Natural Infection of Cryptosporidium muris (Apicomplexa: Cryptosporiidae) in Siberian Chipmunks

Authors: Hůrková, Lada, Hajdušek, Ondřej, and Modrý, David

Source: Journal of Wildlife Diseases, 39(2) : 441-444

Published By: Wildlife Disease Association

URL: https://doi.org/10.7589/0090-3558-39.2.441
Natural Infection of Cryptosporidium muris (Apicomplexa: Cryptosporidiidae) in Siberian Chipmunks

Lada Huřková, Ondřej Hajdusek, and David Modry

1 Department of Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého 1-3, 612 42 Brno, Czech Republic; 2 Institute of Parasitology, Academy of Sciences of the Czech Republic, Braníčská 31, 370 05 České Budějovice, Czech Republic; 3 Corresponding author (email: lhurkova@vfu.cz)

ABSTRACT: Coprologic examination of nine Siberian chipmunks (Eutamias sibiricus) imported from Southeast Asia revealed infection with Cryptosporidium sp. Experimental inoculation of BALB/c mice proved their susceptibility to the infection. Infected mice shed oocysts 14–35 days postinfection. Oocyst morphology was similar to that reported for C. muris in previous studies, oocysts were 8.1 (7.0–9.0) × 5.9 (5.0–6.5) μm. Clinical signs were absent in naturally infected chipmunks and experimental mice. Histologic examinations of mice revealed numerous developmental stages of C. muris in the glandular stomach. Analysis of partial small subunit rRNA gene sequences confirmed identity of these isolates as C. muris. Our results represent the first report of C. muris in members of the family Sciuridae.

Key words: BALB/c mice, Cryptosporidium muris, Eutamias sibiricus, Sciuridae, Siberian chipmunk, SSU rRNA gene.

The genus Cryptosporidium (Protista: Apicomplexa) includes several species of protozoan parasites of vertebrates. Cryptosporidium species have been isolated from fish, amphibians, reptiles, birds, and mammals including humans. These parasites most commonly attack the digestive tract, though other organ systems may be affected, especially in birds. Although most species predominantly infect the intestine, there is a distinct group of gastric cryptosporidia consisting of C. muris in rodents (Tyzzer, 1907, 1910), C. serpentis in reptiles (Levine, 1980), C. (muris) andersoni in ruminants (Lindsay et al., 2000), C. galli in birds (Parvažek and Lávicka, 1995, Chalmeurs et al., 1997, Torres et al., 2000) and a rock hyrax (Procavia capensis) (Anderson, 1991). All natural rodent hosts of C. muris belong to the families Muridae and Cricetidae. Thus, this report represents the first record of this pathogen in a member of the family Sciuridae.

Siberian chipmunks (Eutamias sibiricus) were obtained from a group imported to the Czech Republic from Southeast Asia by a pet-trader in November 1999. The animals were housed separately in standard plastic cages and were fed commercial rodent food, fruits, and water ad libitum. Fecal samples were collected daily for 2 wk for routine parasitologic examination. Individual samples were concentrated by centrifugation-flotation in modified Sheather’s sugar solution (specific gravity 1.30). Samples containing oocysts were mixed with 2.5% aqueous (w/v) potassium dichromate (K₂Cr₂O₇) solution and stored at 4°C. Cryptosporidian oocysts were examined and photographed using Nomarski interference-contrast microscopy using a Provis AX 70 microscope. Measurements were made using a calibrated ocular micrometer and are reported in micrometers as means of 30 oocysts followed by the ranges in parentheses. Oocysts used for transmission studies were concentrated by flotation and the potassium dichromate was removed by repeated centrifugation at 2,000G for 10 min. Six 4 wk old BALB/c mice (AnLab, Czech Republic) were inoculated by stomach tube with 10⁴ oocysts each. Animals were examined coprologically on day 7, postinfection (DPI) and then daily from DPI 10–42. A single mouse was euthanized and necropsied DPI 7, 14, 21, 28, 35, and 42. Gastric mucosal scrapings and fecal contents were examined for C. muris oocysts. Samples of liver, gall bladder, esophagus, stomach...
(glandular and non-glandular part), intestines (upper, middle, and lower portions), carciun, colon, kidney, and lungs were collected for histologic examination, fixed in 10% neutral formalin, embedded in paraffin, sectioned, and stained with haematoxylin and eosin.

