Composite Phymatoderma from Neogene Deep-Marine Deposits in Japan: Implications for Phanerozoic Benthic Interactions between Burrows and the Trace-Makers of Chondrites and Phycosiphon

Author: Kentaro Izumi

Source: Acta Palaeontologica Polonica, 60(4) : 1009-1020

Published By: Institute of Paleobiology, Polish Academy of Sciences

URL: https://doi.org/10.4202/app.00060.2014
Composite Phymatoderma from Neogene deep-marine deposits in Japan: Implications for Phanerozoic benthic interactions between burrows and the trace-makers of Chondrites and Phycosiphon

KENTARO IZUMI


Among composite trace fossils, one of the most common structures throughout the Phanerozoic are structures (e.g., dwelling trace, feeding trace) reworked by Chondrites and/or Phycosiphon. However, differences in the nature of the reworking behaviors of these two ichnogenera remain unknown. Thus, in this study, composite Phymatoderma specimens from the Neogene deep-marine Shiramazu Formation in Japan, particularly those reworked by Chondrites and Phycosiphon, were analyzed to reveal the specific conditions that might control the activities of these trace-makers. Phymatoderma reworked by Phycosiphon is significantly larger than non-reworked Phymatoderma, whereas Phymatoderma reworked by Chondrites shows no significant difference in burrow diameter compared with non-reworked Phymatoderma. The recognized size selectivity (i.e., preference for larger burrows) by the Phycosiphon trace-maker can be explained by considering the different feeding strategies of these two ichnogenera: namely deposit-feeding Phycosiphon-makers, which must have processed a significant mass of sediment to obtain sufficient organic matter, whereas chemosymbiotic Chondrites-producers did not require a lot of sediment to obtain nutrients. In order to test these interpretations, a dataset of Phanerozoic trace fossils reworked by Chondrites/Phycosiphon were compiled. Consequently, the Phycosiphon-producers’ preference toward relatively larger burrows was recognized, quantitatively supporting the results of this study. The compilation also indicates that the burrow size might have become one of the important limiting factors for the Phycosiphon-producers that tried to rework the sediments within previous subsurface burrows, at least for 80 million years.

Key words: Phymatoderma, Phycosiphon, Chondrites, burrows, size, benthic interactions, Phanerozoic, Neogene, Japan.

Kentaro Izumi [izumi.kentaro@nies.go.jp], Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.

Received 10 January 2014, accepted 24 April 2014, available online 28 April 2014.

Copyright © 2015 K. Izumi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Trace fossils are useful tools in various disciplines such as paleontology, sedimentology, and paleoceanography because they provide meaningful information about the paleoenvironments in which the trace-producing organisms lived and about the paleoecology of these organisms (Seilacher 1954, 1958, 1967a, b, 2007; Bromley 1996; Miller 2007; Buatois and Mángano 2011; Knaust and Bromley 2012). Composite trace fossils are particularly important because they provide direct evidence of benthic interactions during ancient times, as well as information about micro-environmental changes through time (Bromley and Ekdale 1986; Pickerill 1994; Pickerill and Narbonne 1995; Gingras et al. 2002; Buatois and Mángano 2011).

Among composite trace fossils, one of the most common structures throughout the Phanerozoic are structures (e.g., dwelling trace, feeding trace) reworked by Chondrites and/or Phycosiphon (Bromley and Frey 1974; Ekdale and Bromley 1991; Wetzel 1991, 2010; Buatois and Mángano 1992, 2011; Bromley 1996; Kędzierski and Uchman 2001; Buatois et al. 2002; Leszczyński 2004; Rotnicka 2005; Rodriguez-Tovar and Uchman 2006; Carmona et al. 2008; Rodriguez-Tovar et al. 2011a, b; Olivero and López Cabrera 2013; Uchman et al. 2013a, b). In particular, burrows completely reworked by Chondrites have been known as “Bandchondriten” (Eh-
renberg 1941), and there are many reports of such composite trace fossils (see Fu 1991 and references therein). Fossil burrows reworked by Chondrites/Phycosiphon generally served as preferential “feeding sites” for the trace-makers of these two ichnogenera. This is because sediments in subsurface burrows are richer in labile organic matter than the surrounding sediments due to the presence of a mucus lining, active filling by the trace-makers, or passive filling by fresh surface sediments (Bromley 1996; Izumi 2012). Factors other than organic matter, such as grain size and pore-water oxygenation, might also be important for colonization. However, when analyzing trace fossils reworked by Chondrites/Phycosiphon, organic matter is the most important factor because of the following reasons. As for Chondrites, it locally shows a pronounced association with sites of organic richness (e.g., black shale), probably due to its chemosymbiotic feeding strategy (Seilacher 1990; Fu 1991; Bromley 1996). The Phycosiphon-producer generally colonized in sites enriched in organic matter due to highly selective deposit-feeding activity (Wetzel 2010).

