“MUCOCYTES” IN THE BRAIN OF A LLAMA: A CASE REPORT

Authors: TREVINIO, G. S., and ALDEN, C. L.

Source: Journal of Wildlife Diseases, 8(4) : 359-364

Published By: Wildlife Disease Association

URL: https://doi.org/10.7589/0090-3558-8.4.359
"MUCOCYTES" IN THE BRAIN OF A LLAMA: A CASE REPORT

G. S. TREVIÑO and C. L. ALDEN, Pathology Division, U.S. Army Medical Research and Nutrition Laboratory, Fitzsimons General Hospital, Denver, Colorado 80240, U.S.A.

Abstract: "Mucocytes" were found in the white tracts of the brain of a llama (Lama glama) which had clinical signs of central nervous derangement. A morphologic and histochemical comparison with other cerebral organic and inorganic deposits is given.

INTRODUCTION

Cerebral mucoid globules ("mucocytes", Buscaino plaques, metachromatic bodies) in man and other animals have been noted and described by numerous other authors.1-3,6-10 According to Smith,11 these structures were found and named "mucocytes" by Grynfeltt in 1923 in brains of persons with senile dementia, paralysis agitans, and Wilson's disease. Smith11 studied mucocytes, which she called metachromatic bodies, in the brain of a man with Huntington's chorea and in the brains of two horses with grass sickness. Innes and Hadlow12 also referred to the occurrence of mucocytes in brains of horses with grass sickness. These bodies are considered to be identical with the plaques of Buscaino13 who, as early as 1922, expressed the same difficulty prevailing today in identifying the precise etiology, pathogenesis, and chemical composition of these structures by naming their principal constituent "Substance X". Mucocytes appear in the white tracts of the brain as unilocular, sometimes lobulated, varisized, round or oval bodies that give the characteristic histochemical reactions of mucin.

The purpose of this report is to document the occurrence of these structures in the brain of a llama (Lama glama) and to compare them with other organic and inorganic deposits which may mimic mucoid globules.

CASE REPORT

A 102 kg male llama (L. glama), 1½ years old, was presented for necropsy at the Denver Zoo after the fatal termination of an acute disease in which signs of central nervous system derangement were noted.

On the first day of observed illness the animal walked into a wall, appeared blind, and occasionally stumbled and fell. Urinalysis indicated marked glycosuria, but inadvertent breakage of a blood sampling vial prevented determination of blood glucose. On the following day the animal was recumbent and hypothermic. Supportive therapy failed, and the animal died. Necropsy was performed 6 hours later.

RESULTS

Gross Findings

Despite a clinical impression that death may have resulted from enterotoxemia, intestinal contents were neither assayed for toxin nor submitted for microbiologic culture, since the time lapse between necropsy and death nullified the validity of such procedures.

There was a 2 cm ulcer on the dental aspect of the upper lip. Several abscesses were noted in the liver. A piece of metal, well encapsulated, lay under the serosa of the reticulum. The intestines contained greenish, fetid, fluid feces with some gas bubbles, but there were no visible hemorrhages in the gut walls. No other significant gross lesions were recognized in the musculoskeletal, respiratory, cardiovascular, genitourinary, endocrine, digestive, hematopoietic, nervous, or integumentary systems.
Representative samples of all organ systems were fixed in 10% neutral-buffered formalin, embedded in paraffin, cut at 6μ, and stained with hematoxylin and eosin (H&E).

The labial ulcer contained plant material, and coccoid and bacillary bacterial colonies. Numerous neutrophils infiltrated the surrounding dermis and submucosal tissues. Oval erythrocytes, characteristic of the camel, were noted in focal hemorrhages. However, the lesion was well localized to a small area and was not considered contributory to the demise of the animal.

The liver had irregularly distributed abscesses in both capsular and parenchymal locations. Broad bands of dense collagenous tissue branched inward from the thickened capsule and divided the hepatic lobules into units of disparate size. There was engorgement of all vascular channels, and a thin fibrous wall was present around many central veins. In some lobules central veins were difficult to discern. Abundant fibrous connective tissue was present in most portal areas, in which hyperplasia of hiliary channels was noted.

Several instances of infraglomerular epithelial reflux were observed in the kidney. In many glomeruli there were proteinaceous globules in Bowman's space. No evidence of inflammation was noted in the kidney, but mild tubular nephrosis was present.

The area surrounding the metallic foreign body under the serosa of the reticulum was comprised principally of mature fibrous tissue and did not present any other salient feature.

Distributed in the white matter generally, and especially in the cerebrum, cerebellum, corpus callosum, and medulla, were numerous mucoid aggregates of variable size but averaging around 50 microns in diameter (Fig. 1). These structures provoked no inflammatory changes and were mainly extracellular, lying in the tissue and surrounded by fibers of the neuropil. The bodies appeared amorphous at scanning and low magnification. With H&E they were homogeneously basophilic, but under high magnification they appeared to be composed of tiny globules. Under polarized light the masses were birefringent. Rarely they were intracellular and contained a pyknotic nucleus, but most were large and were not membrane-bound, delineated only by compressed fibers of the neuropil. Occasionally fibrillar strands would traverse the space occupied by the mucoid globules to give the masses a lobulated appearance (Fig. 2). The masses reacted positively to periodic acid-Schiff and alcian blue stains (pH 2.5), and proved strongly argentophilic (Fig. 3) with Gomori's methenamine silver. With Meyer's mucicarmine they stained light purple. They did not react to acid-fast, calcium, iron, or nucleic acid staining procedures. Often numerous empty cystic spaces were observed, which gave the impression that some had become dislodged and had dropped out during processing of the tissue. A clear, wide perineuronal zone was present around Purkinje cells in the cerebellum. Rounding and hyperchromatism of neurons in the cerebrum and cerebellum were frequently seen. Aside from

FIGURE 1. Multiple basophilic structures in white fiber tracts of the midbrain. H&E. 150X.
extensive sieve-like, spongy areas in the white matter, no other salient encephalopathic lesions were observed.

