Phylogenetics of the neotropical liana genus Pedersenia (Amaranthaceae: Gomphrenoideae) and discovery of a new species from Bolivia based on molecules and morphology

Authors: Thomas Borsch, Teresa Ortuño Limarino, and Michael H. Nee
Source: Willdenowia, 41(1) : 5-14
Published By: Botanic Garden and Botanical Museum Berlin (BGBM)
URL: https://doi.org/10.3372/wi.41.41101
THOMAS BORSCH1*, TERESA ORTUÑO LIMARINO1,2 & MICHAEL H. NEE3

Phylogenetics of the neotropical liana genus Pedersenia (Amaranthaceae: Gomphrenoideae) and discovery of a new species from Bolivia based on molecules and morphology

Abstract

The monophyletic genus Pedersenia comprises eleven species in the Neotropics, one of which, P. volubilis, is here described as new to science, being an endemic of mixed semi-deciduous Bolivian-Tucuman Interandean lower subhumid forest at mid elevations of the Department of Santa Cruz, Bolivia. Among the liana species of Pedersenia, it differs by twining stems, synflorescences constituted by terminal stems of several metres and small, lanceolate leaves. It is also characterised by two synapomorphic substitutions in the matK CDS. Sequence data of trnK/matK show considerable divergence between morphologically very similar liana species of tropical evergreen broad-leaved forests from different geographical regions. The phylogeny suggests the only self-sustaining tree-like species from the dry inter-Andean valleys to be derived from lianas. Allopatric speciation fostered by the ecological and geographical differentiation of the forest communities may have led to morphologically cryptic species, underscoring the need for an integrated morpho-molecular revision of the genus Pedersenia.

Resumen
El género monofilético de Pedersenia actualmente comprende once especies aceptadas del neotrópico, una de las cuales, P. volubilis, se describe como nueva especie. Esta es endémica de una mezcla del bosque semi-deciduo interandino y el bosque subhúmedo subandino Tucumano-Boliviano, del departamento de Santa Cruz, Bolivia. Entre las especies de lianas, P. volubilis se diferencia por los tallos volubles y la ramificación de las sinflorescencias terminales de varios metros y por sus hojas lanceoladas. Además la especie se caracteriza por dos sustituciones en las secuencias del gen matK. Los datos moleculares (trnK/matK) muestran una considerable divergencia entre las especies de lianas morfológicamente muy similares de bosques húmedos de diferentes regiones geográficas. Las únicas especies autosostenibles arborecentes de los valles secos interandinos parecen haber derivado de lianas. La especiación alopátrica provocada por la diferenciación ecológica y geográfica de las comunidades forestales puede haber desembocado morfológicamente en especies crípticas, lo que subraya la necesidad de una revisión integral morfo-molecular del género Pedersenia.

Additional key words: Pedersenia volubilis, molecular systematics, matK/trnK, cryptic species, endemics, Boliviano-Tucumano biogeographical province

Introduction
The genus Pedersenia Holub represents a neotropical lineage of subfamily Gomphrenoideae of the Amaranthaceae. Most species of Pedersenia are woody lianas growing up to 10 m high on trees in various tropical forest types, whereas a small group of shrubs are endemics to the dry valleys of the Andes in Bolivia and Peru. Pedersenia has suffered a complicated taxonomic history. The first species were described by Martius (1825) under Trommsdorffia Mart. (T. argentata Mart., T. aurata Mart., T. pulverulenta Mart.; published again 1826). Morphologically, these species are characterised by hermaphro-
ditic flowers, bilobed stigmas and an androeceum that is basally fused into a cup with broadly rounded pseudostaminodia. Dietrich (1839) merged Trommsdorffia with Iresine, without providing any arguments. However, his decision seems plausible as the species of both genera are similar in general appearance. They possess complex thyroid synflorescences with hundreds to even thousands of flowers. Both genera are also similar in their life form spectra (lianas, shrubs, small trees) and all species of both genera develop conspicuous white trichomes at the abaxial side of the tepals at maturity, serving for dispersal of the deciduous mature flowers.

