria messanensis* subsp. *messanensis* showed that the number and morphology of the satellites varies between the populations studied (Fig. 4A, 4B, 4C), in accordance with the results of Zaharof (1987, 1989) and Kamari (1991). In material from Mt Olimbos (pop. no. 50) we observed satellites on two chromosome pairs (Fig. 4A). The largest satellites marked an acrocentric (st-SAT) pair and smaller satellites were found on a subtelocentric (t-SAT) pair; however, these were not visible in all metaphase plates and commonly only 2-3 satellites were evident (Fig. 4A). In material from Nomos Ilia, Peloponnisos (pop. no. 4) we normally observed one satellited subtelocentric (t-SAT) chromosome pair and additionally an intense secondary constriction on the shorter arm of the submetacentric (sm) chromosomes, close to the centromere (Fig. 4C). Similar observations were reported for plants from Peloponnisos (Zaharof 1987a, 1989), for material from Sicily (Gori 1958) and in some other *Fritillaria* taxa (La Cour 1978c, Kamari 1984, 1991). In material collected between Sparti and Tripoli (pop. no. 107), on the contrary, we observed two satellited chromosome pairs (Fig. 4B), as in the plants from Olimbos, although the satellites were not visible in all metaphase plates. In the same population a small B-chromosome (fragment) was found, its size varying among different plants of the population (Fig. 4B).

We studied 19 populations of *Fritillaria messanensis* subsp. *gracilis*. For this subspecies La Cour (1978a-c) noted that the nucleolar organizing region is heterochromatic and that hetero-
The heteromorphy between pairs is apparent at this region, a rather common phenomenon in most satellited chromosome pairs of *Fritillaria*. The Greek material we examined appeared to have two heteromorphic satellited chromosome pairs, but usually only two or three satellites were visible (Fig. 5A-D). Additionally, a B-chromosome (fragment) was observed in one population (Fig. 5A) from Kefallinia (pop. no. 84-cult.) and one (Fig. 5D) from Zakinthos (pop. no. 205-cult.). - Arrows indicate SAT-chromosomes and arrowheads the B-chromosomes. Scale bars = 10 µm.

The heteromorphy of the satellited chromosomes also appeared in all six populations of *Fritillaria messanensis*, especially in number and shape of satellites, appears to be in accordance with the morphological variation of the group. The differences in number and shape of satellites on chro-
mosome pairs characterize populations rather than taxonomic units. However, some of these may
merit more attention: the consistent appearance of the large, double and strongly stained satel-
lites in subsp. *sphaciotica* (Fig. 6A-B) and the intense secondary constriction close to the
centromere on the shorter arm of the submetacentric (sm) chromosome pair in populations of
subsp. *messanensis* from Peloponnisos (Fig. 4C). The observation of an additional B-chromo-
some (fragment) in two populations of the Ionian Islands (Fig. 5A-D) and one of Peloponnisos
(Fig. 4B) is also significant, because such B-chromosomes, which may vary in number (usually
1-5) and may possess a clear centromere, have usually been observed in populations where two
different taxa coexist and may indicate hybridization (Kamari 1984, Zaharof 1987, 1989). It is
also noteworthy that no B-chromosome has been observed in the populations of subsp.
sphaciotica examined. This may suggest a stable karyotype for this subspecies, which corrobo-
rates its morphological stability. The use of more sensitive cytogenetic and molecular techniques
might be particularly useful to increase our understanding of the genomic relationships and tax-
oonomy of the subspecies of *F. messanensis* throughout their geographical range and their affini-
ties with allied taxa.

Affinities

Rix (1971) treated *Fritillaria messanensis* as name giving member of the circum-Mediterranean
F. messanensis group, together with *F. pyrenaica* L., *F. lusitanica* Wikström, *F. oranensis* and *F.
acmopetala* Boiss. From all of these it differs mainly in nectary size and shape. Later Rix (1974,
1975) concluded that *F. messanensis* is taxonomically closer to the dwarf *F. epirotica* Rix, be-
cause the latter has large nectaries similar to those of *F. messanensis*. He also postulated that *F.
epirotica* may have evolved as a high altitude ecotype of *F. messanensis*. However, *F.
messanensis* is also found at high altitudes on Mt Olimbos (Greece), Mt Pollino (Italy) and Cakor
passes (Serbia-Montenegro), usually on limestone substrates, whereas *F. epirotica* grows on ser-
pentine. Zaharof (1988), after a phenetic study of some Greek Fritillaria taxa, placed F. messanensis in the same major cluster with F. montana and indicated a link of F. epiroica to the F. graeca group.

