An Early Miocene Microtoid Cricetid Rodent from the Junggar Basin of Xinjiang, China

Authors: Maridet, Olivier, Wu, Wenyu, Ye, Jie, Meng, Jin, Bi, Shundong, et. al.

Source: Acta Palaeontologica Polonica, 59(1) : 1-7

Published By: Institute of Paleobiology, Polish Academy of Sciences

URL: https://doi.org/10.4202/app.2012.0007
An Early Miocene microtoid cricetid rodent from the Junggar Basin of Xinjiang, China

OLIVIER MARIDET, WENYU WU, JIE YE, JIN MENG, SHUNDONG BI, and XIJUN NI

Microtoid cricetids are widely considered to be the ancestral form of arvicoline rodents, a successful rodent group including voles, lemmings and muskrats. The oldest previously known microtoid cricetid is Microtocricetus molassicus from the Late Miocene (MN9, ca. 10–11 Ma) of Europe. Here, we report a new microtoid cricetid, Primoprismus fejfari gen. et sp. nov., from the Junggar Basin of Xinjiang, northwestern China. The rodent assemblage found in association with this specimen indicates a late Early Miocene age, roughly estimated at 18–17 Ma, and thus more than 6 million years older than M. molassicus. While morphological comparisons suggest that the new taxon is most closely related to M. molassicus, it differs from the latter in a striking combination of primitive characters, including a lower crown, smaller size, a differentiated posterolophid and hypolophid, a faint anterolophid, the absence of an ectolophid, and the presence of a stylid on the labial border of the tooth. Arid conditions prevailing across the mid-latitude interior of Eurasia during the Early Miocene, enhanced by the combined effects of the Tibetan uplift and the gradual retreat of the Tethys Ocean, likely played a role in the appearance of grasslands, which in turn triggered the evolution of microtoid cricetids and, ultimately, the origin of arvicoline rodents.

Key words: Mammalia, Rodentia, Cricetidae, Arvicolinae, Miocene, Junggar, China, Central Asia.

Olivier Maridet [olivier.maridet@ivpp.ac.cn], Wenyu Wu [wwwy242@hotmail.com], Jie Ye [jieye@hotmail.com], Shundong Bi [shundong.bi@iup.edu], and Xijun Ni [nixijun@ivpp.ac.cn] (corresponding author), Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, P.R. China; Jin Meng [jmeng@amnh.org], Division of Paleontology, American Museum of Natural History, History, Central Park West at 79th Street, New York, NY 10024, USA.

Received 18 January 2012, accepted 4 April 2012, available online 20 April 2012.

Copyright © 2014 O. Maridet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Arvicolines, which include voles, lemmings, and muskrats, represent one of the most successful groups of rodents, having colonized all continents except Antarctica and Australia (McKenna and Bell 1997; Musser and Carleton 2005; Fejfar 1999; Fejfar et al. 2011). The group is characterized by hypsodont and prismatic check teeth adapted to hard plant foods (Fejfar 1999; Fejfar et al. 2011). The earliest undoubted arvicoline rodents appeared in northern Eurasia during the Early Pliocene, before rapidly dispersing into North America and southern Asia (Chaline et al. 1999; Fejfar et al. 2011; Musser and Carleton 2005). It is widely accepted that arvicoline rodents are derived from cricetid ancestors (Kretzoi 1955; Zheng and Li 1990; Michaux et al. 2001), with some Late Miocene cricetids from Eurasia and North America showing arvicoline-style cheek teeth with various degrees of hypsodonty and prismatic morphology. The latter are also known as microtoid cricetids, and are believed to have preceded the appearance of true arvicoline rodents (Schaub 1934; Fejfar 1999; Fejfar et al. 2011). Here, we describe a new microtoid cricetid from the Early Miocene deposits of the Junggar Basin in Xinjiang, China. This new record is about 6 million years older than the earliest previously-known microtoid cricetid, Microtocricetus molassicus Fahlbusch and Mayr, 1975 from the Late Miocene (MN9) of Europe (Fejfar 1999), thus indicating a much deeper origin of microtoid rodents than previously assumed.