Several additional species with the above mentioned Trommsdorffia features were described under the generic name Iresine by Willdenow (1806; I. canescens Humb. & Bonpl. ex Willd.), Ulme & Bray (1896; I. completa Ulme & W. L. Bray), Urban (1907; I. domingensis Urb.), Städley (1917; I. cardenasi Standl., I. costaricensis Standl., I. wrightii Standl.), Fries (1920; I. macrophylla R. E. Fr.), Suessenguth (1934; I. flavopilosa Suess., I. laurifolia Suess., I. tenuis Suess., I. weberbaueri Suess.), Chodat & Hassler (1903; I. hasslerianna Chodat) and Chodat & Rehfoß (1927; I. guaranitica Chodat).

Moquin-Tandon’s (1849) transfer of Trommsdorffia to the large tropical genus Alternanthera was not accepted by other authors. Species of Alternanthera can easily be recognised by globose or subglobose stigmas, providing a synapomorphy for the monophyletic genus Alternanthera within Gomphrenoideae (Sánchez del-Pino & al. 2009). The synflorescences consist of much bigger sessile or stalked heads of densely arranged flowers, very different in appearance from those in Iresine or Trommsdorffia.

Borsch (1995) analysed the pollen morphology of Central American species of Trommsdorffia and found similarities with Pfaffia Mart. rather than with Iresine. Pollen in Trommsdorffia, Pfaffia and other gomphrenoid genera was later described as metareticulate (Borsch & Barthlott 1998), whereas Iresine type pollen has broadly vaulted mesoporia and evenly spread tectal microspines (Borsch 1998). Ongoing molecular and palynological work on Iresine (Borsch, Flores, Zumaya & Müller, pers. comm.) provides evidence that species with Iresine type pollen form a clade distinct from those with metareticulate pollen. Phylogenetic analyses of Pfaffia and its allies, based on chloroplast trnK/matK, atpB-rbcL spacer and nuclear ITS sequences (Borsch, Ortuño & Müller, pers. comm.) and of the Gomphrenoideae as a whole using trnL-F and rpl16 intron sequence data (Sánchez del-Pino & al. 2009) further reveal a rather isolated position of Trommsdorffia. Therefore, the restoration of the genus Trommsdorffia by Pedersen (1997), following the concept of Martius (1825), is strongly substantiated by molecular phylogenetic hypotheses. However, while working on Asteraceae, Holub (1998) found that the earlier name Trommsdorffia Bernh. is validly published (Bernhardt 1800). Holub therefore replaced Trommsdorffia Mart. by the new name Pedersenia and provided new combinations for a number of species as they had been accepted by Pedersen (1997).

The genus Pedersenia has never been revised and species limits, particularly of the lianas, are unclear. Several characters such as leaf shape and venation patterns, colour and size of tepals were put forward as diagnostic characters for species but often can be found to vary gradually. Following the synopsis by Pedersen (1997, 2000) the genus comprises 8 to 12 species. Some of these species appear to be endemics of Central America (P. costaricensis (Standl.) Holub in Costa Rica, P. completa (Uline & Bray) Borsch in Nicaragua and Panama (Borsch 2001) or the few tree-like species of the inner Andean dry valleys of Bolivia and Peru (P. weberebaueri (Suess.) Holub, P. cardenasi (Standl.) Holub; Borsch 1993; Borsch & al. in press). However, distribution patterns of the species occurring in the Caribbean and in the South American lowlands cannot be assessed at this point because of the lack of a reliable taxonomic treatment.

The Amaranthaceae comprise about 80 species in Bolivia and several new endemic species have been described recently, for example in Gomphrena (Ortuño & Borsch 2005, 2006). In the course of a collaborative project on the diversity and systematics of the Amaranthaceae of Bolivia and of preparing the treatment of the family for the Catálogo de las plantas vasculares de Bolivia (P. Jørgensen, S. G. Beck & M. H. Nee, in prep.), herbarium specimens of Pedersenia were encountered which deviate by leafy synflorescences with an apparently winding main axis. Such plants were then also collected during fieldwork in the department of Santa Cruz, in Florida Province west of Santa Cruz de la Sierra.

