BLOOD AND GASTROINTESTINAL PARASITES OF EASTERN WILD TURKEYS FROM KENTUCKY AND TENNESSEE

Authors: Castle, Marc D., and Christensen, Bruce M.

Source: Journal of Wildlife Diseases, 20(3) : 190-196

Published By: Wildlife Disease Association

URL: https://doi.org/10.7589/0090-3558-20.3.190
BLOOD AND GASTROINTESTINAL PARASITES OF EASTERN WILD TURKIES FROM KENTUCKY AND TENNESSEE

Marc D. Castle and Bruce M. Christensen
Department of Biological Sciences, Murray State University, Murray, Kentucky 42071, USA

ABSTRACT: Fifty-nine gastrointestinal tracts and 52 blood samples were collected from eastern wild turkeys (Meleagris gallopavo silvestris Vieillot) during the spring turkey hunts of 1979–1980 from two areas in western Kentucky and Tennessee. Eight species of parasites were recovered, and included (combined prevalence): Haemoproteus meleagridis Levine, 1961 (25%), Hymenolepis carioca (Magalhaes, 1938) (44%), Metrionausthes lucida Ransom, 1900 (25%), Raillietina georgiensis (Reid and Nogara, 1961) (15%), R. williamsi Fuhrmann, 1932 (64%), Ascariida dis-similis Perez Vigueras, 1931 (83%), Capillaria caudinflata (Molin, 1858) (2%), and Heterakis gallinarum (Schrank, 1788) (27%). A significant difference existed between the intensities of A. dissimilis from the two states. Twenty-two subinoculations of collected blood were made in 1979, but no Plasmodium infections were recovered. Helminths of wild turkeys from 11 southeastern states were compared using similarity and diversity indices. High similarities were observed in helminth populations of two groups of states: 1) Alabama, Mississippi, Arkansas, Virginia, and Tennessee; and 2) Tennessee, Kentucky, and Illinois. Simpson’s diversity index indicated helminth populations of wild turkeys in Florida were the most diverse (0.10), while those in Louisiana turkeys were the least diverse (0.33).

INTRODUCTION

Studies of helminths of wild turkeys in Kentucky and Tennessee have been limited to a single report by Maxfield et al. (1963). In that investigation, four birds from two Kentucky counties (McCreary and Pulaski), and 54 birds from four Tennessee counties (Cheatham, Cumberland, Morgan, and Shelby) were examined for helminth parasites. Blood samples were not examined for hematozoa.

Investigations concerning parasite infections of eastern wild turkeys have been well documented (Mosby and Handley, 1943; Kozicky, 1948; Maxfield et al., 1963; Prestwood, 1968; Hon et al., 1975; Prestwood et al., 1975), but only one report (Hon et al., 1975) made a concerted effort to compare helminth populations of wild turkeys from different areas.

This report presents data on helminths and hematozoa of wild turkeys from Kentucky and Tennessee, and compares prevalence data on helminths of wild turkeys from 11 southeastern states.

MATERIALS AND METHODS

Study area

Turkeys were collected from two areas in western Kentucky and Tennessee, the Tennessee Valley Authority’s Land-Between-the-Lakes (LBL), and Fort Campbell, Kentucky (FTC). Both areas cross state boundaries (Fig. 1). The nucleus of the turkey flock at LBL is comprised of birds native to the area, and at one time was the only remaining flock of wild turkeys left in Kentucky. In 1973, 30 turkeys from Missouri were stocked in the Tennessee portion of LBL, and in 1981 an additional 36 birds were stocked in the northern section. The flock of turkeys at FTC is not native to the area, having been stocked from Pennsylvania. In addition, domestic turkeys have been released into the area and are now an integral part of the flock.

Sample collections

Fifty-nine gastrointestinal tracts (esophagus, proventriculus, ventriculus, small intestine, large intestine, and caeca) and 52 blood samples were collected from hunter-killed wild turkeys during the spring (gobbler only) turkey hunts of 1979–1980 at LBL and FTC. Blood samples were taken from the ventricles of the heart using a heparinized syringe, and refrigerated until subinoculation and blood smears could be

Received for publication 1 November 1982.