DISCUSSION

These masses are compatible with the mucocytes of Grynfeltt, the plaques of Buscaino, and the metachromatic bodies of Smith.

Opinions regarding the origin and pathologic significance of mucocytes are discordant. Some authors regard the masses as artifacts. Ferraro, as early as 1928, pointed out that the structures could best be seen by using alcohol to fix the tissue. More recent work suggests that alcohol fixatives enhance the formation of mucocytes. Grinker and Stevens expressed the concept, and cited the work of others who concurred, that mucocytes were derived from degenerating oligodendroglia. These same authors were emphatic in their opinion that mucocytes were not found in normal brains, that the structures were not artifacts, and that "sensitizing" alcohol fixatives were unnecessary to bring out their mucinous constituents. They believed that oligodendroglia cells underwent a mucoid degeneration, swelled, and ruptured, liberating into the surrounding tissues globular aggregates that coalesced to form larger masses. They presented "final proof" that degenerating oligodendroglia alone gave rise to mucocytes by demonstrating mucoid material in oligodendroglialomas.

Adornato and Lampert considered Buscaino bodies to be incidental findings in normal and abnormal brains and believed that they arose from the artifactual disintegration of myelin. Cancilla and Barlow described procedural electron microscopic techniques that resulted in artifactual formation of Buscaino bodies. Blackwood et al. indicated that the chemical nature of mucocytes may be a glycolipid resembling cerebrosides, but they did not identify precisely the condition under which the Buscaino bodies are formed.

We are not qualified to explain the precise cellular phenomena that lead to the formation of mucocytes, but their identification with Huntington's chorea,
TABLE 1. Characteristics of some organic and inorganic deposits in the brains of animals.

<table>
<thead>
<tr>
<th>DEPOSIT</th>
<th>PHYSICAL PROPERTIES</th>
<th>LOCATION</th>
<th>TRANSPARENCY</th>
<th>H & E</th>
<th>PAS</th>
<th>ALCCIAN BLUE</th>
<th>CALCIUM</th>
<th>SILVER</th>
<th>SUGGESTED SIGNIFICANCE</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpora amyloidea</td>
<td>15-50µ spheroidal</td>
<td>extracellularly in:</td>
<td>neg.</td>
<td>basophil</td>
<td>pos.</td>
<td>pos.</td>
<td>neg.</td>
<td>neg.</td>
<td>an aging change</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a) subpia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) subependyma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corpora arenacea</td>
<td>variable lobulated</td>
<td>extracellularly in:</td>
<td>neg.</td>
<td>basophil</td>
<td>pos.</td>
<td>pos.</td>
<td>pos.</td>
<td>neg.</td>
<td>manifestation of involution</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a) olfactory loha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) cerellum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) midbrain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d) pineal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrocyes</td>
<td>10-150µ spheroidal, sometimes lobulated</td>
<td>(1) within oligoden-</td>
<td>pos.</td>
<td>basophil</td>
<td>pos.</td>
<td>pos.</td>
<td>neg.</td>
<td>neg.</td>
<td>(1) autolytic change</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>droplia throughout white matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) gross sickness in horses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) or extracellularly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3) Regenerative change</td>
<td></td>
</tr>
<tr>
<td>Argentophil plaques</td>
<td>5-100µ irregular</td>
<td>extracellularly in:</td>
<td>neg. unless</td>
<td></td>
<td></td>
<td>occasionally the center of plaque contains amyloid</td>
<td>neg.</td>
<td>pos.</td>
<td>a senile change</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a) outer layer of cerebral cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Ammon’s Horn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Purkinje cell layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dystrophic axons</td>
<td>5-10µ ovoid</td>
<td>medulla oblongata and other areas in white matter</td>
<td>neg.</td>
<td>eosinophilic</td>
<td>pos.</td>
<td>neg.</td>
<td>-</td>
<td>neg.</td>
<td>pos.</td>
<td>(1) a degenerating axie cylinder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Vit E def</td>
<td></td>
</tr>
<tr>
<td>Extracellular global vacuoles</td>
<td>variable round</td>
<td>cross section of white fiber tracts</td>
<td>neg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1) found in normal brains</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) numerous in demyelinating process</td>
<td></td>
</tr>
</tbody>
</table>
senile dementia, and Wilson's disease of man10 and with grass sickness of horses10 indicates that mucocytes are not always artifacts. It seems that the sequence of events that ultimately lead to the formation of mucocytes may be triggered by a variety of factors leading to edema, myelinolysis, and injury to oligodendroglial cells.

Because the material in the globular masses appears mainly extracellularly, we do not regard "mucocyte" as a proper term to describe the aggregates. "Mucoid degeneration" does not adequately describe their unilocular occurrence. Where-as the term "mucoid globules" would circumvent the problem of attempting to coin a term that describes both their intra- as well as extracellular location, we feel that their older name, mucocytes, is too firmly entrenched in the literature to permit a change.

Special stains can be used to good advantage to differentiate mucocytes from other organic or inorganic structures occurring in brains of animals with or without clinical evidence of central nervous involvement. Table 1 presents a comparison of morphologic and histochemical properties of some common deposits with those characteristic of mucocytes. Note that, of those listed, mucocytes are the only ones that are birefringent.

LITERATURE CITED

2. BIELSCHOWSKY, M. 1927. Cited by Grinker and Stevens and by Smith.12
4. BUSCAINO, V. M. 1922. Cited by Smith.17

16. SALUSTRI, E. 1927. Cited by Smith.17

Received for publication May 8, 1972