To get insights into the phylogenetic position of these deviating plants within Pedersenia and to support a taxonomic treatment, we used sequences of the trnK group II intron including the matK gene. Sequences of trnK/matK have been shown to contain high levels of historic signal and thus constitute a highly efficient phylogenetic marker at various levels in land plants (Hilu & al. 2003; Müller & al. 2006; Borsch & Quandt 2009). This region was also successfully used for analyses of phyleogeography and speciation in Aristolochia (Watanabe & al. 2006) and Erica arborea (Désamoré & al. 2001). Weising & Gardner (1999) located universal primers for amplifying cp microsatellites in the 5’ part of the trnK group II intron.

Aims of this study were to clarify the taxonomic status of the deviating plants of Pedersenia using both molecular and morphological data and to describe them as a new species. Furthermore, the utility of molecular markers to assess species diversity in taxonomically difficult genera such as Pedersenia should be tested.

Material and methods

Taxon sampling and plant material — Fieldwork was carried out in the surroundings of Santa Cruz de la Sierra
and the Parque Nacional Amboró in Bolivia in autumn 2002. Material of Pedersenia was examined from the herbaria B, BOLV, LPB, MEXU, MO, NY and USZ (Thiers 2008+). Types of names of other Pedersenia species were examined morphologically in the wider context of this project and of work underway for a treatment in Flora Neotropica by the first author.

DNA isolation, amplification and sequencing — Genomic DNA was isolated from silica gel dried or herbarium material following a modified CTAB triple extraction protocol (Borsch & al. 2003). The trnK intron including matK was then amplified in two overlapping halves using primers trnK2F bryo (Wicke & Quandt 2009) + ACmatK1400R and ACmatK490F + trnK2R. Otherwise, primer sources and PCR conditions were as described in Müller & Borsch (2005). Gel purified products were directly sequenced via Macrogen Inc. (Seoul, South Korea). Pherograms were edited and assembled using PhyDE (Müller & al. 2005+).

Sequence alignment, coding of length mutational events and phylogenetic analysis — The matK/trnK alignment of the Amaranthaceae by Müller & Borsch (2005) was used to add further sequences following the rules outlined by Löhne & Borsch (2005) using PhyDE (Müller & al. 2005+). Several mutational hotspots (see Appendix II) were excluded from the matrix subjected to tree inference. Indels were coded using the Simple Indel Coding method (Simmons & Ochoterena 2000). Phylogeny was reconstructed using parsimony with PRAP (Müller 2004). Ratchet settings were 200 iterations with 25% of the positions randomly upweighted (weight = 2) during each replicate and 10 random addition cycles. The number of steps for each tree and the homoplasy indices (CI, RI, RC) were calculated with PAUP*v.4.0b10 (Swofford 1998). Support was calculated using 10 000 jackknife replicates, TBR branch swapping, 36.788% of characters deleted in each replicate, and one tree held. Other methods such as Bayesian or Maximum Likelihood were not employed in this study because the data set for Pedersenia still is rather small and only one node between different taxa within the crown group gains statistical support. The presence of many autapomorphies for species was better illustrated (potential species identifiers in case of terminal branches) by plotting character state transitions (ACCTRAN) directly on the tree.