1 Present address: Department of Veterinary Science, University of Wisconsin, Madison, Wisconsin 53706, USA.
made (approximately 3–6 hr). Blood smears were stained with Giemsa's and a minimum of 20,000 erythrocytes were examined with oil immersion optics (×1,000). Remaining blood (0.5–2.0 ml) was subinoculated into the pectoral muscles of two- to five-week-old Broad-Breasted-White turkey poults (obtained from the Heart of Missouri Poultry Farm, Columbia, Missouri 65201, USA) using the technique described by Herman et al. (1966). Birds were obtained as one-day-old poults and maintained in isolation facilities throughout the course of the study. Blood smears were made from recipient birds twice weekly for 5–6 wk beginning 1 wk postinoculation.

Gastrointestinal tracts were placed in physiological saline and refrigerated for transport back to the laboratory. Helminths were collected either by direct removal or by washing intestinal contents through a 40-mesh screen. Cestodes were fixed in hot AFA and stained with Mayer's pararcarmine. Nematodes were fixed in hot 70% glycerin alcohol. Representative specimens of helminths and the hemosporinid were deposited in the U.S. National Parasite Collection (Beltsville, Maryland 20705, USA) as USNM Coll. Nos. 78230–78237.

Statistical analysis

Prevalence data were analyzed using chi-square analysis of 2 × 2 contingency tables, and intensity data analyzed by ANOVA and Wilcoxon-Mann-Whitney U-tests. These analyses were done from statistical packages on a Hewlett-Packard HP 86 microcomputer system. Indices of diversity and similarity were computed according to Holmes and Podesta (1968). Differences were considered significant at P < 0.05.

RESULTS AND DISCUSSION

One hemosporinid and at least one of seven species of helminths were recovered from 25% and 97% of the samples, respectively. Prevalence and mean intensity for each species from both states are given in Table 1. All parasites recovered have been reported from wild turkeys in the southeastern USA (Gardiner and Wehr, 1949; Love et al., 1953; Maxfield et al., 1963; Goggans, 1966; Prestwood, 1968; Eve et al., 1972; Forrester et al., 1974; Hon et al., 1975; Noblet and Moore, 1975; Prestwood et al., 1975).

The one hemosporinid recovered, *Hae-moproteus meleagrisid*, has been recovered not only from wild turkeys across most of the southeastern USA (Love et al., 1953; Goggans, 1966; Eve et al., 1972;
TABLE 1. Parasites recovered from 20 and 39 eastern wild turkeys from western Kentucky and Tennessee, respectively, 1979-1980.

<table>
<thead>
<tr>
<th>Parasite</th>
<th>State</th>
<th>Prevalence (%)</th>
<th>Intensity</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KY</td>
<td>39</td>
<td>15 (7.1)</td>
<td>1-89</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>18</td>
<td>14 (4.8)</td>
<td>1-77</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>25</td>
<td>15 (4.0)</td>
<td>1-89</td>
</tr>
<tr>
<td>Haemoproteus meleagris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenolepis cariosa</td>
<td>KY</td>
<td>45</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>44</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>44</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Metroliasthes lucida</td>
<td>KY</td>
<td>25</td>
<td>12 (6.9)</td>
<td>1-39</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>20</td>
<td>19 (4.8)</td>
<td>3-42</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>22</td>
<td>16 (4.2)</td>
<td>1-42</td>
</tr>
<tr>
<td>Raillietina georgiensis</td>
<td>KY</td>
<td>20</td>
<td>2 (1.1)</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>13</td>
<td>2 (0.5)</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>15</td>
<td>2 (0.6)</td>
<td>1-6</td>
</tr>
<tr>
<td>Raillietina williamsi</td>
<td>KY</td>
<td>50</td>
<td>5 (1.5)</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>72</td>
<td>11 (2.1)</td>
<td>1-38</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>64</td>
<td>10 (1.7)</td>
<td>1-38</td>
</tr>
<tr>
<td>Ascaridia dissimilis</td>
<td>KY</td>
<td>79</td>
<td>6 (0.9)</td>
<td>1-15</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>92</td>
<td>13 (3.5)</td>
<td>1-89</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>83</td>
<td>11 (2.4)</td>
<td>1-89</td>
</tr>
<tr>
<td>Capillaria caudinflata</td>
<td>KY</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>3</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Heterakis gallinarum</td>
<td>KY</td>
<td>15</td>
<td>56 (25.3)</td>
<td>1-108</td>
</tr>
<tr>
<td></td>
<td>TN</td>
<td>33</td>
<td>223 (67.6)</td>
<td>1-806</td>
</tr>
<tr>
<td></td>
<td>KY+TN</td>
<td>27</td>
<td>192 (59.3)</td>
<td>1-806</td>
</tr>
</tbody>
</table>