Considering the difference in the feeding strategy between Chondrites (i.e., chemosymbiosis) and Phycosiphon (i.e., deposit feeding) (Kern 1978; Seilacher 1990, 2007; Fu 1991; Wetzel and Bromley 1994; Bromley 1996; Bednarz and McIlroy 2009), there must be significant differences in the nature of their reworking activities. Particularly, probing for nutrient/organic matter, competition for space, and adaptation to sedimentary environmental conditions (e.g., sedimentation rate; oxygen/H₂S availability) may have influenced the nature of composite burrows as hypothesized in Mazumdar et al. (2011). However, in spite of such significance, there are no studies that performed systematic and quantitative analysis in order to determine the differences in the reworking behavior of Chondrites and Phycosiphon trace-makers.

To reveal these differences, this study presents detailed descriptions and measurements of numerous specimens of the deposit-feeding ichnogenus Phymatoderma from the Neogene deep-marine deposits, which were occasionally reworked either by Chondrites or Phycosiphon. This study is also the first detailed report of composite Phymatoderma, apart from one published photograph that captured a specimen reworked by Phycosiphon (Izumi 2014: fig. 3C). Fieldwork and measurements were carried out in several outcrops of the Pliocene continental slope deposits of the Shiramazu Formation, which are exposed in the southern part of the Boso Peninsula, Chiba Prefecture, central Japan (Fig. 1). Furthermore, a database highlighting Phanerozoic trace fossils reworked by Chondrites/Phycosiphon was constructed to test the obtained results and their interpretations. The implications for various benthic interactions within subsurface burrows and their paleoecological significance are also discussed.

Abbreviations.—D, burrow diameter; PW,max, maximum pellet width.

Geological setting

Pliocene–Pleistocene deep-marine deposits of the Chikura Group are exposed in the southern part of the Boso Peninsula, central Japan (Fig. 1A, B). The Chikura Group consists mainly of alternating beds of sandstone and siltstone, with many conglomerate and tephra layers (Kotake 1988). It contains eleven formations (Kotake 1988), but the Shirahama Formation (the lowermost formation of the Chikura Group), Shiramazu Formation, and the Mera Formation are exposed in the southernmost part of the Boso Peninsula (Fig. 1C).

The Shirahama Formation, up to 120 m thick, consists of alternating beds of conglomerate and parallel-laminated tuffaceous sandstone (Kotake 1988). The base of this formation ranges from 3.1 to 2.8 Ma on the basis of the planktonic microfossil assemblage such as planktonic foraminifera and calcareous nannoplanktons (Kotake 1988).

The Shiramazu Formation is approximately 450 m thick (Kotake 1989), and composed of alternating beds of parallel-laminated tuffaceous sandstone and siltstone (Kotake 1988). Siltstone is generally massive, but parallel and convolute laminae are recognized (Kotake 1988). Many well-preserved Phymatoderma specimens occur especially in this formation (Izumi 2013); those specimens that are reworked by either Chondrites or Phycosiphon are the focus of the present study.

The Mera Formation is approximately 400 m thick, and consists mainly of siltstone with tephra and thin sandstone layers with current ripples (Kotake 1988). The planktonic foraminifer Discocysta tamalis, with a known last occurrence datum at 2.5 Ma (Haq and Takayama 1984), disappears in the upper part of the Mera Formation (Kotake 1988), suggesting that the Pliocene/Pleistocene boundary occurs near the upper part of this formation.
Detailed fieldwork and measurements were performed at three localities (Hiraiso, Shioura, and Shiramazu) of the Shiramazu Formation (Fig. 1C). The depositional setting of the study area has been interpreted as a middle bathyal trench-slope basin of approximately 2000 m in water depth, based on the benthic foraminiferal assemblage (Kotake 1988).

Fig. 2. Phymatoderma burrows from the Shiramazu Formation, Shioura (A–D) and Hiraiso (E–G) sections, Chiba Prefecture, central Japan. A–C. General views. Branched overlapping tunnels (A). Entire specimen representing a digitate morphology (B). Tunnels showing second-ordered branching (C). D. Magnified view of the burrow, focusing on the presence of the pelletal infill. E, F. Pellets with various kinds of compositions. White-colored volcanic-ash pellets (E) and light gray-colored muddy pellets (F). G. Specimen with revisiting structures. Note that white-colored tunnel first (black arrow), black-colored tunnel with scoriaceous infill second, and then white-colored tunnel (white arrow) came again. Field photos; all except E parallel (or nearly parallel) views to the bedding plane; E, obliquely cut vertical cross-sectional view. Scale bars 10 mm.
Material and methods

Description of *Phymatoderma*.—*Phymatoderma* from the Shiramazu Formation was first reported formally by Izu-mi (2013), who reinterpreted “giant *Chondrites*” in previous works (Kotake 1990, 1991) as *Phymatoderma* (probably *P. granulata* Schlotheim, 1822). More detailed and updated descriptions are provided below.