Results

A Pedersenia hassleriana caulium parte distali volubilis 2–3 m longa e nodis cunctis copioso ramosa; foliorum ramos synflorescentiae axillantium lamina multo minore 25–50(–60) mm longa 10–15 mm lata angusta ovata vel lanceolata; tepalis omnino scariosis pallide brunnescis vel perpallide viridi-brunnescentibus prominenter trinervii exteriorius 2 glabris; nec non basibus nucleotidicis in positone 317 sequentiae geneticae matK in A et in positione 1132 in T mutatis differt. Woody liana, 5–10 m long; stems branched, the upper parts twining around branches of other woody plants; bark pale brown to cream, somewhat shiny, glabrous. Leaves opposite, petiolar, petiole 3–4 mm long, blade narrowly ovate to lanceolate, 25–50(–60) x10–15 mm, acuminate at apex, cuneate and very narrowly decurrent on the petiole, glabrous or very sparsely pubescent on the lower surface with short, simple, appressed trichomes. Synflorescences constituted by the upper parts (2–3 m) of the main twining stems, with many, up to 15 cm high, narrowly pyramidal, mostly erect, 2–3 times branched thyrsoid structures, branching from opposite axils, often up to higher branching orders subtended by small caule leaves. Flowers generally hermaphroditic, solitary on a 0.3 mm long peduncle, arranged in subglobe paracalla of 8–15 flowers, the axes very densely pubescent with white, 2–3-celled, uniseriate trichomes with a rough surface. Bracts triangular or rounded-triangular, 0.5–0.7 mm long, 1-veined, membranaceous, pale brown, dorsally sparsely pubescent with trichomes concentrated near the midvein; trichomes 1–2 celled, uniseriate, 0.2–0.3 mm long with a rough surface. Bracteoles distinctly shorter than the flower, suborbicular, boat-shaped (saccate), 0.6–0.7 mm long, 1-veined, membranaceous, pale brown, dorsally sparsely pubescent with trichomes concentrated near the apex; trichomes as in bracts. Tepals broadly ovate to ovate-oblong, the lateral margins mostly parallel, the apex mucronate, outer two tepals 1.5–1.7 mm long, inner 1.2–1.4 mm long, only slightly narrower than outer, all distinctly 3-veined with prominent veins, scarious, very pale greenish brown to pale brown, no thinner margin differentiated laterally, the outer two tepals glabrous, the inner densely pubescent with appressed, 0.5–0.8 mm long, uniseriate, 2–3-celled, white trichomes with rough surface; basal dispersal trichomes stiff, very slightly undulate, smooth, 1.7–2 mm at maturity, very pale brown. Stamina with linear, 0.8–1.1 mm long filaments united for 15% into a staminal cup with pseudostaminodia; staminal cup broadly rounded to quadrangular-obtuse, 0.3 mm high, much shorter than the free part of the filament, brown; anthers unilocular, 0.3–0.35 mm long. Ovary uniovulate, style 0.1–0.15 mm long but rather distinct, stigma with two erect triangular-rounded, 0.15 mm long lobes, dark blackish brown. Fruit a subglobeose, indehiscent utricle, with a minute corolla; seeds not known.

Molecular data — The multiple sequence alignment of trnK/matK comprised five mutational hot spots (see Ap-
Fig. 1. *Pedersenia volubilis* – isotype at B.
pendix 2) that were excluded from the analysis. The trnK/matK matrix comprised 2512 characters of which 30 were from indels (in total 401 variable but uninformative, 250 variable and informative). Two shortest trees with a length of 933 steps (CI = 0.808, RI = 0.741, RC = 0.599, HI = 0.192) were recovered. The strict consensus tree (Fig. 2) depicts unambiguous character state transitions relevant for Pedersenia, most of which are apomorphic. The two samples of P. volubilis share substitutions in positions 317 (C substituted by an A) and 1132 (G substituted by a T; in parallel also in Gomphrena) of the matK coding region which, based on the current taxon sampling, are unique identifiers of this species within the genus.

Additional specimens seen — Bolivia: Santa Cruz: Prov. Florida: 2 km NW of Samaipata, 18°10'S, 63°53'30"N, 1675 m, 21.7.1994, M. Nee 45266 (C, LBP, MEXU, MO, NSW, NY, SI, USZ); 6.5 km (by road), 3 km (by air) NE of central square in Mairana on road to Yunga de Mairana, 18°06'S, 63°56'W, 1800 m, M. Nee 49304 (CTES, LPB, NSW, MO, NY, US, USZ); Camino Pampa Grande y Oleoducto, a 5.6 km de Pampa Grande, 18°04'S, 64°05'W, P. Acevedo Rodriguez, L. Arroyo & B. Mostacedo 4484 (LPB, USZ).

