Notulae ad floram euro-mediterraneam pertinentes No. 31

ECKHARD VON RAAB-STRAUBE1* & THOMAS RAUS1 (ed.)

Euro+Med-Checklist Notulae, 2

Abstract

Stable URL: http://dx.doi.org/10.3372/wi.43.43202

This is the second of a series of miscellaneous contributions, by various authors, where hitherto unpublished data relevant to both the Med-Checklist and the Euro+Med (or Sisyphus) projects are presented. The instalment deals with the families Amaranthaceae, Boraginaceae, Caryophyllaceae, Compositae, Cruciferae, Labiatae, Orobanchaceae, Papaveraceae, Portulacaceae, Ranunculaceae, Viciaeae; Amaryllidaceae, Araceae, Caryophyllaceae, Gramineae and Potamogetonaceae. It includes new country and area records, taxonomic and distributional considerations for taxa in Amaranthus, Bothriochloa, Carex, Consolida, Corrigiola, Cyperus, Festuca, Fumaria, Heliotropium, Jacobaea, Kla­sea, Lobularia, Nigella, Orobanche, Papaver, Phelipanche, Pista, Portulaca, Potamogeton, Spergula, Sternbergia, Teucrium and Vitis, and the validation of names in Amaranthus, Festuca and Spergula.

Additional key words: Europe, vascular plants, distribution, taxonomy

Notice

A succinct description of the Euro+Med Project, with a list of recognized territories and their abbreviations, and the conventions used to indicate the status and presence of taxa, can be found in the introduction to the first instalment of the Euro+Med Notulae (Greuter & Raab-Straube 2005: 223–226) and on the Euro+Med Plantbase website (Euro+Med 2006+). As of 31 October 2013, Euro+Med Plantbase provides access to 182 families, corresponding to approximately 92 % of the Euro-Mediterranean flora of vascular plants, with ferns, lycopodiophytes and Lentibulariaceae being the most recent additions. For the previous instalment of the Euro+Med-Checklist Notulae, see Raab-Straube & Raus (2013).

N. Turland wishes to thank the National Geographic Society for supporting the research project “Human recreation versus plant diversity on maritime sands in Crete” (grant no. 8573-08); P. Bareka (ACA) and Ch. Kyriakopoulos (c/o UPA) for participating in the field work; I. Al-Shehbaz (MO) and M. Lidén (UPS) for determining material; the curators of BM for providing access to study herbarium collections.

Amaranthaceae

Among the Amaranthus taxa included in A. subsect. Hybrida Mosyakin & K. R. Robertson, A. powellii, A. bouchonii, and A. cacciatoi (the latter recently studied and resurrected at subspecies level by Iamonico 2012) are morphologically similar in having bracts with membranous borders thinning toward the apex, tepals without or with a merely inconspicuous median vein, and a spike- or panicule-like, usually green synflorescence with a main inflorescence up to 10 cm long and 1–2 cm wide. The three taxa differ from each other by characters of synflorescence structure, main inflorescence length, bract/tepals length ratio, flower symmetry and fruit dehiscence/indehiscence (for details see Iamonico 2012). While subspecies rank was proposed for the three taxa (Costea & al. 2001; Iamonico 2012), they have different origin: A. powellii is native to the Americas, A. bouchonii is known to have evolved in Western Europe, and A. powellii subsp. cacciatoi is known only from central Italy. Today, A. powellii and A. bouchonii are spread by man all over the world and the original distribution ranges are blurred. In order to reflect their different evolutionary histories, it is preferable to recognize them at specific rank. Several European authors already accepted the recognition of A. bouchonii and A. powellii as separate species, e.g. Frey 1974, Raas 1997, Reynolds 2002, Pyšek & al. 2004, Verlooove 2006, NOBANIS 2013. The combination at specific rank for the taxon A. cacciatoi is proposed here as part of the treatment of Amaranthus within the Euro+Med PlantBase project.