*Phymatoderma* from the Shiramazu Formation is a burrow system, which consists of horizontal, straight to slightly curved tunnels with an ellipsoidal cross-section. The tunnels are generally parallel to the bedding planes, showing first order, and less commonly second order branches (Fig. 2A–C), which are overlapped in some cases (Fig. 2A). Entire specimens often have digitate general morphology (Fig. 2B). Each tunnel is filled with ellipsoidal pellets, which have light gray-colored muddy, black-colored scoriaceous, or white-colored volcanic-ash compositions (Fig. 2D–F). The branching angle is generally constant in a single specimen (Fig. 2A–C); however, the tunnel contours can be poorly defined due to the pelletal infill. Both the tunnels and pellets have no linings. Locally within the tunnels, pellets distribute along with arcs of menisci, resulting in meniscate structures (Fig. 2A). However, in some other tunnels, meniscate structures are only weakly recognized (Fig. 2D). Nearly completely-overlapped tunnels (= re-visiting structures) are occasionally recognized (Fig. 2G). *Phymatoderma* specimens are often cut by other trace fossils such as *Scolicia* and *Zoophycos*, but *Phymatoderma* never cuts these ichnogenera. Tunnels completely or partly reworked by other smaller-sized ichnogenera (e.g., *Chondrites* or *Phycosiphon*) are also observed in some cases (Fig. 3). Among these composite *Phymatoderma*, tunnels re-worked by *Chondrites* are less common.

Burrow measurements.—In order to reveal the differences in the nature of the reworking activities of *Chondrites* and *Phycosiphon* trace-makers, several parameters were mea-

---

**Fig. 3.** Composite *Phymatoderma* burrows from the Shiramazu Formation, Hi-raiso section, Chiba Prefecture, central Japan. A, B. *Phymatoderma* reworked by *Chondrites*. *Phymatoderma* tunnels with dark gray-colored scoriaceous infill reworked by white-colored *Chondrites* (arrows). C, D. *Phymatoderma* reworked by *Phycosiphon*. Even within the pelletal infill of *Phymatoderma*, cores (white arrows) and surrounding mantles (black arrows) of *Phycosiphon* are sometimes clearly recognized (C). Field photos; A, B, parallel to the bedding plane; C, obliquely cut vertical cross-sectional view; D, vertical cross-sectional view. Scale bars 10 mm.
Results

The results of burrow measurements are summarized in Figs. 5 and 6, as well as Table 1. Through numerous measurements (n = 445), the burrow diameters of non-reworked Phymatoderma range from 4.30–45.80 mm (mean = 18.14 mm; Fig. 5A). Although the number of Phymatoderma specimens reworked by Chondrites and Phycosiphon, which were recognized during fieldwork, are much smaller than the number of non-reworked Phymatoderma, Phymatoderma specimens reworked by Chondrites and Phycosiphon have 8.30–30.95 mm (n = 13; mean = 18.54 mm; Fig. 5B), and 9.70–40.65 mm in diameter (n = 34; mean = 28.39 mm; Fig. 5C), respectively. The mean values of non-reworked Phymatoderma specimens and tunnels reworked by Chondrites show no significant difference (Fig. 5D). On the other hand, Phymatoderma burrows reworked by Phycosiphon have significantly (p < 0.001) larger diameters compared to non-reworked specimens (Fig. 5D).

Table 1. Diameters (in mm) of trace fossils within the host siltstone of the Pliocene Shiramazu Formation, central Japan. n, number of measured burrows; * Phymatoderma reworked by Phycosiphon has significantly (p <0.001) larger diameter than Phymatoderma without reworking or reworked by Chondrites, whereas mean diameter of Phymatoderma reworked by Chondrites has no significant difference from non-reworked Phymatoderma; ** Phycosiphon has significantly (p <0.001) larger mean diameter than Chondrites.