Habitat and ecology — Pedersenia volubilis is known from the Boliviano-Tucumano biogeographical province in Bolivia (Navarro & Maldonado 2002). Within this province, the collections Nee 45266 and 49304 and Acevedo & al. 4484 are from inter-Andean lower subhumid forests (Bosque subhúmedo inferior interandino Boliviano-Tucumano; Navarro & Maldonado 2002) that generally occurs at an altitudinal range between 1500 and 1900 m between 18°05'S and 63°55'W, on the southern margin of the Amboró National Park, Prov. Florida. Depending on differences in precipitation and temperature (ranging from 545 mm per year at Mairana to 930 mm per year at Monteagudo) these mesophytic forests are composed of a variable mixture of deciduous and evergreen plants. The canopy has a height of 15–20 m and the forests have a well developed understory reaching 8 to 10 m. This vegetation series is transitional between the inter-Andean dry valley vegetation and the humid semi-open forests (bosque ralo) of the hill ranges (serranías). The type collection Borsch & Coimbra 3537 is from the same kind of vegetation but the collecting locality is drier and dominated by Acacia aroma Hook. & Arn., a species usually found in the Inter-Andean dry forest (Ibisch & Mérida 2004) and in the Prepuna (López 2000). The collection Nee 49304 was found at the upper limit of the dry forest of Schinopsis haenkeana Engl. with the transition to a more humid montane forest with Clethra scabra Pers., Mimosa lepidota Herzog and Agarista boliviensis (Sleumer) Judd.

Distribution — The new species is known from four collections; the actual range of the species may follow the distribution of the “Bolivian-Tucuman Interandes lower subhumid” forest. As suggested by Navarro & Maldonado (2002) some areas with climatic and geomorphological characteristics similar to the province of Florida also occur in the departments of Chuquisaca and further south to the department of Tarija. Based on the distribution of characteristic floristic elements of the vegetation...
series (Navarro & Maldonaldo 2002) such as Schinopsis haenkeana (Kazuya & al. 2006; Meneses & al. 2009), a similar vegetation could occur furthermore in the department of Cochabamba. This means that Pedersenia volubilis could have a wider range of distribution in Bolivia than currently known. However, floristic studies and plant collecting in all these areas (e.g. Ortuño & Borsch 2006; Antezana & Navarro 2002; Meneses & al. 2009; López & Ortuño 2008) have not yielded any further specimens.

Conservation status — Pedersenia volubilis can hardly be evaluated using the criteria established by the International Union for Conservation of Nature (IUCN 2001), due to the limited numbers of plants known and the lack of any reliable estimate of the frequency of this species even in the area between Samaipata and Mairana, where it has been collected. Nevertheless, the conservation status of the respective forests was assessed (Dirección de ordenamiento territorial 2008) applying the IUCN criteria on the ecosystem scale and using the characterisation of the vegetation by Navarro & Maldonado (2002). Therein the “Bolivian-Tucuman Interandes lower subhumid forest” is categorised as vulnerable (VU) because the natural vegetation is increasingly becoming fragmented by agricultural activities and grazing and degraded through selective tree felling.