Geological and paleontological investigations in the Junggar Basin have been going on for more than 50 years. Since the 1980s, the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences, Beijing (IVPP) has been excavating and screen-washing samples from this region every year in order to collect mammalian fossils. During the field season of 2006, a new fossiliferous locality (XJ200604) was discovered about 35 km northwest of Burqin Town (47°58.780’N 86°38.266’E; Fig. 1), northwest of other, previously known Early Miocene localities of the Junggar Ba-
The sediments exposed at this locality belong to an unnamed rock unit consisting of grayish- to blackish-yellow fluvial sandstone and sandy mudstone. Mammalian fossils were discovered in a lens of pebbly coarse sandstone in the basal layer of these fluvial sediments, which overlie the brightly-colored Irtysh River Formation (Ye et al. 2005), and is separated from the latter by a disconformity. Owing to its central position within Asia (Fig. 1A), this locality plays a crucial role in the dispersion and diversification of mammalian faunas.

The rich and diverse small mammal fauna discovered at this locality includes isolated teeth belonging to Gliridae, Eomyidae, Cricetidae, Aplodontidae, Sciuridae, Mylagaulidae, Erinaecidae and Soricidae, and Lagomorpha. A preliminary study of the small mammals identified two lagomorphs, three glirids \((\text{Miodyromys asiamediae} \text{ Maridet, Wu, Ye, Ni, and Meng, 2011c})\), \((\text{Microdyromys aff. orientalis} \text{ Wu, 1986})\), and one unidentified species of \((\text{Eliomys})\), four eomyids \((\text{Asianeomys aff. engesseri} \text{ Wu, 1986})\), \((\text{Asianeomys sp.})\), \((\text{Keramidomys sp.})\), and an unidentified eomyid), three cricetids \((\text{Democricetodon sp.})\), \((\text{Cricetodon sp.})\), and the new microtoid cricetid reported here), and a new species of \((\text{Ansomys})\). Eight of these taxa are also present or are represented by close relatives in the middle Shanwangian (about 17–18 Ma) Sihong, Gashunyin’adege, and Suosuoquan S-u faunas (Fig. 2). The association of \((\text{Democricetodon})\) and \((\text{Cricetodon})\) is so far only known from the Early Miocene and early Middle Miocene of China (Wu et al. 2009; Qiu 2010; Maridet et al. 2011b), with \((\text{Cricetodon})\) being replaced by more hypsodont forms such as \((\text{Gobicricetodon})\) and \((\text{Plesiodipus})\) from the late Middle Miocene onwards (e.g., Qiu 1996). The discovery of \((\text{Asianeomys aff. engesseri})\) and \((\text{Microdyromys aff. orientalis})\) confirms an Early Miocene age for the locality. However, while \((\text{Asianeomys engesseri})\) is known from the Suosuoquan Formation Zone II, dated to between 21.7 and 21.9 Ma based on paleomagnetostratigraphic data (Meng et al. 2006), \((\text{Microdyromys orientalis})\) is known from the late Early Miocene Shanwangian locality of Sihong, thus possibly suggesting a younger age for XJ200604. Paleomagnetostratigraphic and isotopic dating suggest that the Shanwang and Sihong localities are about the same age (Deng 2006), with basalts underlying the Shanwang Formation having been dated to 18.05 ± 0.55 Ma (Cheng and Peng 1985). \((\text{Keramidomys sp.})\) and the new species of \((\text{Ansomys})\) from XJ200604 also resemble specimens from Sihong (Qiu 1987) and Gashunyin’adege in Inner Mongolia (Qiu Zhuding, personal communication 2011), thus corroborating a middle Shanwangian age for XJ200604 (Fig. 2).

Systematic paleontology

Order Rodentia Bowdich, 1821

Superfamily Muroidea Illiger, 1811

Family Cricetidae Fischer de Waldheim, 1817
Genus *Primoprismus* nov.

Type species: *Primoprismus fejfari* sp. nov.; monotypic, see below.