Amaranthus cacciatoi was differently treated by Italian authors. Pignatti (1982: 180) accepted the choice by Cacciato (1966: 618) recognizing the taxon cacciatoi as variety of A. bouchonii Thell. Conti & al. (2005: 51) did not indicate the taxon cacciatoi, but they recorded A. bouchonii in N Italy (Valle d’Aosta excluded), and in the Tuscany and Lazio regions. The occurrence in Lazio certainly refers to the var. cacciatoi (Cacciato 1966: 618), since the typical form with indesihent fruits does not occur in the region (see Iamonico 2009). Celesti-Grapow & al. (2009) synonymized A. bouchonii with A. powellii S. Watson, so indirectly also included the taxon cacciatoi in the latter species. D. Iamonico

Amaranthus crispus (Lesp. & Thévenau) J. M. Coulm. & S. Watson
A Uk(K): Ukraine, Crimea: Feodosiya, along a sidewalk, 44°34’03”N, 33°46’25”E, 25 m, on open places with scarce ruderal vegetation, 18 Oct 2012, Savchuk (CSAU). – First record for the Crimea, identified by V. Savchuk. This is the eleventh species of the genus Amaranthus known for the Crimea (see Yena 2012), i.e. nearly half the members of that genus given for Ukraine as a whole (Mosyakin & Fedoronchuk 1999). A. Yena & V. Savchuk

Boraginaceae (incl. Heliotropeae)
Heliotropium ovalifolium Forssk.
+ Ir: Israel: Sharon Plain, Menashe winter water run-off reservoirs E of Or Akiva, 32°29’17”N, 34°56’08”E, 30 m, 28 Nov 2012, Cohen (HJJ); ibid., 28 Jul 2013, Cohen (M); ibid., 30 Jul 2013, Cohen (B, M). – In recent years, several populations of a species of Heliotropium hitherto unknown to the flora of Israel have been recorded from shallow, wet, sandy beds of drying water reservoirs as well as on nearby shallow sandstone ridges c. 2 km E of the town of Or-Akiva. No relevant specimens have been deposited in herbaria so far nor have corresponding reports been published in scientific literature. The population documented here thus either results from a recent dispersal event or the species is really very uncommon in the area and has been overlooked in the past. Given the overall distribution of the species known so far, and considering a first record for Turkey some years ago (Duman & Sagban 2000), the population reported here simply and not surprisingly closes a gap in an otherwise pretty continuous total range. The identity of the species was checked against representative specimens in the comprehensive material revised by H. Förther (see Förther 1998): Egypt, Aswan, 5 Feb 1974, El Hadidi (M); Kenya, Nairobi, 2 Jan 1992, Hilger Kenya1994/4 (MSB); Tanzania, Iringa district, 19 Oct 1970, Greenway & Karam 14582 (M); Namibia, C14, 4 Jan 1994, Hilger Namibia93/15 (MSB); Yemen, Socotra, 19 Jan 1994, Beyhl & Mies 422 (M); India, North Bihar, 9 Mar 1958, Srivastava & al. 48457 (M). S. Cohen & Ch. Brüechler

Caryophyllaceae
Corrigiola litoralis L. subsp. litoralis
+ Uk(K): Ukraine, Crimea: Simferopol, on the coast of the Simferopol’skoye storage reservoir 44°55’36”N, 34°08’55”E, 280 m, among very scarce, semiruderal herbaceous vegetation on a rocky outcrop, 10 Oct 2012, Svirin obs.; ibid., 22 Oct 2012, Yena (CSAU). – The plants were first found by S. Svirin; A. Kovalchuk determined the species from photographs taken by P. Yevseyenkov and communicated in Forum “Plantarium” (2012). After thorough examination of living plants in the locality, we confirmed the determination. The population consisted of 22 individuals,
all well developed and in flower. The species had never been mentioned for Crimea, nor for Ukraine in general, in previous floristic literature (see, e.g. Greuter & al. 1984: 185). The record of this species in the area may be the outcome of a long distance dispersal event as the Crimean peninsula is situated on the route of many migratory bird species, and extensive areas of Crimean reservoir banks appeared dried-up and exposed to annual pioneer vegetation due to lack of precipitation in 2012. *Corrigiola litoralis* is considered native to the area since the total range of the species encompasses the Balkan Peninsula adjacent to Crimea. Jalas & Suominen (1983: 136, map 932) and other corresponding mapping sources have to be amended accordingly. A. Strid