Discussion

Phylogenetic relationships in Pedersenia — The Altenantheroid clade (Sánchez-del Pino & al. 2009; Alternanthera + Pedersenia + Tidestromia) is not resolved by our trnK/matK data, whereas the Gomphrenoid and the Iresi-loid clades (although the latter is not well represented) are found. Pedersenia is shown inconsistently (8 % JK) as sister to the Gomphrenoid clade sensu Sánchez-del Pino & al. (2009), suggesting that especially the existence of the Altenantherooids needs to be further tested by additional characters. The genus Pedersenia is well supported as monophyletic based on matK/trnK sequences (Fig. 2), corroborating the combined analysis of trnL-F and rpl16 sequence data (Sánchez-del-Pino & al. 2009) but with a somewhat different taxon sampling. Synapomorphies for Pedersenia are the staminal cup with more or less broadly rounded pseudostaminodia and filaments that are linear in their free part and the distinctly bilobed stigma with broad to triangular lobes that are laterally not completely covered with stigmatic papillae (Borsch 1995, 2001). Five subequal, broadly lanceolate tepals with a rounded, obtuse to even somewhat hooded apex and three distinct veins are not found in other genera of Gomphrenoidae. Other morphological characters are less specific to Pedersenia. Pollen grains are metatectic (Borsch 1995, 1998) as in all core Gomphrenoidae but resemble with their dodecaedric form and complete tecta the pollen found in most species of Alternanthera. Pfaffia and relatives have very similar pollen but with a higher aperture number and, as a consequence, globose form (Borsch 1998). Also, the long trichomes that develop at the abaxial side of the tepals at maturity and obviously serve dispersal are found in a similar manner in some species of Alternanthera (e.g. A. congesta Suess. & Stützer, A. laguroides Standl.).

Within Pedersenia, relationships are resolved but only moderately supported. The specimen from Mexico (hitherto not assigned to any species) appears as sister to the South American taxa. It also has a high number of apomorphies. Within the South American core group (86 % JK), the three sampled species are well differentiated but relationships lack statistical support. However, it is noteworthy that the erect tree-like *P. cardenasii* from the dry inner-Andean valleys of Bolivia is nested within terminals, all of which are lianas. The tree therefore suggests the erect habit to have evolved from lianas within the context of colonising the dry valley habitats. Further sampling of taxa and characters (adding to the trnK/matK data set) is needed to corroborate this hypothesis and to further illuminate phylogenetic relationships in Pedersenia.

Species diversity in Pedersenia and delimitation of the new species — The genus Pedersenia currently contains eight species names of mostly still uncertain status according to The Plant List (2010). Pedersen (1997), who presented a synopsis based on a discussion of morphological similarities, accepted seven species (under Trommsdorfia). Holub (1998) then published new combinations for these taxa under Pedersenia without any further analysis. Pedersen (2000) argued that *P. hassleriana* also is a distinct species and added a further new combination. Both authors had overlooked that *Pedersenia completa* (Uline & Bray) Borsch, comb. nov. (= Iresine completa Uline & W. L. Bray in Bot. Gaz. 21: 349. 1896) is another morphologically distinct taxon from Central Americ-a that does not belong to the Iresinoid clade (Borsch 1995, 2001) but to Pedersenia based on floral and pollen morphology. The recently described *Pfaffia miraforesensis* Agudelo & Franco-Rosselli also belongs to Pedersenia. However, it remains to be seen if this species is an endemic of Colombia as stated by Agudelo-H. (2008) or whether it belongs to either Central American-Caribbean or South American species. There are other taxa of Pedersenia with only little vaulted and hairy pseudostaminodia (e.g. *P. completa*). Considering current morphology-based taxonomic hypotheses there are eleven species in Pedersenia. Nevertheless, about twice as many names exist for somewhat diverging specimens, several at infraspecific rank, which need further study.

Although several type specimens were examined by Pedersen (1997, 2000) to group them into morphospecies, it is important to note that especially the lianas within *Pedersenia* differ mostly by size and indumentum (density, length and colour of trichomes) of the tepals, the stiffness and colour of the long trichomes at the base of the tepals, which serve in dispersal, the complexity of the synflorescences and the size and venation of the
leaves. All of these characters may vary gradually and more specimens needed for the application of descriptive statistics are hardly available. All these characters may easily be influenced by abiotic conditions, so it is unclear in how far morphological variation is simply caused by environmental modifications.