Oocysts derived from experimental mice were used for DNA isolation. Total DNA was isolated according to Spano et al. (1997) from 3×10⁵ purified oocysts. For identification, DNA was amplified using primers CPB-DIAGF: 5′-AAGCTCGTAGTTGGAATTCTG-3′, and CPB-DIAGR: 5′-TAAGTGTTCTAAAGCTGTTAA-3′ (Johnson et al., 1995). Polymerase chain reaction (PCR) with annealing to the approximately 440 base pair (bp) small subunit (SSU) rRNA gene region was set under conditions according to Johnson et al. (1995), with initial denaturation at 94°C for 5 min, followed by 40 cycles consisting of 94°C for 30 sec, 55°C for 30 sec, and 72°C for 1 min. The program was concluded by final extension at 72°C for 10 min. Positive (C. parvum) and negative controls were done. The amplified fragment was cloned (TOPO TA Cloning, Invitrogen, Beckman Coulter, USA) and sequenced using a CEQ 2000 automatic sequencer (Beckman Coulter). The sequence has been deposited in the GeneBank™ database (GenBank, National Center for Biotechnology Information, www.ncbi.nlm.nih.gov/Genbank/, accession number AY029361). Nucleotide sequences obtained from GeneBank were aligned using ClustalW 1.8 (Thompson et al., 1997). Distance-based analysis was performed using PAUP 4.0b8 (Swofford, 1996) under a Kimura-two-parameter sequence evolution model of our isolate and closely related species. The amplified 432 bp internal SSU rRNA gene fragment corresponds to position 602–1,034 of the entire C. muris SSU rRNA gene (AF093498). The resulting 390 bp long fragment (without primers) was compared with sequences available in 2001.

Coprologic examination of Siberian chipmunks revealed fully sporulated C. muris-like oocysts in six animals, unsporulated eimerian oocysts in all animals, and eggs of unidentified nematodes (Strongylida, Oxyurida). Based on morphology and measurements, the eimerian oocysts were Eimeria asiatica (Levine and Ivens, 1965). Oocysts of Cryptosporidium were morphologically and morphometrically identical to those of C. muris. Oocysts were ellipsoidal, 8.1 (7.0–9.0)×5.9 (5.0–6.5) μm, with a shape index (length/width ratio) 1.36 (1.17–1.70). The oocyst wall was thinner than 1μm, composed of a single colorless layer, a microplie was absent but oocyst residuum was present, appearing as a cluster of round or less equal granules. Inoculated mice shed oocysts from DPI 14–35, with a peak on DPI 22 and 23. Histologic examination of experimentally infected mice revealed numerous developmental stages in glandular cells of the stomach. Detection of the stages in histologic sections corresponded with the presence of oocysts in feces. Observed histopathologic changes consist of moderate hypertrophy of the stomach wall with dilated gastric glands filled with numerous developmental stages of Cryptosporidium (Fig. 1). The glandular cells were flattened, atrophic, and degenerated but inflammatory cells were not seen. Clinical signs were not observed in any infected animal. The prepatent period...
of the infection (14 DPI) in experimentally infected mice corresponds roughly with that reported by previous authors. In contrast, patent periods observed by previous researchers varied greatly. Iseki et al. (1989) described oocyst excretion from DPI 6–80. Rheer et al. (1901, 1905) from DPI 6–75, and Taylor et al. (1999) from DPI 10–89. It is possible that observed variability in the prepatent and patent period depends both on the strain of Cryptosporidium and the experimental animal used. Results of histologic examination as well as the absence of clinical signs in chipmunks and experimentally infected mice correspond with previous reports (Iseki et al., 1989; Aydin and Özkul, 1996; Taylor et al., 1999).

The SSU rRNA sequence was identical with C. muris sequences AF093498 and AF248764. The most related species, C. andersoni (AF093496) and C. serpentis (AF083499) differ in 6 and 15 bp, respectively. Cryptosporidium parvum bovine isolate (AF108864) differs from our isolate by 48 bp, which correlates with the observations of Morgan et al. (2000). This DNA region is useful for identification of the species (Pieczarka et al., 1999), although sequencing of internal transcribed spacer region of the rRNA gene or other genes by 48 bp, which correlates with the observations of Morgan et al. (2000). This DNA region is useful for identification of the species (Pieczarka et al., 1999), although sequencing of internal transcribed spacer region of the rRNA gene or other genes could provide a more exact identification (Morgan et al., 2000).

Coccidians parasitizing members of the genus Eutamias are poorly studied. Recently, Matsui et al. (2000) reported C. parvum in these sciurids in China. The present study is the first record of C. muris not only in Eutamias, but also in members of the family Sciuridae. However, the possibility exists that the described infection was acquired during the transportation through various pet-trader facilities. Occurrence of C. muris in free-ranging populations of E. sibiricus needs further confirmation.

We thank M. Kadlecová and J. Kvícera ová for their help and care of experimental animals and R. Frýzélka for providing imported chipmunks. We are indebted also to Olympus C&S for their generous technical support. This study was supported by Grant FRVS 1260–2001, and, in part, by the Ministry of Education of Czech Republic CEZ: A106/98/F1-123100003 and J16/98: I10700001.

LITERATURE CITED


Short Communications 443


AND M. LAVIČKA. 1995. The first finding of a spontaneous gastric cryptosporidiosis infection in hamsters (Phodopus roborovskii Satunin, 1903). Veterinární Medicína (Prague) 40: 261-263. [In Czech.]


Received for publication 18 October 2002.