<table>
<thead>
<tr>
<th>Ichnogenus</th>
<th>mean</th>
<th>min.</th>
<th>max.</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phymatoderma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-reworked</td>
<td>18.14*</td>
<td>4.30</td>
<td>45.80</td>
<td>445</td>
</tr>
<tr>
<td>reworked</td>
<td>18.54*</td>
<td>8.30</td>
<td>30.95</td>
<td>13</td>
</tr>
<tr>
<td>by Chondrites</td>
<td>28.39*</td>
<td>9.70</td>
<td>40.65</td>
<td>34</td>
</tr>
<tr>
<td>Phycosiphon</td>
<td>1.20**</td>
<td>0.55</td>
<td>2.00</td>
<td>85</td>
</tr>
<tr>
<td>Chondrites</td>
<td>1.38**</td>
<td>0.75</td>
<td>2.00</td>
<td>135</td>
</tr>
</tbody>
</table>

Discussion

Size preference by the Phycosiphon/Chondrites-producers related with their feeding strategies.—Burrows and feces of marine benthic animals are usually coated by mucus or mucus membrane (Bromley 1996), which contains abundant reactive organic matter (Lalonde et al. 2010; Petrich et al. 2011). Therefore, it is reasonable that Phymatoderma pellets, which have been interpreted as fecal pellets excreted by a surface deposit-feeding producer (Miller and Aalto 1998; Miller and Vokes 1998; Izumi 2012), were attractive for other benthos; thus Phymatoderma reworked by other ichnogenera such as Chondrites and Phycosiphon were recognized (Fig. 3). Although some Phymatoderma specimens from the Shi-
ramazu Formation are cross-cut by other ichnogenera such as Zoophycos, these specimens do not construct the composite structures. This cross-cutting relationship along with the presence of composite Phymatoderma are consistent with the previous interpretation that Phymatoderma is emplaced at relatively shallow tier (Miller and Vokes 1998). Apart from Phymatoderma, the trace fossil record provides many examples of various deposit-feeding traces (i.e., some burrows, feces) reworked by Chondrites or Phycosiphon (e.g., Bromley and Frey 1974; Ekdale and Bromley 1991; Wetzel 1991, 2010; Buatois and Mángano 1992, 2011; Bromley 1996; Kędzierski and Uchman 2001; Buatois et al. 2002; Leszczyński 2004; Rotnicka 2005; Rodríguez-Tovar and Uchman 2001; Buatois et al. 2002; Leslie and Lopez Cabrera 2013; Uchman et al. 2013a, b).

This study is the first report to reveal systematically and quantitatively the differences in nature between trace fossils reworked by Chondrites and Phycosiphon. Phymatoderma reworked by Phycosiphon has significantly larger burrow diameters compared with non-reworked Phymatoderma tunnels and those reworked by Chondrites (Fig. 5D). It is true that there is a significant difference in the mean diameter between Chondrites and Phycosiphon (Table 1), however, it may not be an important factor since the difference is very tiny. Furthermore, although mean diameter of Phycosiphon from the Shiramazu Formation is approximately 1.15 times larger than that of Chondrites, average size of Phymatoderma reworked by Phycosiphon has ca. 1.53 times larger than that of Phymatoderma reworked by Chondrites (Table 1). Therefore, these results (Fig. 5D) may be explained in terms of feeding strategies of Chondrites and Phycosiphon trace-makers, which have been interpreted to be different. The Chondrites-producer has been considered as a chemosymbiotic worm-like animal (Seilacher 1990; Fu 1991; Bromley 1996), whereas, the Phycosiphon-producer has long been interpreted as a deposit-feeding vermiform organism (Kern 1978; Wetzel and Bromley 1994; Bromley 1996; Seilacher 2007; Bednarz and McIlroy 2009).

As marine sediments are mainly composed of various types of mineral grains (i.e., quartz, feldspar, calcite, and clay minerals) and their organic matter content is generally low (Rabouille and Gaillard 1991; Boudreau 1997), deposit feeders appear to be faced with the common problem of obtaining food from sediments (Lopez and Levinton 1987). Potential food for deposit-feeding animals is fresh organic fraction in ingested sediment, phytodetritus and meiofauna (Lopez and Levinton 1987). Although the surface sediments contain abundant fresh organic matter at the time of deposition on the seafloor (Hartnett et al. 1998), the labile organic material may have been rapidly decomposed within the top few centimeters of sediments by microbial metabolisms (Druffel et al. 1992; Burdige 2006; Sarmiento and Gruber 2006). Furthermore, organic-matter flux to the seafloor generally varies depending on the water depth and the distance from the shore (Suess 1980; Romankevich 1984; Rabouille and Gaillard 1991), thus deep-sea settings have been regarded as low nutrition (i.e., oli-
Therefore, in order to get sufficient organic matter under such severe conditions, the trace-maker of \textit{Phycosiphon}, which was a subsurface deposit feeder (Kern 1978; Wetzel and Bromley 1994; Bromley 1996; Seilacher 2007), must have successively processed significant amounts of sediments during its life span. Since fecal pellets generally contain abundant fresh organic material compared to surrounding host sediments (Henriksen et al. 1983), \textit{Phymatoderma}, especially larger sized specimens must have been an ideal locus of deposit-feeding activity by the \textit{Phycosiphon}-producer, resulting in the significant size selectivity recognized herein (Fig. 5D). Preference for larger tunnels might have been critical to the \textit{Phycosiphon}-producer considering the fact that \textit{Phymatoderma} with twice the diameter has 8-times the volume of fecal aggregates.