Etymology: From the Latin *primo*, first, and *prismus*, prism; in reference to the early trend toward a prismatic morphology displayed by the specimen.

Diagnosis:—Small-sized cricetid rodent with incomplete lophodonty; low crown with prismatic pattern; metaconid and entoconid located anterior to protoconid and hypoconid, respectively; mesolophid and ectomesolophid developed into...
cuspids; lingual anterolophid absent, and labial one faintly developed.

Differs from Microtocricetus Fahlbusch and Mayr, 1975 in its smaller size, lower crown, smaller posterolophid differentiated from the hypoconid, the presence of a cingulum on the labial border, and a weakly developed labial anterolophid. Differs from Rotundomys Mein, 1966 in having a well-developed mesolophid and ectomesolophid. Differs from Microtoscopes Schaub, 1934, Goniodontomys Wilson, 1937, Paramicrotoscopes Martin, 1975, and Pannonicola Kretzoi, 1965 in its much lower crown and less advanced prismatic morphology. Differs from Celadensia Mein, Moissenet, and Adrover, 1983, Anatolomys Schaub, 1934, Trilophomys Deperet, 1892, Bjornkartenia Kowalski, 1992, and Baranomys Kormos, 1933 in the absence of a mesodont tooth morphology. Differs from all other cricetids in its anteriorly shifted lingual cuspids and sub-lophodont morphology, and in having the mesolophid and ectomesolophid developed into cuspids. Differs from undoubted arvicolines in having roots, the absence of cementum in the re-entrants, and the lack of a true association of prismatic and hyposodont morphology.

Primoprismus fejfari sp. nov.

Fig. 3A–C.

Etymology: Named after Oldrich Fejfar, in honor of his work on “microtoid cricetids”.

Holotype: IVPP V18128, one left lower m2, L = 1.25 mm, W = 0.92 mm.

Type locality: Locality XJ 200604, northwestern Junggar Basin, Xinjiang, China.

Type horizon: Early Miocene, about 17–18 Ma.

Diagnosis.—As for the genus.

Description.—The only available tooth has just two roots. The tooth crown is mesiodistally elongated and has a roughly rectangular outline in occlusal view, with the mesial and distal sides of the tooth bearing flat contact facets. Together, these features suggest the tooth to be an m2. The crown is low and marked by a flat occlusal surface. The cuspids are elongated and form an incomplete lophodont pattern. The prismatic morphology, though evident, is not fully developed. The metaconid and entoconid are located anterior to the protoconid and hypoconid, respectively. The lingual anterolophid is absent, while the labial anterolophid is short and weakly developed. The mesolophid and ectomesolophid are developed into elongated cuspsids, with the mesolophid forming a transverse crest together with the protoconid, while the ectomesolophid forms an oblique crest with the entoconid. There ectolophid is absent. A stylid is present on the labial border at the extremity of the ectomesolophid, along with a faint cingulum closing the two labial posterior sinusids. Although both the hypolophid and the posterolophid are elongate and form a nearly transverse posterior crest, they remain clearly differentiated.

Remarks.—No other muroid rodent resembling Primoprismus fejfari has ever been reported from the Late Oligocene–Middle Miocene of Central Asia. Previously reported Early Miocene cricetids from the Junggar Basin, such as Cricetodon Lartet, 1851, Eumyarion Thaler, 1966, Democricetodon Fahlbusch, 1964 and Megacricetodon Fahlbusch, 1964 (Maridet et al. 2011a, b), all lack the combination of anteriorly shifted lingual cuspsids and a semi-lophodont morphology. The monotypic genus Microtocricetus Fahlbusch and Mayr, 1975, including only M. molassicus Fahlbusch and Mayr, 1975, is known from the early Late Miocene of Germany, France, Austria, Hungary, and Poland (Fahlbusch and Mayr 1975; Bachmayer and Wilson 1984, Kowalski 1993; Welcomme et al. 1991; Hir and Kökay 2010), as well as possibly the latest Middle Miocene of Germany (see discussion about the biostratigraphy of Hammerschmiede in Prieto et al. 2011). In addition, some unpublished material from the middle Late Mio-

Fig. 3. Left lower m2 of cricetid rodent Primoprismus fejfari gen. et sp. nov. from Junggar Basin, China. IVPP V18128 in occlusal (A), ventral (B), and labial (C) views.
mesolophid and entoconid−ectomesolophid (“external transverse crests formed by the protoconid−mesolophid and entoconid−ectomesolophid (“external transversal ridge” or “äußerer Quersporn” sensu Fejfar 1999), respectively.

