Antibodies to Brucella spp. in Pacific Bottlenose Dolphins from the Solomon Islands

Authors: Masato Tachibana, Kenta Watanabe, Suk Kim, Yoshitaka Omata, Koichi Murata, et. al.

Source: Journal of Wildlife Diseases, 42(2) : 412-414

Published By: Wildlife Disease Association

URL: https://doi.org/10.7589/0090-3558-42.2.412

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use.

Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.
Antibodies to *Brucella* spp. in Pacific Bottlenose Dolphins from the Solomon Islands

Masato Tachibana,1 Kenta Watanabe,1 Suk Kim,1 Yoshitaka Omata,2 Koichi Murata,3 Ted Hammond,4 and Masahisa Watarai1,5 1 Department of Applied Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; 2 Department of Basic Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; 3 Department of Wildlife Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan; 4 Hammond Consultants Inc., 1881 Rouge River Circle, Ventura, California 93004, USA; 5 Corresponding author (email: watarai@obihiro.ac.jp)

ABSTRACT: *Brucella* spp. have been recently isolated from a variety of marine mammals. Serum samples from 58 Pacific bottlenose dolphins (*Tursiops aduncus*) from the Solomon Islands were tested for antibodies to *Brucella* spp. by the tube agglutination test (TAT), enzymed-linked immunosorbent assay (ELISA), and immunoblotting. Anti-*Brucella* spp. antibodies were detected by TAT and ELISA in 31 and 40 of 58 samples, respectively. These results suggest that Pacific bottlenose dolphins from the Solomon Islands are infected with *Brucella* spp. or a *Brucella*-like organism.

Key words: Bottlenose dolphin, *Brucella*, Solomon Islands.

Brucellosis is a serious debilitating disease in humans and an important cause of abortion and sterility in domestic animals. *Brucella* spp. are facultative, gram-negative, intracellular bacteria and the etiologic agent of brucellosis, a widely distributed zoonosis (Ko and Splitter, 2003). The establishment of chronic infection depends on the ability of brucellae to survive within phagocytes (Harmon et al., 1988). The host range for *Brucella* spp. has recently expanded to include marine mammals, and anti-*Brucella* antibodies have been detected in cetaceans and pinnipeds around Europe and North and South America as well as the Arctic Sea (Nielsen et al., 1996; Ross et al., 1996; Garner et al., 1997; Jepson et al., 1997; Tryland et al., 1999; Forbes et al., 2000; Retamal et al., 2000; Van Bressem et al., 2001; Ohishi et al., 2003).

In this study we tested Pacific bottlenose dolphins (*Tursiops aduncus*) from the Solomon Islands for antibodies to *Brucella* spp. Serum samples were obtained from 58 Pacific bottlenose dolphins captured in 2003 at Gavutu Island, Solomon Islands (9°7′S, 160°10.6′E). Blood samples were taken with the approval of the Solomon Islands government and with Animal Care and Use approval in the Solomon Islands (Omata et al., 2005). All dolphins were captured with nets as described (Geraci and Lounsbury, 1993); all animals remained alive and were later released or used in a dolphin swim program.

The tube agglutination test (TAT) was used for the detection of anti-*Brucella* antibodies. An antibody titer of ≥40 is regarded as positive (100 international units/ml) in testing of domestic animals. Serum samples were also tested by ELISA and immunoblotting as described previously (Erdenebaatar et al., 2003). For ELISA, the positive threshold value was set as the lowest absorbance value (OD492=0.4) observed for serum samples testing positive by TAT at dilutions of 1:40. An absorbance of higher than this at a dilution ratio 1:40 was regarded as positive, and all samples were diluted to endpoint. Antibodies to *Brucella* were detected by TAT in 31 of 58 serum samples and by ELISA in 40 of 58 serum samples that tested positive. ELISA absorbance values for 18 of the TAT-negative samples ranged between 0.05 and 0.40 for all dilutions. In the remaining nine TAT-negative samples, absorbance ≥0.4 were observed. We believe that this relates to increased sensitivity associated with the ELISA test. Antibody titers as determined by ELISA for the 40 antibody positive samples were distributed as fol-
reactions between Brucella species and species in other genera, however, have been reported, including cross-reactions with Pasteurella spp., Salmonella enterica serotype Urbana or Pullorum, Francisella tularensis, and Escherichia coli O157 (Corbel, 1985). Although our results strongly suggest previous infection with Brucella spp., the possibility of cross-reactions cannot be totally discounted.

We thank Dr. Alexander Cox for critical reading of the manuscript. This work was supported, in part, by grants from Scientific Research (16017207 and 16790250), the Japan Society for the Promotion of Science, and the Inamori Foundation.

LITERATURE CITED

Received for publication 20 May 2005.