Spergula L. – Recent molecular studies (Smissen & al. 2002; Fior & al. 2006) indicate that the genera *Spergula* L., *Spergularia* (Pers.) J. Presl & C. Presl and *Sanctumbrissia* Kuschel form a clade within the Paronychioideae Fenzl, and show that *Spergula* and *Spergularia* are grouping together. Several earlier authors already had doubts on the autonomy of *Spergularia* (e.g. Durand & Baratte 1910; Maire 1963; Pedersen 1984). Until now, *Spergularia* was considered as separate from *Spergula* in having stems ovate in cross-section, vascular system bilaterally symmetrical, leaves opposite (only one of which is associated to a leafy branch), stipules connate and longer than wide, fruit usually ovoid with several seeds (25 – 80), and seeds ovate to ovate-pyriform or subtrigonal, compressed or subconcave (see, e.g., Monnier 1955). However, López González (2010) pointed out that all these characters were not constant and that their variability did not allow the separation of *Spergula* from *Spergularia*. He therefore proposed a new classification scheme of *Spergula* in the Iberian peninsula and the Balkaric islands, assigning the specific names of *Spergularia* to *Spergula* and proposing seven new combinations, later supplemented by Bock & Tison (2012: 212). For the Italian territory, the validation of one more new combination in *Spergula* is necessary.

Spergula madoniaca (Lojac.) Iamonico, **comb. nov.** = *Spergularia madoniaca* Lojac. in Malpighia 20: 193. 1906.

D. Iamonico

Compositae

Jacobaea maritima (L.) Pelser & Meijden subsp. *maritima*

P Cr: Greece: Kriti (Crete), Nomos of Rethimno, Eparchia of Milopotamos, Bali, low cliff immediately above large beach facing NE at S part of Bali bay, 35°24'29"N, 24°47'00"E, 5 m, stony soil in steep gully in schistose cliff, 23 Mar 2009, *Turland 1693 & Bareka* (MO, UPA). – The population comprised two mature individuals 60–100 cm wide and c. 12 immature individuals. The immature plants varied in size from large seedlings with a few leaves to submature plants c. 25 cm wide. Cultivated individuals were also observed in a garden beside the beach 70 m SE of the gully, and immature plants were spontaneously growing in the driftline sands of the beach immediately beneath the garden. Because only one mature generation was observed in the wild, albeit with a second generation soon to mature, the status “possibly naturalized” is proposed here. The taxon is widely cultivated as an ornamental plant in Kriti and elsewhere. The material collected comprises leafy shoots and the dry, dead remains of the previous year’s (i.e. 2008) synflorescences. The leaves are ovate or ovate-lanceolate in outline, pinnatifid almost to the midrib, not lyrate (i.e. terminal and lateral lobes are similar in size); the lobes are oblong, entire to 3-lobed distally, rounded-obtuse at the apex; the peduncle (ultimate branch of inflorescence) is up to 1 cm long, and the involucre is persistently white tomentose, even after having been dead on the plant since the previous year. In these features it corresponds most closely to *Jacobaea maritima* subsp. *maritima*, as described by Chater & Walters (1976: 194, as *Senecio bicolor* subsp. *cineraria* (DC.) Chater). Indeed, in the Med-Checklist (Greuter & Raab-Straube 2008: 501), *J. maritima* subsp. *maritima* is the only subspecies recorded as introduced into several territories outside the native distribution of the species. N. Turland

Klasea radiata subsp. *ceijnensis* (Rohlena) Greuter & Wagenitz

++ **Gr:** Greece, W Makedonia, Nomos and Eparchia of Florina, upper part of Devas hill W of Lake Mikri Prespa, 40°47'N, 21°02'E, 1300 m, rocky limestone slopes with open woodland of *Juniperus foetidissima* Willd., *J. oxycedrus* L., *Quercus trojana* Webb, *Acer monspessulanum* L., etc., 14 Oct 2006, *Strid 56178* (herb. Strid); ibid., 1350 m, summit area, rocky limestone flats and slopes in opening of mixed deciduous-evergreen woodland, in bud, 25 Jun 2011, *Strid 57308* (B, herb. Strid); ibid., 1350 m, summit area, rocky limestone flats, 12 Sep 2012, *Strid 57611* (herb. Strid; seeds to Botanic Gardens of Copenhagen, Berlin, Graz and Lund). – New to Greece, representing the southernmost known occurrence of this taxon, which is endemic to the W Balkan Peninsula and radiates from adjacent Albania into NW Greece. A. Strid
Lobularia arabica (Boiss.) Muschl.