It seems to be reasonable that a larger deposit feeder has to process larger amount of sediment to obtain sufficient organic matter. However, this trend cannot be recognized in this study; namely, all \textit{Phycosiphon} burrows reworking various-sized \textit{Phymatoderma} have similar-sized diameter, which are within the size range of those from the host siltstone (Fig. 6B), despite the increase of fecal-pellet size with increasing \textit{Phymatoderma} burrow diameter (Fig. 6). This fact suggests that there was no size bias in terms of the \textit{Phycosiphon}-pro-

---

**Fig. 6.** Scatter plots showing the relationships between \textit{Phymatoderma} burrow diameter and its maximum pellet width (black plot) and reworking trace-fossil diameter. A. \textit{Chondrites}. B. \textit{Phycosiphon}. Note that diameters of both ichnogenera that reworked \textit{Phymatoderma} tunnels are within the size-range of them occurring in the host siltstone (shade), although pellet width increases with increasing \textit{Phymatoderma} burrow diameter. \(D_{Ch}\); burrow diameter of \textit{Chondrites}; \(D_{Pc}\); burrow (i.e., central core) diameter of \textit{Phycosiphon}; \(D_{Pm}\); burrow diameter of \textit{Phymatoderma}; \(PW_{max}\); maximum pellet width; \(n\); number of measured burrows.
ducers. This is probably because Phymatoderma from the Shiramazu Formation is much larger than Phycosiphon (Table 1). The diameter of the smallest Phymatoderma specimen reworked by Phycosiphon is approximately 8-times larger than that of the Phycosiphon itself (Fig. 6B); therefore, 512-times the volume of sediment, which seems enough volume even for relatively larger Phycosiphon-producer.

Alternatively, the most important factor for a chemosymbiotic Chondrites-producer might be HS’ content within the pore water (Bromley 1996). Symbiotic sulfur-oxidizing bacteria utilized energy generated from the oxidation of sulfide to produce organic matter (Sarmiento and Gruber 2006). Decomposition of labile organic matter by sulfate-reducing bacteria within the excreted fecal sediments might have produced sulfide (Jorgensen 1977), since inner microenvironments of feces are generally anoxic (Reise 1985). In contrast to a deposit feeder, chemosymbiotic burrowers probably did not need to process large amounts of sediment; thus, space was not a limiting factor for the Chondrites trace-makers. Rather, probing itself within the Phymatoderma tunnels (i.e., aggregate of fecal pellets) may have been critically important for the Chondrites-producers. Since Chondrites is much smaller than Phymatoderma (Fig. 5A, B), even a relatively small Phymatoderma tunnel has enough space for the Chondrites-producer to uptake sufficient nutrients, which explains why the trace-makers of Chondrites did not show any size selectivity in terms of the Phymatoderma tunnel diameters (Fig. 5D). In spite of the increase of fecal-pellet size with increasing Phymatoderma burrow diameter (Fig. 6), all Chondrites burrows reworking varying Phymatoderma have similar-sized diameter and within the size range of those from the host siltstone (Fig. 6A), which also indicates that there was no size bias in terms of the Chondrites-producers.

Although the explanation about the reworking activities discussed here seems to be highly likely, frequency of reworked Phymatoderma is not so high with respect to non-reworked Phymatoderma (i.e., approximately 10%; Fig. 5), suggesting that the trace-makers of both Chondrites and Phycosiphon also obtained foods from the host sediment (and pore water). This might be explained by the fact that the mass of Phymatoderma must be significantly low compared with that of the whole host sediment, even if Phymatoderma is a common trace fossil from the Shiramazu Formation. Consequently, the probability of reaching Phymatoderma (i.e., preferential “feeding site”) was low, although it is difficult to evaluate the validity of this probability (i.e., 10%) due to the lack of any quantitative data of reworked trace fossils. Difference in frequency of Phymatoderma reworked by Chondrites or Phycosiphon (Fig. 5B, C) may be related to sequential colonization of turbidites (Wetzel and Uchman 2001). The Phycosiphon-producer penetrate substrates earlier than the Chondrites-producer (Wetzel and Uchman 2001), which can explain higher frequency of Phymatoderma reworked by Phycosiphon (Fig. 5). Phymatoderma tunnels reworked both by Chondrites and Phycosiphon are not recognized. This fact indicates that once colonized by the Phycosiphon-producer, Phymatoderma tunnel could not be colonized by the Chondrites-producer, probably due to some sort of exclusion.