Nee (2004) identified the other specimens of *Pedersenia* that occur in the Parque Nacional de Amboró as *P. argentata* (Mart.) Holub. However, the plants in the lowland areas of Bolivia (see *P. cf. hassleriana*, Fig. 2) may better be identified as *P. hassleriana*. The diagnosis of the latter species in Chodat & Hassler (1903 under *Iresine*) is very short and basically refers to a stronger fused staminal cup consisting of a darker brown and thicker tissue, with more emarginate pseudostaminodia than in *P. aurata*. Pedersen (1997) argued that *P. argentata* is conspecific with *P. aurata* and merged them under the former name although the tepals differ in size, texture and strength of the veins. Plants similar to the type of *P. aurata* (Martius 1825, 1826 under *Trommsdorffia*) occur widely in South America and appear to be distributed in the areas of evergreen tropical broad-leaved forests from the lowlands to mid elevations of the Andes. This taxon may be replaced by *P. hassleriana* in the more seasonal semideciduous forests (e.g. bosque semideciduo chiquitano) of southern Bolivia, Argentina, and Paraguay, and, according to Pedersen (2000), by *P. macrophylla* in still drier, seasonal forests of the Chaco. On the other hand, specimens with emarginate pseudostaminodia occur throughout South America, indicating that the diagnostic characters of *P. hassleriana* put forward by Chodat & Hassler (1903 under *Iresine*) are not overly reliable. This may just give some examples of the difficult taxonomy in the genus *Pedersenia* that can hardly be resolved using morphology alone.

Pedersenia volubilis deviates morphologically from all other lianas by the richly branched upper stems that wind around trunks of other woody plants with long (2–3 m) terminal parts of which thyrsoid structures (here termed synflorescences) branch off laterally from all nodes. Its leaves are much smaller (only half the length) than in all other liana species of *Pedersenia*, and contrary to other species often subtend also synflorescence branches of higher order. Floral morphological characters are more difficult to delimit but the pale brown or very light greenish brown, scarious tepals with three very prominent veins, the outer two of which are glabrous, appear to be characteristic. Sequences of *matK/trnK* of the two different individuals examined are identical and converge on two synapomorphies that provide molecular support for the identity of this species (Fig. 2).

Conclusion and future work

Pedersenia may contain cryptic species with only minor morphological differences but different autecology and long separated biogeographic histories. As primary forest lianas, their evolution may be closely connected to the history of certain vegetation types. Consequently, geographically well-isolated species of *Pedersenia* have become distant genetically although morphological differences are scarce. In comparison to other lineages within the *Amaranthaceae*, the evolution of different habits in *Pedersenia* is restricted to the self-supporting tree-like relatives of *P. cardenasii* growing in the inner Andean dry valleys of Bolivia and Peru. Ecological differences between species probably do not relate to pollination and dispersal, explaining largely similar floral structures. However, there are so far no data on the kind of pollinators in species of *Pedersenia*. This study indicates considerable sequence differentiation despite of high morphological similarity in lianas from Mexico (*P. sp. AC366*; collected in evergreen broad-leaved primary forests of Chiapas) and from Bolivia, provisionally identified as *P. hassleriana* (AC108). There are a number of other recent examples that describe considerable speciation of clades occurring in geographically and ecologically patterned areas. Sotuyo & al. (2007) provide an example of “morphostatic radiation” as a consequence of isolation and local adaptation in *Caesalpinia (Fabaceae)* in dry forests of Mexico. Saerkinen & al. (2011) found a much higher diversity of endemics in *Mimosa (Fabaceae)* in inner-Andean dry valleys in Peru. Similar cases of morphologically cryptic species are also known from temperate regions such as *Veronica* in the Mediterranean (Martínez-Ortega & al. 2004). While all of these cases likely involve allopatric speciation of closely related taxa, Gurushidze & al. (2008) provided evidence for genetically well differentiated but morphologically similar and therefore cryptic species in *Allium* that nowadays occur sympatrically. Although there are so far no molecular data on population structure for *Pedersenia*, field observations suggest that deviating taxa of this genus are generally not found in the same habitat. Therefore, morphologically static, allopatric speciation appears to be the main pattern of diversification in *Pedersenia*. Future work has to complement detailed morphological examination of geographically distinct specimens with the sequencing of molecular markers. The *trnK/matK* region is certainly a good candidate although it has to be optimised for degraded DNA as sampling will have to rely largely on herbarium material to allow representativity. The lianas of *Pedersenia* are difficult to encounter in the field and due to the wide distribution of the genus throughout the woody vegetation of the Neotropics without major concentration of species in certain geographical regions, collecting is time and resource intensive. However, diversity in *Pedersenia* may in fact be considerably higher than the currently recognised eleven species.