Cruciferae

Greece: Kriti (Crete), Nomos of Iraklio, Eparchia of Monofatsi, Tsoutsouros beach, 34°59'05"N, 25°17'00"E, sea-level, maritime sands, 7 Apr 2009, Turland 1878 & Bergmeier (MO, UPA [3 duplicates]); ibid., Bergmeier 09-26 (herb. Bergmeier). – Several hundred individuals were observed in semi-stabilized sands on the landward side of the road that now occupies what was previously the upper part of the beach at Tsoutsouros. Co-occurring species were, among others, Anchusa aegyptiaca (L.) A. DC., Hypecoum procumbens L., Lotus halophilus Boiss. & Spruner and Vulpia fasciculata (Forssk.) Fritsch. The material was determined as Lobularia arabica by I. Al-Shehbaz (MO) on 8 Feb 2010. The species is not only new to the Cretan area but also to Greece and Europe. It is otherwise distributed in Libya, Egypt, Israel and Jordan (Zohary 1966: 289; Zohary & al. 1980: 42; Al-Eisawi 1982: 117; Greuter & al. 1986: 135; Borgen 1987: 66; Boulos 1999: 208). Similar species with distributions (Borgen l.c.: 84, 86) that could potentially extend to Kriti are (1) L. maritima (L.) Desv., from SW Europe and N Africa, and widely introduced and naturalized elsewhere, and (2) L. libyca (Viv.) Meisn., from Macaronesia through N Africa and the S Mediterranean region to S Iran, and recorded in Greece from Santorini (Thira) island.

According to the characters in Table 1, and when compared with material of all three species at MO, the plants from Tsoutsouros correspond well with Lobularia arabica. Whether L. maritima also occurs in the Cretan area requires confirmation. It was recorded as native from the Cretan area. Borgen (l.c.: 86) noted “Records of indigenous plants from ... Greece (Crete) ... have not been verified” and the species was not mapped for the Cretan area in Atlas florae europaeae (Jalas & al. 1996: 74, map 2542) or Flora hellenica (Tan 2002).

N. Turland & E. Bergmeier

LABIATAE

Teucrium gracile Barbey & Fors.-Major

– AE(G): Three collections from SW Rhodos made on 8 May 1995, which I determined and entered into the Flora Hellenica Database as “Teucrium gracile” due to their compact habit, were mapped as T. alpestre subsp. gracile (Barbey & Fors.-Major) D. Wood in Strid & Strid (2011: 278). They proved to belong to T. capitatum L., according to a revision by Th. Raus.

R. Jahn

Orobancheceae

Orobanche laxissima Ulrich & Rätzel

+ Ab(A): Azerbaijan, Greater Caucasus, NE side: just below the village of Qiriz Dohna, 41°14'33"N, 48°18'47"E (WGS 84), 1210 m, edge of a coppiced forest (grazed), with Rhannus sp., Carpusin sp., Acer campestre L., Ulmus cf. minor Mill., Brachypodium sylvaticum (Huds.) P. Beauv., Carex spicata Hud., Geum urbanum L., Poa trivialis subsp. sylvicola (Guss.) H. Lindb., Dipsacus sp., with/under Fraxinus excelsior L., plants from the last year, this year’s plants not yet sprouting, 3 Jun 2013, Otte, Rätzel, Ristow & al. (B, herb. & photo. Rätzel; det. Rätzel); ibid., N edge of Altiagasch, at the station of the university of Baku, 40°52'17"N, 48°55'52"E (WGS 84), 1120 m, coppiced forest (grazed), with Carpusin sp., Campanula rapunculoides L. s.l., Cephalanthera rubra (L.)

Table 1. Diagnostic characters of Lobularia arabica, L. libyca and L. maritima; from Borgen (1987).