Phanerozoic records of trace fossils reworked by Chondrites/Phycosiphon.—It is difficult to evaluate whether the composite Phymatoderma recognized in this study (Fig. 3) is common in the long Phanerozoic stratigraphical records, because there are no other reports of reworked Phymatoderma specimens other than those from the Shiramazu Formation. However, there is a noteworthy report of pellet-filled branched trace fossils from the Recent (ca. 46–58 kya) continental slope deposits in the Krishna–Godavari basin, Bay of Bengal (Mazumdar et al. 2011), which closely resemble Phymatoderma melvillei and Uchman and Gądzicki, 2010 in appearance (see Mazumdar et al. 2011: fig. 2 and Uchman and Gądzicki 2010: figs. 3, 4). These “P. melvilleiennis-like” pellet-filled branched ichnofossils are occasionally reworked by Chondrites (Mazumdar et al. 2011: fig. 2e, f). The authors did not recognize reworking structures by Phycosiphon, probably due to the burrow diameters of “P. melvilleiennis-like” trace fossils (i.e., 4–17 mm; Mazumdar et al. 2011), which are relatively smaller than Phymatoderma from the Shiramazu Formation (Fig. 5A). However, it is also important to note that these “P. melvilleiennis-like” burrows were collected by a Giant Calypso piston corer (Mazumdar et al. 2011), which cannot take larger burrows if any.

Despite the lack of reports focusing on the composite Phymatoderma, it is worthwhile to compile published data of other trace fossils and modern traces reworked by Chondrites or Phycosiphon for testing the implications of size selectivity inferred from the results of this study (see SOM, Supplementary Online Material available at http://app.pan.pl/SOM/app60-Izumi_SOM.pdf). Consequently, throughout the Phanerozoic, Chondrites reworked trace fossils with various sizes including approximately 1–76 mm in diameter, whereas relatively larger trace fossils (i.e., 7–76 mm in diameter) were preferentially reworked by Phycosiphon (Fig. 7). Furthermore, there are no records of tiny (i.e., a few mm in diameter) burrows that were reworked by Phycosiphon (Fig. 7). The recognized trend (i.e., larger burrow preference by the Phycosiphon-producers) is highly obvious, even if Chondrites and Phycosiphon generally have similar burrow diameters of approximately 0.5–2 mm throughout the Phanerozoic (Gerard Fig. 7. Stratigraphical distribution of trace fossils reworked by Chondrites and Phycosiphon. Note that trace fossils with tiny diameter were reworked only by Chondrites throughout the Phanerozoic (gray shade with dotted line). Particularly, Anconichnus horizontalis has been interpreted as a synonym of Phycosiphon incertum (Wetzel and Bromley 1994). Although ichnofossils reworked by these two ichnogenera have been only known from shallow-marine deposits before the Cretaceous except for one controversial case, these are common in both shallow- and deep-marine deposits in the Cretaceous and Cenozoic. This is probably related to significant deep-sea trace-fossil diversification in the Late Jurassic to Early Cretaceous periods, which might have been caused by eutrophication of seafloor due to the evolution of various phytoplankton.
IZUMI—COMPOSITE PHYMATODERMA BURROWS FROM JAPAN

OCCURRENCE IN BOTH SHALLOW- AND DEEP-MARINE DEPOSITS

ONSET OF A SIGNIFICANT DIVERSIFICATION OF DEEP-SEA ICHNOFOSSILS
probably related to 1) deep-sea eutrophication caused by phytoplankton evolution
2) new adaptations in response to increasing competition for foods

OCCURRENCE IN SHALLOW-MARINE DEPOSITS ONLY (?)