* KY = Kentucky, TN = Tennessee.
* n = 18.
* n = 34.
* n = 52.
* ND = not determined.
between prevalence or intensities for either parasite. These findings are similar to other reports of *R. georgiensis*, but Maxfield et al. (1963), Prestwood (1968), Hon et al. (1975), and Prestwood et al. (1975) indicated *M. lucida* was one of the most common cestodes in southeastern wild turkeys.

A small hymenolepid, *Hymenolepis carioca*, was collected from the anterior small intestine of over 40% of the birds from either state (Table 1), but exact numbers could not be ascertained because of the loss of scoleces. Studies already mentioned have reported *H. carioca* infrequently from wild turkeys.

Prevalence of *Ascaridia dissimilis* in turkeys from both states was similar, but turkeys from Tennessee had a significantly greater mean intensity than birds from Kentucky. This difference could be due to the introduction of domestic turkeys into Fort Campbell, where most of the heavily parasitized turkeys were located. Prestwood et al. (1975) reported *A. dissimilis* as the most common nematode encountered in their study, and Maxfield et al. (1963) recovered this nematode from 50%
Table 2. Major helminths of wild turkeys from 11 southeastern states.

<table>
<thead>
<tr>
<th></th>
<th>FL*</th>
<th>GA</th>
<th>TN</th>
<th>AL</th>
<th>VA</th>
<th>AR</th>
<th>MS</th>
<th>MD</th>
<th>KY</th>
<th>IL</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>267</td>
<td>9</td>
<td>93</td>
<td>104</td>
<td>38</td>
<td>144</td>
<td>156</td>
<td>9</td>
<td>24</td>
<td>68</td>
<td>21</td>
</tr>
<tr>
<td>Simpson’s index</td>
<td>0.10</td>
<td>0.12</td>
<td>0.15</td>
<td>0.17</td>
<td>0.17</td>
<td>0.19</td>
<td>0.19</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.33</td>
</tr>
</tbody>
</table>

% Hosts infected with:

- Astarta dissimilis 26% 67% 84% 57% 76% 89% 91% 44% 83% 48% 71%
- Heterakis gallinarum 13% 55% 42% 76% 95% 79% 95% 100% 17% 13% 48%
- Raillietina williamsi 4% 11% 74% 54% 37% 37% 55% 11% 41% 41% 0%
- Metroliasthes lucida 56% 33% 37% 26% 16% 53% 51% 0% 29% 28% 95%
- Raillietina ransomi 10% 44% 1% 17% 39% 6% 30% 22% 0% 0% 0%
- Hymenolepis caroica 1% 22% 35% 2% 31% 3% 1% 0% 46% 0% 0%
- Echinoparyphium recurvatum 9% 0% 3% 13% 0% 8% 0% 0% 0% 0% 0%
- Brachylatina virginianaum 1% 0% 1% 10% 5% 1% 0% 11% 0% 0% 0%
- Cotyurus flabelliformis 1% 0% 10% 3% 3% 3% 1% 0% 0% 0% 0%

* FL = Florida; GA = Georgia; TN = Tennessee; AL = Alabama; VA = Virginia; AR = Arkansas; MS = Mississippi; MD = Maryland; KY = Kentucky; IL = Illinois; LA = Louisiana.

Jackson et al. (1977) — Cotyurus sp. 3%.

of Kentucky birds and 87% of Tennessee birds.