<table>
<thead>
<tr>
<th></th>
<th>Lobularia arabica</th>
<th>Lobularia libyca</th>
<th>Lobularia maritima</th>
</tr>
</thead>
<tbody>
<tr>
<td>habit</td>
<td>annual</td>
<td>annual</td>
<td>perennial</td>
</tr>
<tr>
<td>petals</td>
<td>(1.2–)1.4–1.7(–2.5) ×</td>
<td>(1.3–)1.6–1.9(–2.6) ×</td>
<td>(1.9–)2.3–2.8(–3.1) ×</td>
</tr>
<tr>
<td></td>
<td>(0.5–)0.7–0.9(–1.2) mm, tapering into claw</td>
<td>(0.6–)0.8–1.1(–1.4) mm, tapering into claw</td>
<td>(1.2–)1.6–2(–2.6) mm, abruptly contracted into claw</td>
</tr>
<tr>
<td>siliculae</td>
<td>suborbicular-ovate, (2–)0.6–3(–3.6) ×</td>
<td>obovate to ovate, (3.1–)3.7–4.6(–6.1) ×</td>
<td>elliptic-orbicular, (1.9–)2.3–2.7(–4.2) ×</td>
</tr>
<tr>
<td></td>
<td>(1.9–)2.2–2.5(–3.1) mm, valves convex, subglabrous</td>
<td>(2–)2.7–3.2–3.9 mm, valves flat but bulging around seeds, pubescent</td>
<td>(1.2–)1.6–2(–2.9) mm, valves convex, pubescent</td>
</tr>
<tr>
<td>seeds</td>
<td>1 or 2 in each locule, ovate, compressed terete (lens-shaped)</td>
<td>(2 or)3 or 4(–7) in each locule, suborbicular, semiterete (saucer-shaped)</td>
<td>1 or 2 in each locule, ovate, compressed terete (lens-shaped)</td>
</tr>
</tbody>
</table>
Rich. and other Orchidaceae, with/under Fraxinus excelsior, plants from last year, this year’s plants just sprouting, 4 Jun 2013, Rätzel, Ristow, Dieterich & al. (B, herb. & photo. Rätzel; det. Rätzel). – Although we could not ensure the root attachment on Fraxinus, this tree is most likely the host here, as in other known populations. Orobanche laxissima was previously known only from Russia, Turkey and Georgia (Rätzel & Uhlich 2004; Uhlich 2011+).

S. Rätzel, M. Ristow & H. Uhlich

Phelipanche heldreichii (Reut.) Soják [= Orobanche heldreichii (Reut.) Beck]

+ Ab(A): Azerbaijan: Talysh, NE side, c. 0.3 km NE of Mistan (S of Lerik), 38°38'46"N, 48°26'10"E (WGS 84), 1950 m, steppe (grazed), parasitic on Eryngium cf. campestre L. (root attachment verified), 27 May 2013, Rätzel, Ristow & al. (B, herb. & photo. Rätzel [Fig. 1]; det. Uhlich & Rätzel). – This species was previously known only from Turkey and Armenia (Beck 1930 and Gilli 1982, as Orobanche heldreichii). According to Beck (1930), it was also distributed by Aucher-Eloy as “Herbier d’Orient” no. 5076 (“aus Persien?”). For the separation of Phelipanche as an independent genus see, e.g., Joel (2009). S. Rätzel, M. Ristow & H. Uhlich

Papaveraceae

Fumaria bastardii Boreau

+ Cr: Greece, Kriti (Crete), Nomos of Iraklio, Eparchia of Pediada, Malia beach, 35°17'45"N, 25°28'59"E, sea-level, maritime sands, 16 Mar 2009, Turland 1628 & Kyriakopoulos (MO, UPA [3 duplicates]). – A rather small population (perhaps 10–20 individuals) was found in a small ruderal area in a larger area of phrygana on sand wind-blown over limestone. Associated species included Glebionis coronaria (L.) Spach var. coronaria, Bryonia cretica L., and Sedum cf. rubens L. The plants at Malia had ultimate leaf segments (1–)1.5–2.75 mm wide; flowers 9.5–10 mm long; and fruits c. 2.25 mm wide, minutely tuberculate-rugulose, with apical pit. M. Lidén (UPS) confirmed the herbarium material as Fumaria bastardii after examining high-resolution images and a description; he noted that the distinguishing features include a short peduncle, straight and suberect pedicels, short bracts, and pale pink, straight flowers, and that there is no similar species (pers. comm., 6 May 2010). The nearest population of F. bastardii to Kriti is on Santorini (Thira) island, 120 km to the north. In Greece, the species occurs mostly in the Kiklades and East Aegean islands; it is also recorded from S Peloponnisos (Elafonisos) and Attiki, while the general native distribution is W Europe and the Mediterranean region (Greuter & al. 1989: 274; Lidén 2002: 109, map 915). N. Turland

Papaver argemone L.