REWORKED ONLY BY CHONDrites

- Exact size range of trace fossils reworked by Chondrites (this study)
- Exact size range of trace fossils reworked by Phycosiphon (this study)
- Exact diameter of trace fossil reworked by Chondrites
- Exact diameter of trace fossil reworked by Phycosiphon
- Size range of ichnogenus containing specimens reworked by Chondrites
  (exact size range unknown)
- Size range of ichnogenus containing specimens reworked by Phycosiphon
  (exact size range unknown)
- Exact diameter of trace fossil reworked by Anconichinus horizontalis or Helminthopsis
- Size range of ichnogenus containing specimens reworked by Anconichinus horizontalis or Helminthopsis
  (exact size range unknown)
and Bromley 2008). In terms of the size of Chondrites, however, it is ichnospecies specific at least in some cases (Uchman 1999; Uchman et al. 2012). The results of compilation not only support my interpretations but also provide further paleoecological implications. Namely, the burrow size might have become one of the important limiting factors for the Phycosiphon-producers, which tried to rework the sediments within previous subsurface burrows, at least for nearly 80 million years (Fig. 7), although probably other factors (i.e., depositional environment, sedimentation rate, pore-water oxygenation) also affected the mode of colonization.

In addition, it is important to note that all pre-Cretaceous trace fossils reworked by these two ichnogenera are known only from shallow-marine deposits except for one controversial example, whereas those from the Cretaceous and younger occurred in both shallow- and deep-marine deposits (Fig. 7). This may be related to the onset of a significant diversification of deep-sea trace fossils in the Late Jurassic to Early Cretaceous (Uchman 2004), which was probably related to new adaptations in response to increasing benthic competition for foods along with the deep-sea eutrophication caused by the evolution of various kinds of phytoplankton (Uchman 2003, 2004, 2007; Falkowski et al. 2004).

Potential for further research.---To expand the implications inferred from this study, it is worthwhile to discuss not only trace fossils but also body fossils that were reworked by Chondrites and/or Phycosiphon. There are several reports of ammonite fossils that were reworked by these ichnogenera (Maeda et al. 2010; García-Ramos et al. 2011).

According to García-Ramos et al. (2011), the Pliensbachian (Lower Jurassic) Rodiles Formation in Spain contains internal moulds of ammonites (and sometimes bivalves) that were traversed by Chondrites. These internal moulds must have acted as ideal feeding sites for the trace-makers of Chondrites due to the richness of decayed organic matter that may have been produced by the dissolution of ammonite shells. Although García-Ramos et al. (2011) did not described the size ranges of non-reworked and reworked internal moulds of ammonites, on the basis of the results of this study (i.e., Fig. 5D), it can be predicted that both non-reworked and reworked internal moulds have similar size distributions, or have no significant size difference.

Maeda et al. (2010) described the Campanian (Late Cretaceous) ammonoid species Canadoceras kossmani Matsumoto, 1954 from the Krasnoyarka Formation in Russia. In these ammonite specimens, Phycosiphon are commonly recognized within sediments infilling both body and air chambers (Maeda et al. 2010). Sediments stuffed in relatively restricted organic-rich spaces such as umbilical void, body and air chambers might have also been preferential feeding sites for deposit-feeding benthic animals (Maeda 1987). Shell diameter of C. kossmani from the Krasnoyarka Formation ranges from 5–80 cm (Maeda et al. 2010). Although any systematic/quantitative data about the shell size of ammonites whose sediment-infills are reworked by Phycosiphon is not available in their paper, reworking by Phycosiphon seems to be present in relatively larger ammonite shells according to several figures (Maeda et al. 2010: figs. 5B, C, 6, 8A). This evidence might also support the size selectivity of Phycosiphon trace-makers inferred from this study (i.e., preference of larger sediment mass).

Conclusions

Composite Phymatoderma from the Pliocene deep-sea deposits (Shiramazu Formation in Chiba Prefecture, central Japan); particularly Phymatoderma reworked by Chondrites and Phycosiphon, was described in detail for the first time, and analyzed to reveal the difference in nature of the reworking activities by Chondrites and Phycosiphon trace-makers. Phymatoderma reworked by Phycosiphon has a significantly larger size than non-reworked Phymatoderma, whereas Phymatoderma reworked by Chondrites shows no significant difference in burrow diameter compared with non-reworked Phymatoderma. The recognized size selectivity (i.e., preference of burrows with relatively larger diameter) by the trace-makers of Phycosiphon may be well explained considering the difference in feeding strategies of the trace-makers; namely deposit-feeding Phycosiphon-makers must have processed a significant mass of sediment to obtain sufficient organic matter, while, chemosymbiotic Chondrites-producers did not require a lot of sediment for obtaining nutrients. To verify these interpretations, records of the Phanerozoic trace fossils reworked by Chondrites/Phycosiphon were compiled. As a result, the preference of relatively larger burrows by the trace-makers of Phycosiphon was also recognized, which supports the interpretations of this study and indicates that the burrow size might have become one of the important limiting factors for the Phycosiphon-producers, which tried to rework the sediments within previous subsurface burrows, for at least 80 million years. Furthermore, Phycosiphon reworking other kinds of fossils (e.g., sediments filled in body and/or air chambers of ammonites) might also be expected to show the preference of larger-sized ammonites; thus, this topic may have a potential for further studies.

