Highly Polymorphic Microsatellite Markers in Pulsatilla vulgaris (Ranunculaceae) Using Next-Generation Sequencing

Authors: Michelle F. DiLeo, René Graf, Rolf Holderegger, Yessica Rico, and Helene H. Wagner

Source: Applications in Plant Sciences, 3(7)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1500031

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
HIGHLY POLYMORPHIC MICROSATELLITE MARKERS IN *PULSATILLA VULGARIS* (RANUNCULACEAE) USING NEXT-GENERATION SEQUENCING

MICHELLE F. DILEO\(^2,5\), RENÉ GRAF\(^3\), ROLF HOLDeregger\(^3\), YESSICA RICO\(^4\), AND HELENE H. WAGNER\(^2\)

\(^1\)Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada; \(^2\)WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; and \(^3\)Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, Ontario M5S 2C6, Canada

Premise of the study: We developed novel microsatellite markers for the perennial plant *Pulsatilla vulgaris* (Ranunculaceae) to investigate the effects of fragmentation on gene flow in this imperiled species.

Methods and Results: We identified microsatellites and developed primers based on 454 shotgun sequences. We identified 14 markers that were polymorphic and produced clean bands. Of these, eight could be analyzed as diploids. Genotyping of 97 individuals across two populations revealed these markers to be highly polymorphic with seven to 17 alleles per locus and observed heterozygosity from 0.41 to 0.83.

Conclusions: The markers are highly informative and will be used to test if the reintroduction of shepherding in southern Germany improves genetic connectivity among fragmented populations of *P. vulgaris*. The combination of diploid and tetraploid markers presented here will be useful in resolving the polyploidization history of this and related species.

Key words: 454 sequencing; microsatellites; *Pulsatilla vulgaris*; Ranunculaceae; simple sequence repeat (SSR) markers.

Pulsatilla vulgaris Mill. (Ranunculaceae) is an early-flowering perennial herb of conservation concern and a flagship and specialist species of calcareous grasslands across central Europe, ranging from France in the south to Sweden at its northern limit (Wells and Barling, 1971; Pfeifer et al., 2002). Over the last century, *P. vulgaris* has witnessed rapid decline and local extirpation across its range, and is listed as “near threatened” by the International Union for Conservation of Nature (IUCN, 2014). Its decline is linked to the abandonment of traditional grazing practices, which has resulted in the severe loss and fragmentation of calcareous grasslands following afforestation (Butaye et al., 2005), and increased above-ground competition from coarse grasses (Walker and Pinches, 2011). Knowledge of the landscape-scale distribution of genetic variation is required to create effective management plans for fragmented populations, and evaluations of genetic diversity and inbreeding will allow the identification of populations that are at highest risk of extirpation. This, however, requires genetic markers with high resolution such as microsatellites. No such markers are yet available for *P. vulgaris*.

1. Manuscript received 23 March 2015; and revision accepted 30 April 2015.

The authors thank Nimesh Patel, Amaneet Lochab, and Qasim Muhammad for assistance with DNA extraction and genotyping. We also thank Juergen Boehmer and Mr. Dadrich for help in the field. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC CGS-D and Michael Smith Foreign Study Supplement to M.F.D., and Discovery Grant to H.H.W.) and the Government of Central Franconia, Germany.

2. Author for correspondence: michelle.dileo@mail.utoronto.ca

doi:10.3732/apps.1500031

This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
These new microsatellite markers are highly informative and will be used to quantify gene flow across fragmented populations of *Pulsatilla vulgaris*. The markers were developed de novo, with 18 loci developed in *P. vulgaris* and one in *P. pratensis* that were selected for additional accuracy, as well as for compatibility with existing markers in the *Pulsatillaceae*. The results from these markers will be used to understand the genetic structure and dynamics of the species, and to inform conservation and management efforts. The study highlights the importance of developing new markers for species with limited genetic data, particularly those with fragmented populations.
populations of *P. vulgaris* in southern Germany. We will test whether the reintroduction of shepherding is a suitable conservation measure to improve genetic connectivity among populations of this species. The combination of diploid and tetraploid markers presented here will be useful in clarifying the polyploidization history of this and related species.

LITERATURE CITED