+ Gr: Greece, Macedonia, Nomos of Thessaloniki, Eparchia of Lagadas, Municipality of Lachanas 2 km S of Lefkochori, 40°55'07"N, 23°04'26"E, 620 m, edge of a cereal field of S ecale cereale L., sandy soil, mica-schist, 11 Jun 2013, Bergmeier 13-314 (herb. Bergmeier). – Following the most recent revision of Papaver sect. Argemonidium Spach by Aghababyan (2011), P. argemone and P. nigrotinctum are to be treated as different species. Papaver argemone s.str. is a usually tall plant, more erect and less branched than P. nigrotinctum, with rather narrow, not overlapping petals of a rusty or orange red colour, each with a small dark basal spot. P. nigrotinctum, usually a smaller
plant found to be confined to Greece and Turkey, has somewhat larger petals of a deeper red, each with a larger dark basal blotch almost half the petal length. The two species differ also in chromosome number (Kadereit 1986), and their distribution ranges do not overlap. Previous (20th century) literature records of \textit{P. argemone} from Greece (e.g. Hayek 1927: 357; Jalas & Suominen 1991: 38) supposedly all refer to \textit{P. nigrotinctum} (see Aghababyan 2011), and until present no verified reports of \textit{P. argemone} s.str. from Greece were known (Kadereit 2002: 91). The same is true for adjacent Bulgaria (Assyov & Petrova 2006: 284).

The collection cited above substantiates the presence of the latter taxon in Greece, where it seems to be a very rare cereal weed at its southern periphery of distribution.

E. Bergmeier

\textbf{Portulacaceae}

\textbf{Portulaca} L. – 41 seed samples of specimens of \textit{Portulaca} from the \textit{P. oleracea} aggregate were collected throughout Menorca (Balearic Islands, Spain) in 2012 and 2013 by the second author (P. Fraga & Arguimbau). Twenty-five of those samples belong to \textit{P. papilatostellulata}, 18 to \textit{P. granulatostellulata}, 5 to \textit{P. oleracea}s.str., 1 to \textit{P. nitida} and 2 to \textit{P. trituberculata}. For the two most frequent microspecies, not all the specimens are cited below.

All these taxa were already recorded, at subspecies level, in the Flora iberica area (Danin 1990), but none of them from Menorca (Mn). All specimens are deposited in HUJ and in the Herbarium Fraguense.

A. Danin & P. Fraga & Arguimbau

\textbf{Portulaca nitida} (Danin & H. G. Baker) Ricceri & Arrigoni

+ \textbf{Bl(N)}: Spain, Balearic Islands, Menorca: Binicalsitx, 31SEE848243, 110 m, cultivation of summer crops, clayey calcareous soil over limestone, 16 Aug 2013, \textit{Fraga i Arguimbau} 3102013 (HUJ, herb. Fraguense).

A. Danin & F. Fraga i Arguimbau

\textbf{Portulaca oleracea} L. s.str.

+ \textbf{Bl(N)}: Spain, Balearic Islands, Menorca: Sa Cavalleria Vella, 31SEE779273, 90 m, fallow lands, sandy calcareous soils over limestone, 28 Sep 2012, \textit{Fraga i Arguimbau} 1552012 (HUJ, herb. Fraguense); ibid., Cap d’Artrutx, 31SEE703205, 10 m, rocky and stony ground close to the sea, 10 Oct 2012, \textit{Fraga i Arguimbau} 1702012 (HUJ, herb. Fraguense); ibid., Cala Morell, 31TEE750433, 50 m, ephemer Mediterranean temporary pond close to the sea, clayey calcareous soil, 25 Oct 2012, \textit{Fraga i Arguimbau} 1832012 (HUJ, herb. Fraguense); ibid., Es Capell de Ferro, 31SFE036256, 3 m, fallow lands, sandy siliceous soil over sandstone, 2 Aug 2013, \textit{Fraga i Arguimbau} 2252013 (HUJ, herb. Fraguense); ibid., Binicalsitx, 31SEE848243, 110 m, cultivation of summer crops, clayey calcareous soil over limestone, 16 Aug 2013, \textit{Fraga i Arguimbau} 3102013 (HUJ, herb. Fraguense).