Acknowledgements

I would like to thank Kazushige Tanabe (The University Museum, University of Tokyo, Japan) and Kazuyoshi Endo (University of Tokyo, Japan) for their supervision throughout this study. I also greatly appreciate Eduardo B. Olivero and Maria I. López Cabrera (CADIT-CONICET, Ushuaia, Argentina) for their useful discussions, information, and review of the early version of this manuscript. Masaru Saito and Shinsuke Kurihara (Minamiboso City, Japan) supported daily life during fieldwork. This work was supported by a grant from the Japan Society for Promotion of Science awarded to KI (24-8818). Thanks are also due to Alfred Uchman (Jagiellonian University, Kraków, Poland), Francisco Rodriguez-Tovar (Universidad de Granada, Spain), and Gabriela Mángano (University of Saskatchewan, Saskatoon, Canada), who improved the manuscript greatly during revision.
References


Olivero, E.B. and López Cabrera, M.I. 2013. *Euflabella* n. igen.: Com-
plex horizontal spreite burrows in Upper Cretaceous–Paleogene shal-
low-marine sandstones of Antarctica and Tierra del Fuego. *Journal of
Palaeontology* 87: 413–426.

surrogate approach to study the chemical reactivity of mucus bur-

fossils. In: S.K. Donovan (ed.), *The Palaeobiology of Trace Fossils*,

Pickerill, R.K. and Narbonne, G.M. 1995. Composite and compound ichno-
taxa: A case example from the Ordovician of Quebec, eastern Canada.
*Ichnos* 4: 53–69.

depth-related organic mineralization and oxygen consumption in sur-


Rodríguez-Tovar, F.J. and Uchman, A. 2006. Ichnological analysis of the
Cretaceous–Palaeogene boundary interval at the Caravaca section,
SE Spain. *Palaeogeography, Palaeoclimatology, Palaeoecology* 242:
313–325.

Rodríguez-Tovar, F.J., Uchman, A., Alegría, L. and Molina, E. 2011a. Im-
pact of the Paleocene–Eocene Thermal Maximum on the macroben-
thic community: Ichnological record from the Zamura section, north-

Rodríguez-Tovar, F.J., Uchman, A., Orue-Etxebarria, X., Apellaniz, E. and
Baceta, J.I. 2011b. Ichnological analysis of the Bidart and Sopelana
Cretaceous/Paleogene (K/Pg) boundary sections (Basque Basin, W


Rotnicka, J. 2005. Ichnofabrics of the Upper Cretaceous fine-grained rocks
from the Stolowe Mountains (Studety, SW Poland). *Geological Quar-


Seilacher, A. 1954. Zur ökologische n Charakteristik von Fluschn und Mo-

428.


Seilacher, A. 1990. aberrations in bivalve evolution related to photo- and


content in surface sediments: Defining regional provinces. *Deep-Sea

Suess, E. 1960. Particulate organic carbon flux in the ocean: surface pro-

Uchman, A. 1999. Ichnology of the Rhenodanubian Flysch (Lower Creta-

Uchman, A. 2003. Trends in diversity, frequency and complexity of grapho-
glyptid trace fossils: Evolutionary and palaeoenvironmental aspects. *Pa-

McIroy (ed.), *The Application of Ichnology to Palaeoenvironmental
and Stratigraphic Analysis*. Geological Society Special Publication
228: 125–139.

In: W. Miller III (ed.), *Trace Fossils: Concepts, Problems, Prospects*,

and other trace fossils from the Cape Melville Formation (Lower Mio-
cene) of King George Island, Antarctica. *Polish Polar Research* 31:
83–99.

Uchman, A., Caruso, C., and Sonnino, M. 2012. Taxonomic review of *Chondrites affinis* (Sternberg, 1833) from Cretaceous–Neogene off-

Uchman, A., Rodríguez-Tovar, F.J., and Osyczpyko, N. 2013a. Exception-
ally favourable life conditions for macrobenthos during the Late Ceno-


Wetzel, A. 1991. *Ecologic interpretation of deep-sea trace fossil communi-


conichnus horizontalis* is junior subjective synonym. *Journal of Pale-
ontology* 68: 1396–1402.

Wetzel, A. and Uchman, A. 2001. Sequential colonization of muddy tur-
bidities in the Eocene Beloveža Formation, Carpathians, Poland. *Pa-