SOME CLINICO-PATHOLOGIC FINDINGS IN ELEPHANTS (Elephas maximus) INFECTED WITH Fasciola jacksoni

Authors: CAPLE, I. W., JAINUDEEN, M. R., BUICK, T. D., and SONG, C. Y.

Source: Journal of Wildlife Diseases, 14(1) : 110-115

Published By: Wildlife Disease Association

URL: https://doi.org/10.7589/0090-3558-14.1.110
SOME CLINICO-PATHOLOGIC FINDINGS IN ELEPHANTS (Elephas maximus) INFECTED WITH Fasciola jacksoni

Faculty of Veterinary Medicine and Animal Science, Universiti Pertanian Malaysia, Sungai Besi, Selangor, Malaysia.

Abstract: Severe submandibular and ventral abdominal oedema was observed in an Asian elephant (Elephas maximus) in which liver flukes (Fasciola jacksoni) were recovered from the bile ducts at post-mortem examination. Clinico-pathologic examination of blood samples and serum from this elephant and another 8 elephants showed that most had anemia and hypoproteinemia. Fecal samples from 6 of the elephants contained from 6 to 63 eggs per gram. Treatment of elephants with nitroxynil (10 mg/kg) by subcutaneous injection produced severe local reactions at the injection site. Feces collected 2 and 4 months after treatment were free of trematode eggs. Hematologic values measured 4 months after treatment showed that the hemoglobin concentration, packed cell volume, erythrocyte count and plasma protein concentration had increased to within the normal range.

INTRODUCTION

Infection of the liver in elephants (Elephas maximus) with flukes (Fasciola jacksoni) has been associated with clinical signs such as pale mucous membranes, depraved appetite, loss of weight and submandibular swellings.1,2,4,5 Clinical pathology studies of blood and serum of elephants with fascioliasis has not been reported. There are few references to the treatment of fascioliasis in elephants.6,7 and many drugs, such as hexachloroethane, may not be tolerated.8

During an investigation of submandibular and ventral abdominal oedema, and death attributed to liver flukes in a group of elephants in Central Malaysia, the hemoglobin concentration, packed cell volume, erythrocyte and leucocyte counts and plasma protein concentration of affected elephants was studied before and after treatment with subcutaneous injections of nitroxynil.9 The effects of nitroxynil on fluke infections, and the reactions to the drug are described.

MATERIALS AND METHODS

A group of nine elephants were kept in a jungle clearing in Pahang in Central Malaysia and fed sugar cane, bread and banana leaves, and were allowed to graze in the jungle while on a chain leash. Their ages were estimated to range from 4 to 30 years, and their weights from 500 to 3000 kg.

Two elephants developed oedema in the submandibular region within eight months of capture. In the first elephant, a female estimated to be about 11 years old, oedema initially became apparent around the umbilicus. This oedema gradually became larger and a submandibular swelling developed. The oedematous area in-
creased in size over a period of three months before the elephant died (Fig. 1). At post-mortem examination numerous trematodes were found in the bile ducts.

When the second elephant (Kala) developed submandibular oedema it was considered that treatment should be attempted before the condition progressed. As oral administration of drugs to elephants, particularly untrained elephants, was found to be difficult, nitroxynil was given by subcutaneous injection. Feces of all elephants were examined for trematode eggs by a zinc sulphate flotation technique before treatment, and the response to nitroxynil was monitored by examination of feces for eggs two and four months after treatment.

Blood samples were collected from a marginal ear vein of four elephants before treatment and four months after treatment to determine total erythrocyte (RBC) and leucocyte (WBC) counts, packed cell volume (PCV), hemoglobin concentration (Hb) and total plasma protein concentration.

Sulphobromophthalein (BSP) liver function tests were performed on four elephants including Kala. A polyvinylchloride cannula was introduced into a marginal ear vein of each ear, and

FIGURE 1. Asian elephant showing clinical signs of submandibular and ventral oedema associated with anemia and hypoproteinemina and infection of Fasciola jacksoni.
the clearance rate of BSP from the bloodstream was determined by injection of 100 ml of a 5% solution of BSP into one ear vein and estimation of the plasma BSP concentration in accurately timed samples taken from the other ear vein during the next 30 minutes. From these data the time for the plasma concentration to be halved was calculated.

As there was no information on the dose rate or toxicity of nitroxynil in elephants, one elephant (Kala) was injected subcutaneously with nitroxynil solution containing 34% active ingredient at a dose rate of 10 mg/kg. The elephant received a total of 25 ml of solution given at five sites on the hindquarters. This elephant was examined for evidence of systemic toxicity, and the rectal temperature was monitored for two days after treatment. There was no detectable reaction in this elephant apart from slight swelling at three of the injection sites one week later. The other seven elephants received nitroxynil at a dose rate of 10 mg/kg, and subcutaneous injections of 3 to 10 ml of solution were given on either side of the neck in five elephants and at the base of the tail in two elephants.

RESULTS AND DISCUSSION

Trematodes obtained from the bile ducts of the dead elephant were identified as Fasciola jacksoni. In six of the eight elephants fecal samples contained operculated F. jacksoni eggs which measured 60 - 72 x 108 - 132 μm, and the number of eggs ranged from 6 to 83 per gram of feces.