Fritillaria messanensis and especially its subsp. gracilis has close affinities with F. montana, with which it is sometimes confused, particularly in the northern part of its range. Their main distinguishing characters are the shape of the nectaries (large, long-lanceolate in F. montana and F. epiroica; medium-sized, ovate to egg-shaped in F. messanensis) and the leaf arrangement (leaves all alternate in F. montana and F. epiroica; usually the uppermost leaves in a whorl of three in F. messanensis, except subsp. gracilis). Furthermore, F. montana is characterized by 2n = 18 chromosomes, in contrast to 2n = 24 of both F. messanensis and F. epiroica.

Recently, Persson & Persson (1998) described Fritillaria sororum Jim. Perss. & K. M. Perss. from the lowland of Mt Taurus (Anatolia, Turkey). According to these authors F. sororum is reminiscent of F. messanensis in habit, shape and colour of perianth segments and nectary type. F. sororum differs from F. messanensis in the presence of leaf tendrils, a feature, however, which we also observed occasionally in plants of subsp. sphaciotica on Mt Psiloritis (Tzanoudakis 1097). Also F. elwesi Boiss., an E Mediterranean element distributed in S Anatolia and on the Greek island of Kastellorizo, is close to F. messanensis from which it mainly differs by its lanceolate nectaries and narrowly campanulate flowers.

Acknowledgements

We gratefully acknowledge financial support from the University of Patras through grant no. 2994 – K. Karatheodoris. We sincerely thank the directors and curators of the herbaria who either sent us material on loan (ATH, M) or provided digital images (LY, TAU). Special thanks are also due to G. Domina (Palermo), Prof. F. Garbari (Pisa), Dr G. Guignard (Lyon), M. Niketić (Beograd), N. Turland (Saint Louis), O. Vasić (Beograd) and A. Vassiliou (Berlin), who sent us reprints of useful references, and to all those who supplied living material for our studies. We thank Dr T. Constantinidis (Athens) for his linguistic comments and our collaborators P. Bareka (MSc), for scanning the images, and P. Lambropoulos, for drawing the map outline. Dr M. Rix and an anonymous reviewer are finally thanked for their helpful comments.

References

Boissier, P. E. 1884: Flora orientalis 5. – Genevae, etc.

Halácsy, E. von 1904: Conspectus florae Graecae 3. – Lipsiae.

— 1992: Karyosystematic studies on three Crepis species (Asteraceae) endemic to Greece. – Pl. Syst. Evol. 182: 1-19.[CrossRef]

— 1996: Fritillaria species (Liliaceae) with yellow or yellowish-green flowers in Greece. – Bocconea 5: 221-238.

Koul, K. A. & Wafai, B. A. 1980: Chromosome polymorphism and nucleolar organization in some species of Fritillaria. – Cytologia 45: 675-682.

— 1978c: Two types of constitutive heterochromatin in the chromosomes of some Fritillaria species. – Chromosoma 67: 67-75.[CrossRef]

Mehra, P. N. & Sachdeva, S. K. 1976: Cytological observations on some W. Himalayan monocots. II. Smilacaceae, Liliaceae and Trilliaceae. – Cytologia 41: 5-22.

— 1975: Notes on Fritillaria in the eastern Mediterranean region III. – Kew Bull. 30: 153-162. [CrossRef]

Runemark, H. 1970: The role of small populations for the differentiation in plants. – Taxon 19: 196-201. [CrossRef]

— 1988: A phenetic study of Fritillaria (Liliaceae) in Greece. – Pl. Syst. Evol. 161: 23-34. [CrossRef]

Address of the authors:

G. Kamari & D. Phitos, Botanical Institute, Section of Plant Biology, Department of Biology, University of Patras, GR-26500 Patras, Greece; e-mail: kamari@upatras.gr