Other Late Miocene microtoid cricetids, such as Rotundomys Mein, 1966, Celadensia Mein, Moissenet, and Adrover, 1983, and Blancomys van de Weerd, Adrover, Mein and Soria, 1977 lack the ectomesolophid. Finally, microtoscopetine cricetids, such as Microtoscopetes Schaub, 1934, Goniodontomys Wilson, 1937, Paramicrotoscopetes Martin, 1975, and Pannonicola Kretzoi, 1965, display much more advanced hyposodont and prismatic morphologies.

Discussion

Previous authors proposed some general morphological trends for microtoid cricetids and true arvicoline rodents (Fejfar 1999; Fejfar et al. 2011; Chaline et al. 1999). For Late Miocene “microtoid cricetids”, these include an increase in the degree of hypsodonty; reinforcement of the lophodont and prismatic morphologies; the disappearance of cingula and the opening of sinuses/sinusids; and the transformation of anterolophs/anterolophids and posterolophs/posterolophids into transverse crests (Fejfar 1999). By contrast, later arvicoline evolution is characterized by the convergent development of cement in the re-entrant angles of the molars, the gradual disappearance of roots, and the appearance of an enamel tract (Chaline et al. 1999). With regard to these trends, our specimen displays a striking combination of primitive characters compared with Late Miocene microtoid cricetids, include its small size, the retention of roots, a low crown, a differentiated posterolophid and hypolophid, a faint labial anterolophid not developed into a crest, the absence of an ectolophid, and the presence of a stylid on the labial border, with a faint cingulum closing the two labial posterior sinusids. These primitive features suggest that P. fejfarı is much more archaic than all previously described microtoid cricetids, including Microtocricetus molassicus.

Fejfar et al. (2011) concluded that the morphological peculiarities of Microtocricetus exclude any affinities with other microtoid cricetids, and suggested that Microtocricetus could be an isolated lineage which went extinct before the end of the Miocene. However, the resemblance of Microtocricetus and Primoprismus suggests that these two taxa may be related, with Primoprismus probably representing a relatively early stage. It should be noted that the labial synclines of Primoprismus are not exactly opposite to its lingual anticlines, a feature present in some Microtoscopetinae (such as Microtoscopetes, Paramicrotoscopetes and Goniodontomys), but absent in Microtocricetus. However, given its age and retention of many generalized features, it is possible that Primoprismus fejfarı falls very close to the common ancestor of all Northern Hemisphere Late Miocene microtoid cricetids, including Microtocricetus and Microtoscopetes from Europe, and Paramicrotoscopetes and Goniodontomys from North America.

Several authors have suggested that the progressive development of hypsodonty and a prismatic tooth morphology among microtoid cricetids from the Late Miocene onwards gave rise to true arvicoline rodents, which ultimately replaced their ancestors (Gromov and Polyakov 1977; Kretzoi 1955; Fejfar 1999; Michaux et al. 2001; Fejfar et al. 2011). Recent molecular phylogenetic studies indicate that arvicoline, cricetines and sigmodontines form a monophyletic group (e.g., Dubois et al. 1999; Michaux and Catzeflis 2000; Michaux et al. 2001; Jansa and Weksler 2004), with the time of divergence of arvicolines and cricetines estimated to be either 15.5 ± 0.6 Ma or 18.8 ± 1.0 Ma, depending on the calibration point (Michaux et al. 2001). The present results may help to resolve this question, with the discovery of P. fejfarı in the Early Miocene of China not only providing fossil evidence supporting the earlier estimate of Michaux et al. (2012), but also a new, solid calibration point for further molecular clock analyses.

