Black Rhinoceros (Diceros bicornis) Populations in Northwestern Namibia Are Apparently Not Infected with Piroplasms

Authors: Barend L. Penzhorn, Marinda C. Oosthuizen, Anna-Mari Bosman, J. Werner Kilian, and Ivan G. Horak

Source: Journal of Wildlife Diseases, 44(4) : 1032-1035

Published By: Wildlife Disease Association

URL: https://doi.org/10.7589/0090-3558-44.4.1032
Black Rhinoceroses (Diceros bicornis) Populations in Northwestern Namibia Are Apparently Not Infected with Piroplasms

Barend L. Penzhorn,¹,³ Marinda C. Oosthuizen,¹ Anna-Mari Bosman,¹ J. Werner Kilian,² and Ivan G. Horak¹

¹ Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa; ² Etosha Ecological Institute, Okaukeujo, Namibia; ³ Corresponding author (e-mail: banie.penzhorn@up.ac.za)

ABSTRACT: Babesiosis is a potentially fatal disease in black rhinoceroses. Blood specimens collected from black rhinoceroses from Etosha National Park (n=29) and Damaraland (n=22), Namibia, were subjected to polymerase chain reaction using Theileria and Babesia genus-specific primers and reverse line blot, with negative results. The animals were sparsely infested with ticks. In the absence of suitable prophylactic measures, naïve rhinoceroses would be at risk if translocated to Babesia-endemic areas.

Key words: Babesia, babesiosis, black rhinoceros, Diceros bicornis, Namibia, prophylaxis, Theileria.

Mortalities due to babesiosis were first reported in black or hook-lipped rhinoceroses (Diceros bicornis) during the 1960s in Kenya (Brocklesby, 1967; Mugera et al., 1967) and Tanzania (McCullough et al., 1969). Recently, Babesia bicornis was described from black rhinoceroses suffering from clinical babesiosis in both South Africa and Tanzania (Nijhof et al., 2003). In the same paper, Theileria bicornis, a piroplasm not known to cause disease, was also described from black rhinoceroses in South Africa.

Importantly, B. bicornis was found in five of 11 blood specimens collected from healthy black rhinoceroses in the Great Fish River Reserve Complex in Eastern Cape Province, South Africa (Nijhof et al., 2003). Seven of the animals were infected with Theileria bicornis, and one was infected with both B. bicornis and T. bicornis. This situation resembles endemic stability to babesiosis in cattle (Penzhorn, 2006). For the first few months, bovine calves are protected by passive immunity acquired from the dam’s colostrum. If the calves are infected between the ages of about 3–9 mo, they develop a solid immunity without showing any clinical signs. Immunity will wane if the animal is immunocompromised. This stable situation requires a high prevalence of infection in cattle, as well as a large enough tick population to ensure that calves become infected during the critical period. Natural resistance against parasites in wildlife also cannot be ruled out. For example, Theileria parva infections are usually nonpathogenic in African buffaloes (Syncerus caffer), irrespective of prior exposure (Lawrence et al., 2004). Clinical babesiosis may be triggered in latent carrier animals by stress factors; in most of the black rhinoceros cases mentioned previously, animals died soon after capture, or during periods of nutritional or pregnancy-related stress, or during extreme climatic conditions.

Because of strict and effective conservation measures, black rhinoceros populations in northwestern Namibia are growing steadily. Translocation of individuals from these populations to strengthen or establish populations elsewhere is an ongoing process. If Babesia-naïve animals are introduced into infected areas, however, they could become infected and develop clinical disease. It was therefore deemed prudent to investigate whether black rhinoceroses in these populations were subclinical carriers of piroplasms.

Specimens were collected from black rhinoceroses immobilized during routine management procedures during March and April 2006: 29 in western Etosha National Park and 22 in Damaraland. For security reasons, exact localities are not mentioned. The Etosha sample consisted of 10 males and 19 females; 13 of the animals were younger than 5 yr, whereas
the oldest, a female, was estimated to be 20 yr old. The Damaraland sample consisted of 13 males and nine females; nine of the animals were <5 yr old.