Specimens of *Heterakis gallinarum* were recovered from turkeys in both states, but with a low prevalence when compared to other southeastern states. Prestwood et al. (1975) reported this parasite as one of the two most common nematodes parasitizing wild turkeys in the southeast. Hon et al. (1975) recovered *H. gallinarum* only from 5% of turkeys in their study, and found *Strongyloides* sp. as the dominant nematode. Maxfield et al. (1963) found only one out of four birds in Kentucky and 26 of 54 birds in Tennessee infected with *H. gallinarum*. This parasite is potentially important in wild turkey populations because it is the vector of *Histomonas meleagridis*, the etiologic agent of infectious enteritis in turkeys. There have been many instances of problems with this disease in southeastern wild turkeys (Stoddard, 1935; Craig and Barkalow, 1950; Bailey and Rinell, 1967; Kellogg and Reid, 1970).

One specimen of *Capillaria caudinflata* was recovered from the caecum of one bird from Tennessee and probably was an accidental parasite, but several other *Capillaria* species have been reported from wild turkeys (Maxfield et al., 1963; Prestwood, 1968; Hon et al., 1975; Prestwood et al., 1975).

Indices of similarity (Holmes and Podesta, 1968) were computed for helminth populations in wild turkeys from southeastern states and compared on a state-to-state basis. Data used included the work of Maxfield et al. (1963), Prestwood (1968), Hon et al. (1975) and Jackson et al. (1977), as well as data from our study. The study by Jackson et al. (1977), done in southern Illinois, was included because of the close proximity to our study areas. Data of Prestwood et al. (1975) were not included because prevalence by state was not given.

Figure 2 illustrates that helminth populations from wild turkeys in two separate groups of states were fairly similar: 1) Alabama, Arkansas, Mississippi, Tennessee, and Virginia; and 2) Illinois, Kentucky, and Tennessee. Florida was the least similar to all states except for Georgia. Rea-
sons for this similarity with Georgia and for the lack of similarity with other states could have been due to: 1) the unique host involved, *M. g. osceola* Scott; 2) the habitat; or 3) a combination of host and habitat. Williams (1981) indicates that the Florida subspecies and eastern subspecies intergrade across the southern and southeastern parts of Georgia, which could be responsible for the similarity of the two states.

Simpson’s diversity index was calculated for helminth populations of turkeys from each state (Table 2). Turkeys from Florida had the most diverse helminth fauna (0.10) followed closely by Georgia (0.12), yet with no real dominance by any parasite species. Turkeys from Louisiana showed the least diverse helminth population (0.33) which is a result of only five species recovered from 21 turkeys, and greatly dominated by *M. lucida* and *A. dissimitis* according to Maxfield et al. (1963). These data also indicated that the majority of wild turkeys in the southeast had quite diverse helminth populations, although the majority of species components of the total helminth faunas was similar.

ACKNOWLEDGMENTS

The authors thank John Mechler and the personnel of LBL for their helpful assistance with this project, and the Department of the Army for allowing us to collect samples from Fort Campbell. This study was supported in part by the College of Agriculture and Life Sciences, University of Wisconsin, Madison, Animal Health project WIS 2767.

LITERATURE CITED

INSTRUCTIONS TO AUTHORS . . .

Use of Scientific Names

The common and scientific name of a vertebrate host should be provided the first time the organism is mentioned in the manuscript. Thereafter, the common name may be used without the scientific name. The use of taxonomic authorities for hosts and etiologic agents such as parasites, viruses, bacteria and fungi is optional.

Citation of Unpublished Manuscripts

The citation of manuscripts which are “planned” or “in preparation” is not allowed. Such information should be cited as “unpublished data,” but only when absolutely necessary. The citation of manuscripts which have been reviewed and accepted for publication (i.e., in press) is allowed if verification is provided. This is done by submitting a photocopy of the card or letter from the editor of the journal in which the article has been accepted. Such verification should accompany the manuscript when it is submitted for publication in the Journal of Wildlife Diseases.

Deposition of Representative Tumor Material

We now require deposition of representative material for manuscripts dealing with tumors. Paraffin-embedded blocks or formalin-fixed tissues (not microslides) should be deposited in a major tumor registry or depository and accession numbers included in the manuscript. North American authors are urged to send such material to Dr. George Migaki, Registry of Comparative Pathology, Armed Forces Institute of Pathology, Washington, D.C. 20306. Deposition in private collections of the authors will not satisfy this requirement.