Based on their occurrence in paludal or fluvial deposits, Fejfar et al. (2011) proposed that microtoid cricetids, such as Microtocricetus, Microtoscopetes, and Goniodontomys, inhabited a moist environment. However, the gradual development of the hypsodont and prismatic tooth morphology in microtoid cricetids and arvicolines is usually interpreted as an adaptation to graminivorous feeding (Chaline et al. 1999). In the Asian interior, arid to semi-arid regions probably existed by the latest Oligocene, with deposition of eolian sediments in the Junggar Basin first occurring around 24 Ma (Sun et al. 2010). During the Early Miocene, the combined effects of the Tibetan uplift and the gradual retreat of the Tethys Ocean enhanced the aridity across the mid-latitude interior of Eurasia (Guo et al. 2002, 2008; Sun et al. 2010). Changes in mammalian faunas indicate a progressive reduction of forest environments and the spreading of open landscapes in Central Asia during the Early Miocene (Maridet et al. 2011). The evolution of high-crowned molars among perissodactyls and artiodactyls has been suggested as an adaptation to abrasive diets associated with the spreading of grasslands, particularly the expansion of C3 grasslands during the Early Miocene (MacFadden 2000; Janis 2008; Eronen et al. 2010; Mihlbachler et al. 2011). The origin and gradual enhancement of a hypsodont and prismatic tooth morphology in microtoid rodents and their arvicoline descendants could thus be interpreted as a convergent response to the same environmental changes.

Acknowledgements

We are grateful to Wen-Ding Zhang (IVPP) for taking the SEM photos, and the reviewers, Oldrich Fejfar (Institute of Geology and Paleontology, Charles University, Czech Republic) and Lutz Christian Maul.
References

Bachmayer, F. and Wilson, R.W. 1984. Die Kleinsäugerfauna von Götzen-
dorf, Niederösterreich. Sitzungsberichte der Österreichischen Akademie
der Wissenschaften Mathematisch–Naturwissenschaftliche Klasse, Abtei-

Bi, S.-D. 1999. Metaxallerix from the Early Miocene of North Junggar ba-
in, Xinjiang Uygar Autonomous region, China [in Chinese with English

Bi, S.-D. 2000. Erinaceidae from the Early Miocene of north Junggar basin,
Xinjiang Uygar autonomous region, China [in Chinese with English

Bowdich, T.E. 1821. An Analysis of the Natural Classification of Man-

Chaline, J., Brunet-Lecomte, P., Montuire, S., Viriot, L., and Courant, F.
1999. Anatomy of the arvicoline radiation (Rodentia): palaeoge-
ographical, palaeoecological history and evolutionary data. Annales

teristics of Cenozoic volcanic rocks in Shangdong, China. Geochimica
4: 293–303.

Deng, T. 2006. Chinese neogene mammal biochronology. Vertebrata Pal-
Asiatica 44: 143–163.

Deperre, C. 1892. Note sur la classification et le parallélisme du système

Dubois, J.-Y., Catzeflis, F.M., and Beintema, J.J. 1999. The phylogenetic
position of Acomyinae (Rodentia, Mammalia) as sister group of a
Marinae+Gerbillinae clade: evidence from the nuclear ribonuclease

Eronen, J.T., Puolamäki, K., Liu, L.-P., Lintulaakso, K., Damuth, J., Janis
C.M., and Fortelius, M. 2010. Precipitation and large herbivorous mam-

Fahlbusch, V. 1964. Die Cricetiden (Mamm.) der Oberen Süßwasser-
Molasse Bayerns. Abhandlungen der Bayerischen Akademie der Wissen-

Fahlbusch, V. and Mayr, H. 1975. Microtoide Cricetiden (Mammalia,
Rodentia) aus der Oheren Süßwasser-Molasse Bayerns. Paalontologi-
sche Zeitschrift 49: 78–93.

The Miocene Land Mammals of Europe, 356–371. Verlag Dr. Friedrich
Pfeil, München.