Blood specimens were blotted on filter paper and dried. All visible ticks were collected from each animal and placed into separate vials containing 70% ethanol. The specimens were stored at the Etosha Ecological Institute until taken to the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, for processing.

DNA was extracted from blood spots using the QIAamp DNA extraction kit (QIAGEN, Southern Cross Biotechnologies, Cape Town, South Africa) following the manufacturer’s instructions. Extracted DNA was eluted in 100 µl of elution buffer and stored at 4 C until further analysis.

For the reverse line blot (RLB) hybridization assay, a 460- to 520-base pair fragment of the V4 variable region of the 18S rRNA gene was amplified by polymerase chain reaction (PCR) using the Theileria and Babesia genus-specific primers RLB F2 (5'-GAC ACA GGG AGG TAG TGA CAA G-3') and biotin labelled RLB R2 (5'-Biotin-CTA AGA ATT TCA CCT CTG ACA GT-3') (Nijhof et al., 2003, 2005). The PCR products were analyzed using the RLB hybridization technique, first described by Gubbels et al. (1999). A plasmid control was used as an internal positive control (Matjila et al., 2005) to ensure that all Babesia species-specific probes were correctly bound to the RLB membrane, and functional. PCR grade water was included as negative control.

The RLB is a versatile technique for the simultaneous detection of tick-borne protozoan parasites. Gubbels et al. (1999) determined the sensitivity of the assay at 0.000001% parasitemia, enabling detection of the carrier state of most parasites. In this study, there was no detectable hybridization with the Babesia/Theileria genus-specific or Babesia or Theileria species-specific probes that were present on the blot. Because we had a fairly large sample, we conclude that there is a high probability that these black rhinoceros populations do not harbor these piroplasms.

In Etosha National Park, the median overall tick load was 21, with a range from seven to 46. All animals were infested with Hyalomma truncatum (median, 15; range, 3–40), whereas Hyalomma marginatum rufipes was less abundant (median, 5; range, 0–11). In Damaraland, all animals were infested with H. m. rufipes (median, 6; range, 3–17). A single male Rhizophalus longiceps was recovered from one rhinoceros in Damaraland, the first record from this host (Walker et al., 2000). The paucity of ticks found on black rhinoceroses in Namibia is in contrast to the large numbers and species diversity infesting this host in the more mesic eastern areas of South Africa, such as Eastern Cape and KwaZulu-Natal provinces, as well as in Zimbabwe (Knapp et al., 1997). In studies undertaken in South Africa, H. m. rufipes and H. truncatum populations peaked in the austral midsummer (January and February); however, with steep declines by March (Horak, 1982; Horak et al., 1991). Amblyomma hebraeum and Haemaphysalis silacea were recovered from a black rhinoceros from Addo Elephant National Park, Eastern Cape Province, where B. bicornis is known to occur (Knapp et al., 1997).

A similar situation may occur on black-faced impala (Aepyceros melampus pe-
tersi), which also occurs in arid northwestern Namibia: 26 animals captured for translocation were antibody negative for *Anaplasma* sp., a vector-borne rickettsial infection (Karesh et al., 1997). In contrast, all seven impalas sampled in the Machakos area of Kenya were seropositive for *Anaplasma* sp. (Ngeranwa et al., 2008).

Black rhinoceroses from Etosha National Park or Damaraland translocated to a *Babesia bicornis*-endemic area would be at risk to infection, and clinical signs may ensue. Under these circumstances, prophylactic administration of anti-*Babesia* compounds would be prudent. Diminazene aceturate has been administered to black rhinoceroses as prophylactic treatment against trypanosomosis at total doses varying from 1.5 to 10 g, with no apparent untoward effects (Mugera et al., 1967; McCullough et al., 1969). If the mean mass of an adult black rhinoceros is taken as approximately 850 kg, this translates into dosages from 1.8 mg/kg to 11.8 mg/kg. Subsequently, diminazene dosages of 2–3 mg/kg were injected by dart in the neck region of free-ranging black rhinoceroses, with apparent good effect where mortalities due to babesiosis had occurred (Fyumagwa et al., 2004).

This project was funded by a South African National Research Foundation grant (GUN 2069496) to B.L.P.

LITERATURE CITED

Received for publication 13 August 2007.