A. Danin & P. Fraga i Arguimbau

\textbf{Portulaca papilatostellulata} (Danin & H. G. Baker) Danin

+ \textbf{Bl(N)}: Spain, Balearic Islands, Menorca: Son Bou Vell, 31SEE733422, 15 m, irrigated summer crop cultivation, clayey calcareous soil, 28 Sep 2012, \textit{Fraga i Arguimbau} 1582012 (HUJ, herb. Fraguense); ibid., Alcaidüssos, 31SFE017179, 110 m, irrigated summer crop cultivation, clayey calcareous soil, 28 Sep 2012, \textit{Fraga i Arguimbau} 1592012 (HUJ, herb. Fraguense); ibid., Illa del Rei (Bloody island), 31SFE101158, 2 m, old paved road to the antique hospital, 16 Sep 2012, \textit{Fraga i Arguimbau} 1502012 (HUJ, herb. Fraguense); ibid., Es Torretó, 31SFE817252, 90 m, old paved area in front of the farm house, 28 Sep 2012, \textit{Fraga i Arguimbau} 1612012 (HUJ, herb. Fraguense); ibid., Marina de Corniola, 31TEE765345, 30 m, steep cliffs by the sea, calcareous Jurassic rocks, 25 Oct 2012, \textit{Fraga i Arguimbau} 1822012 (HUJ, herb. Fraguense).

A. Danin & P. Fraga i Arguimbau

\textbf{Portulaca trituberculata} Danin & al.

+ \textbf{Bl(N)}: Spain, Balearic Islands, Menorca: Llucalari,
31SEE925162, 30 m, steep cliffs by the sea, calcareous rocks (limestone), 2 Dec 2012, Fraga i Arguimbau 2112012 (HUJ, herb. Fraguense); ibid., Na Foradada, 31SEE823207, 10 m, coastal rocky ground with nitro-halophilous vegetation, sandy calcareous soil of fossil Quaternary dunes, 4 Nov 2012, Fraga i Arguimbau 1992012 (HUJ, herb. Fraguense).

A. Danin & P. Fraga i Arguimbau

Ranunculaceae

Consolida pusilla (Labill.) Schrödinger

+ Jo: Jordan: Edom, 10 km SE of Tafila, 1200 m, May 1987, Baierle (HUJ). – Formerly considered endemic to Lebanon and Syria (Greuter & al. 1989: 402).

A. Danin & H. Leschner

Nigella doerfleri Vierh.

R. Jahn

Vitaceae

Vitis labrusca L.

A Gr: Greece: Sterea Ellas, Nomos of Aetolia-Acarnania, Eparchia of Nafpaktia, Skala c. 3 km N of Nafpaktos, 38°25′10″N, 21°50′37″E, S side of the village, 250 m, W-exposed road embankment with Piptatherum miliaceum subsp. thomasi (Duby) Freitag, Brachypodium retusum (Pers.) P. Beauv. and Dactylis glomerata L., 3 Jun 2013, Ardenghi, Foggi & Rossi (MSNM; det. Ardenghi 2013). – Usually cultivated for its edible fruits, Vitis labrusca, native to E North America (Moore 1991: 356), is known as an alien in many European countries, except Greece (DAISIE 2013) until now. Naturalized at least in the Azores, Spain (DAISIE 2013) and Italy (Ardenghi 2010), it can now be regarded as a casual xenophyte in Greece. In the cited locality of V. labrusca, also the hybrid V. riparia Michx. × V. rupestris Scheele was observed and collected (Ardenghi, Foggi & Rossi, MSNM, herb. Ardenghi; det. Ardenghi 2013). This hybrid (resulting from the artificial crossing of two North American species) is widely and historically employed in the Mediterrane-

an area as a rootstock against the phylloxera disease. In Europe, it is naturalized at least in Spain (Laguna Lumbereras 2004) and Italy (Ardenghi & al. 2010: 99), but its distribution is underestimated due to misidentification with V. riparia and even with V. vinifera L. The hybrid taxon is not easy to recognize, featuring variable combinations of intermediate traits between the two parental species regarding leaf blade shape and pubescence on vegetative parts. At present, it can also be considered a casual alien in Greece, but further collections might elucidate its real distribution and invasiveness in the country.