Cricetids and the early history of arvicolids (Rodentia, Mammalia). Paalonto-
logia Electronica 14: 303–327.

Fischer von Waldheim, G. 1817. Adversaria zoologica. Mémoires de la
Société Impériale des Naturalistes de Moscou 5: 357472.

of Asian desertification by 22Myr ago inferred from loess deposits in

Guo, Z.-T., Sun, B., Zhang, Z.-S., Peng, S.-Z., Xiao, G.-Q., Ge, J.-Y., Hao,
Q.-Z., Qiao, Y.-S., Liang, M.-Y., Liu, J.-F., Yin, Q.-Z., and Wei, J.-J.

rodents and lagomorphs (Mammalia) of Felsőtárkány 3/8 and 3/10
(Northern Hungary) with stratigraphical relations. Geodiversitas 32:
307–329.

Iliger, C. (1811). Prodromus systematis mammalium et avium additis

Janis, C.M. 2008. An evolutionary history of browsing and grazing ungu-

ships within and among major lineages as determined by IRBP gene se-

Kornos, T. 1933. Baranomys lóczyi n. g. et sp., áj rágságoz a magyarországi
felső piicenből (Baranomys lóczyi n. g. et sp. ein neues Nagetier aus

(Rodentia, Mammalia) from the Miocene of Belchatów (Poland). Acta
Zoologica Cracoviensia 36: 251–258.

Kretzoi, M. 1955. Promimmomys cor n.g. n.sp. ein aktuellämlicher Arvicolide
daus dem ungarischen Unterpliozan. Acta Geologica Hungarica 3:
89–94.

Kretzoi, M. 1965. Panunonica brevidens n.g.n.sp., ein echter Arvicolide aus
da ungarischen Unterpliozan. Vertebrata Hungarica Musei historicoc-
naturalis Hungarici 7: 131–139.

Lartet, E. (1851). Notice sur la colline de Sansan. 47 pp. J.A. Portes,
Annales du Département du Gers, Auch.

MacFadden, B.J. 2000. Origin and evolution of the grazing guild in Ceno-
zoic New World terrestrial mammals. In: H.-D. Sues (ed.), Evolution of
Herbivory in Terrestrial Vertebrates, 223–244. Cambridge University

Mariedet, O., Wu, W.-Y., Ye, J., Bi, S.-D., Ni, X., and Meng, J. 2011a. Earli-
est occurrence of Docromecricodon in China, in the Early Miocene of the
Junggar Basin (Xinjiang) and comparison with the genus Spanocriceto-

Mariedet, O., Wu, W.-Y., Ye, J., Bi, S.-D., Ni, X., and Meng, J. 2011b. Early
Miocene cricetids from the Junggar basin (Xinjiang, China) and their

of glirids and comyids (Mammalia, Rodentia) in the Early Miocene of the
Junggar basin (Northern Xinjiang province, China). Swiss Journal of
Palaeontology 130: 315–323.

Martin, L.D. 1975. Microtine Rodents of the Ogallala Pliocene of Nebraska
and the early Evolution of the Microtinae in North America. In: G.R.
Smith and N.E. Friedland (eds.), Studies on Cenozoic Paleontology and
Stratigraphy—Claude W. Hibbard Memorial Volume 3. University of

McKenna, M.C. and Bell, S.K. 1997. Classification of Mammals, Above the

Mein, P. 1966. Rotundomys, nouveau genre de Cricetidae (Mammalia,
Rodentia) de la faune Neogène de Montredon. Bulletin de la Société
Géologique de France, Série 7 8: 421–425.

Mein, P., Moissinen, E., and Adrover, R. 1983. L’extension et l’âge des for-
mations continentales pliocènes du fosse de Teruel (Espagne), Comptes

Meng, J., Ye, J., Wu, W.-Y., and Bi, S.-D. 1999. The petrosal morphology of
the Junggar Basin (Northern Xinjiang province, China). Acta Paaleon-
tologica Polonica 59 (9), 2014.

http://dx.doi.org/10.4202/app.2012.0007