Although only two of the elephants showed clinical signs of submandibular and ventral abdominal oedema, most had anemia and hypoproteinemia before treatment. One week before the most severely affected elephant died the blood Hb concentration was 4.5 g% which is less than one-third commonly reported in normal Asian elephants. The hematologic findings in four elephants infected with F. jacksoni (Table 1) were similar to those described in sheep infected with F. hepatica, and the pathogenesis of the infections is probably similar.

We could not find any published information on BSP excretion in elephants. This test is a sensitive indicator of liver function in domestic animals, and was adapted for use in elephants. In sheep infected with liver flukes, BSP clearance rates are decreased. The BSP clearance rates in the elephants Kala and Pagi were slower than in Lakimala and Cikmek, and this may have been related to the degree of liver damage. However, it would be necessary to use other tests of liver function to support this finding.

Nitroxynil did not cause any systemic reaction, but in seven elephants local reactions occurred at the injection sites (Fig. 2). These reactions appeared to be unrelated to the volume of nitroxynil injected, or the site of the injection, and varied from a local swelling to a circular lesion of about 4 cm in diameter (Fig. 2). The centres of these lesions either sloughed or were debrided surgically two weeks after the injection, and the lesions healed within two months (Fig. 3). This particular preparation of nitroxynil may be unsuitable for use in elephants because of this local reaction to subcutaneous injection.

Nitroxynil was effective in treating the trematode infection as fecal samples collected two and four months after treatment contained no F. jacksoni eggs. Since strongyle and paramphi-
<table>
<thead>
<tr>
<th>Elephant</th>
<th>Hb</th>
<th>PCV</th>
<th>RBC 10^6/mm3</th>
<th>WBC 10^3/mm3</th>
<th>Plasma g%</th>
<th>BSP half-time min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>6.8</td>
<td>19</td>
<td>1.53</td>
<td>14.5</td>
<td>5.4</td>
<td>5.1</td>
</tr>
<tr>
<td>After</td>
<td>9.9</td>
<td>27</td>
<td>1.66</td>
<td>8.5</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Pagi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>9.0</td>
<td>26</td>
<td>not recorded</td>
<td></td>
<td>5.8</td>
<td>6.5</td>
</tr>
<tr>
<td>After</td>
<td>11.1</td>
<td>32</td>
<td>1.75</td>
<td>7.8</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Cikmek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>7.7</td>
<td>28</td>
<td>1.81</td>
<td>17.0</td>
<td>8.6</td>
<td>3.6</td>
</tr>
<tr>
<td>After</td>
<td>13.5</td>
<td>40</td>
<td>2.98</td>
<td>12.2</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>Lakimala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>9.0</td>
<td>28</td>
<td>2.30</td>
<td>16.2</td>
<td>8.6</td>
<td>4.3</td>
</tr>
<tr>
<td>After</td>
<td>12.1</td>
<td>36</td>
<td>3.05</td>
<td>17.8</td>
<td>9.4</td>
<td></td>
</tr>
</tbody>
</table>

Normal values*

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.1</td>
<td>34</td>
<td>3.18</td>
<td>14.7</td>
<td>9.0</td>
<td></td>
</tr>
</tbody>
</table>

Reported for Asian elephants by Jainudeen and Jayasinghe.
Lesions on neck of elephant at injection sites where nitroxynil was given two weeks previously.

Figure 3. Same lesions as in Figure 2 after two months.

Stone eggs were present in most fecal samples, the elephants were given thibendazole *3* three months after treatment with nitroxynil because the strongyle egg count was up to 200 eggs per gram in one elephant. Numerous nematodes identified as *Murshidia murshida* and *Quillonia rennes*12 were passed in the feces the day following treatment with thibendazole.

Submandibular and ventral abdominal oedema, commonly known as 'rot' in elephants, has been recorded with fluke infection for more than a century,3,6 and probably is associated with a reduced plasma colloid osmotic pressure when the plasma protein concentration falls to abnormally low levels. Anemia and hypoproteinemia commonly occur in elephants infected with hookworms11 and intestinal flukes.13 Submandibular oedema also has been observed in an elephant with tuberculosis.9 Oedema in elephants is not diagnostic for trematode infections; this type of response also occurs in congestive heart failure, kidney and liver disease, gastrointestinal parasitism and inanition. A definitive diagnosis depends on a detailed clinical examination and clinicopathologic findings. It was considered that the hypoproteinemia in the elephant probably was due to a number of factors, including liver damage, gastrointestinal parasitism and inadequate nutrition. The pathophysiology of anemia in fluke infections of elephants is unknown. In other animals, anemia has been attributed to loss of blood through the biliary tract and to impaired erythrocyte production due to poor nutrition of affected animals.9

Thibenzole; Merck, Sharp & Dohme, Sydney, Australia.
Acknowledgements

The authors thank Mr. Mohammed Khan, Chief Game Warden of Malaysia for assistance in the collection of samples, and for his interest and encouragement. Nitroxynil was obtained through the courtesy of May & Baker (Pty) Ltd, Kuala Lumpur, Malaysia. Drs. Caple and Buick were on an assignment of the Australian-Asian Universities Co-operation Scheme sponsored by the Australian Development Assistance Agency.

LITERATURE CITED

Received for publication 5 July 1977