N. M. G. Ardenghi & G. Galasso

Amaryllidaceae

Sternbergia colchiciflora Waldst. & Kit.

+ AE(G): Greece, Nomos and Eparchia of Chios, central part of Chios island, Mt Plakes E of Diefcha, 38°29′29″N, 26′00′36″E, in crevices of karstic limestone filled with terra rossa in open, degraded machcie of Quercus coccifera L. and Juniperus oxycedrus L., 900 m, 29 Sep 2013, Raus 33232 & Sipman (B). – First record for the East Aegean islands of this easily overlooked, autumn-flowering species which is otherwise widespread though scattered in S Europe, N Africa and SW Asia, ranging from NW Morocco to the Caucasus and Iran and northward to Hungary, from where it was first described (Davis 1984: 364; Valdés & al. 2002: 878).

Th. Raus & H. Sipman

Araceae

Pistia stratiotes L.

N Ir: Israel: Kinrot Valley, Nahal Tsalmon, 6 km N of Tiberias, floating on fresh water, 17 Jul 2013, Gophen (B, E, HUJ, K). – This world-wide-known invader of freshwater bodies is recorded here as naturalized in Israel. According to the second author as the scientific coordinator of the Research and Monitoring the Hula Valley Reclamation Project since 1995 and being involved with the management of the water bodies of N Israel, Pistia stratiotes seems to have been recorded first in 2001 as an adventive in a drainage canal in the Hula Plain, near Yesud HaMa’ala. During July 2013 it was reported from near the Samakh Reservoir, 15 km NE of En Gev. It was observed and exterminated since 2001 in several ditches and canals in the catchment area of Lake Kinneret (Sea of Galilee) because it may interfere with water quality of the lake. The now fully established plant is
intermittently removed by mechanical harvesting and aquatic herbicide spray.

A. Danin & M. Gophen

Cyperaceae

Cyperus michelianus (L.) Link
+ Ug(K): Ukraine, Crimea: Sevastopol region, on the coast of the small storage reservoir on the river Aytodorka, 44°34’03” N, 33°46’25” E, 250 m, on dried-up, vegetation-free muddy ground, 26 Oct 2012, Svirin (CSAU). – Although the species, as Scirpus michelianus L., was found in Crimea by T. Georgi in 1800 and by K. Meinshausen in 1901, Vulf’s did not include it in his Flora taurica but placed that name among the doubtful records under the category “Non satis notae” (Vulf 1929). Since then this taxon has never been seen in Crimea but given only for non-Crimean Ukraine (Prokudin 1987, as Dichostylis michelianus (L.) Nees.). It is notable that after having seen hundreds of plants in the cited locality in 2012, not a single plant of this species could be observed there in 2013. It is plausible that Cyperus michelianus prefers ephemeral wet pioneer ecotopes, which emerge due to lack of precipitation, but otherwise does not appear, remaining in the local seed-bank when the storage reservoir overfills again with water. A. Yena & S. Svirin

Potamogetonaceae

Potamogeton gramineus L.
+ Ug(K): Ukraine, Crimea: Sevastopol region, in a small storage reservoir on the river Aytodorka E of Ternovka village, 44°34’03” N, 33°46’25” E, 250 m, 29 Sep 2013, Yena (CSAU). – No previous records of this species from the Crimea are known. It was first found and identified by S. Svirin, additionally also in some other stor-
age reservoirs near the villages of Peredovoye and Orlinoye, both situated in the Baydarskaya valley. This is the eighth species of the genus *Potamogeton* known from the Crimea (see Yena 2012), i.e. half the members of that genus given for Ukraine as a whole (Mosyakin & Fedoronchuk 1999). A. Yena & S. Svirin

References

Downloaded From: https://bioone.org/journals/Willdenowia on 27 Nov 2019
Terms of Use: https://bioone.org/terms-of-use