Acknowledgements

This study is part of the collaborative project “Sistemática y diversidad de las Amaranáceas de Bolivia” be-
tween the Herbario Nacional de Bolivia and the Museo Nacional de Historia Natural de Bolivia, La Paz, and the Botanischer Garten und Botanisches Museum Berlin-Dahlem, Germany, that was already started in 2002 by T.B. when he was at the University of Bonn, Germany. We are grateful to the Dirección General de Biodiversidad, La Paz, for permits and to the Deutsche Forschungsgemeinschaft (DFG; BO 1815/1-1 and 1815/1-3 to T.B. and BO1815/1-4 to T.B. and T.O.L. We would like to thank Stephan Beck, La Paz, for his continuous support, as well as Pierre Ibisch (FAN, Santa Cruz, Bolivia, now Eberswalde, Germany) and Javier Coimbra (FAN, Santa Cruz) for help with fieldwork. Hilda Flores Olivera (UNAM, Mexico City) helped with joint field work in Chiapas. Raul Lara (La Paz) and Norbert Kilián (Berlin) and two reviewers are acknowledged for comments that greatly improved the paper. Werner Greuter checked the Latin of the diagnosis.

References

Nee M. 2004: Flora de la Región del Parque Nacional Amboró, Bolivia 2. – Santa Cruz de la Sierra: FAN.
The Plant List 2010: The Plant List, version 1. – Published at http://www.thep plantlist.org/ [accessed April 2011].
Appendix 1. Plant material used for the molecular phylogenetic part of this study.

Collections made in the field first list country and locality in the case of both herbarium specimens and silica gel dried samples. The DNA isolate number is generally given as a unique identifier for each sample; it follows the specimen data and precedes the EMBL/GenBank accession number. In case sequences were published prior to this study the respective reference is provided instead of the specimen data.

Appendix 2. List of indels.

1. Gap of 95 nt in Ptilotus.
2. “CWAAT” SSR in Hebanthe grandiflora.
 HS1 (microsatellite) in trnK 5’ part.
7. 1 nt gap in Gomphrena and Blutaparon, probably deletion.
8. 5 nt gap in Gomphrena macrocephala, probably deletion.
 HS2 in trnK 5’ part.
 HS3 in trnK 5’ part (one substitution in Pedersenia AC108 coded separately).
12. “A” in Alternanthera altacruzensis, probably insertion.
 HS4 (microsatellite) in trnK 5’ part just adjacent matK CDS, one nt shorter in AC366 (coded in indel matrix).
15. 9 nt gap in Calicorema.
16. 9 nt gap in Tidestromia.
17. 6 nt gap in Nototrichium.
 H5S inversions of one codon in matK CDS (but not variable in Pedersenia).
18. “TTAGTY”-SSR with one substitution at the end, autapomorhic to Alternanthera sessilis.
19. “AATGTGATC” partial SSR in Aerva; motif not exactly clear in sparsely sampled outgroup.
22. “TTATTTTTGATA” SSR in Pfaffia.
23. “CTTTTCTATA” SSR in Alternanthera flavescens.
25. “AAAT” in all Alternanthera.
27. “TGAGTATTCAAC” SSR in Ptilotus.
29. “TC” SSR in Alternanthera caracasana and A. microphylla.