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Abstract

Modern high-throughput molecular and analytical tools offer exciting opportunities to gain a
mechanistic understanding of unique traits of weeds. During the past decade, tremendous
progress has been made within the weed science discipline using genomic techniques to gain
deeper insights into weedy traits such as invasiveness, hybridization, and herbicide resistance.
Though the adoption of newer “omics” techniques such as proteomics, metabolomics, and
physionomics has been slow, applications of these omics platforms to study plants, especially
agriculturally important crops and weeds, have been increasing over the years. In weed
science, these platforms are now used more frequently to understand mechanisms of
herbicide resistance, weed resistance evolution, and crop–weed interactions. Use of these
techniques could help weed scientists to further reduce the knowledge gaps in understanding
weedy traits. Although these techniques can provide robust insights about the molecular
functioning of plants, employing a single omics platform can rarely elucidate the gene-level
regulation and the associated real-time expression of weedy traits due to the complex and
overlapping nature of biological interactions. Therefore, it is desirable to integrate the
different omics technologies to give a better understanding of molecular functioning of
biological systems. This multidimensional integrated approach can therefore offer new
avenues for better understanding of questions of interest to weed scientists. This review offers
a retrospective and prospective examination of omics platforms employed to investigate weed
physiology and novel approaches and new technologies that can provide holistic and
knowledge-based weed management strategies for future.

Introduction

The identities of all organisms are embedded in their genes, which are often influenced by
developmental and environmental cues. Sequential and temporal decoding of these genes
confers physiological distinctiveness to each individual (Anderson 2008). In the last two
decades, the term “omics” has been suffixed with several fields of study in biology (Brunetti
et al. 2018). Recent advances in high-throughput functional omics technologies (Table 1) have
facilitated an understanding of the various molecular–environmental interactions that regulate
biological systems (Kitano 2002). The use of omics techniques to study various biological
aspects would provide greater opportunities to dissect the molecular and physiological
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mechanisms in developing resilient phenotypes. Among the var-
ious omics platforms, functional genomics has seen rapid pro-
gress, resulting in a growing number of sequenced plant genomes.
This has facilitated the development of plants selected for specific
agronomic traits and biological processes (Kantar et al. 2017;
Nelson et al. 2018). The traditional giants of omics platforms
encompass genomics, transcriptomics, and proteomics (Palsson
2002; Rochfort 2005). While genomics aims to understand how
the genome functions, transcriptomics and proteomics perform
systematic qualitative and quantitative analysis of the tran-
scriptome and proteome content, respectively, in a tissue, cell, or
subcellular compartment. Other recent omics techniques such as
metabolomics, phenomics, and lipidomics complement the

traditional techniques to depict a precise picture of the entire
cellular process.

Omics approaches in weeds science have been gaining
momentum over the past decade. As with other domains, the
number of studies using genomic approaches to investigate weed
biology and physiology has increased over the years (Basu et al.
2004; Chao et al. 2005; Guo et al. 2017; He et al. 2017; Kreiner
et al. 2018; Molin et al. 2017; Olsen et al. 2007; Tranel and
Horvath 2009). DNA-based molecular studies using simple
sequence repeats (SSRs), microsatellites, amplified fragment
length polymorphisms (AFLPs), and inter simple sequence
repeats (ISSRs) have provided tremendous opportunities to study
weedy characteristics such as resilience, dormancy, and

Table 1. Examples of applications of omics approaches in plant systems biology research.

Biological entity
Systems biology
approach Function Major drawbacks Selected references

Nucleic acids
(DNA and RNA)

Genomics Quantitates the sequence and structures
of all genes

Complexity due to repeated
sequences, polyploidy, mutations,
no direct access to expression level

Basu et al. 2004; Bevan and
Walsh 2005; Kreiner
et al. 2018

Epigenomics Studies epigenetic modifications of
genome

Kohler and Springer 2017;
Zhang 2008

Metagenomics Studies complete microbial communities
directly in their natural environments

Faure et al. 2011;
Roossinck 2015

Transcriptomics Quantitates messenger RNA (mRNA)
transcript levels

Posttranscriptional modifications,
false positives, prone to rapid
degradation

Giacomini et al. 2018

Proteins Proteomics Quantifies protein abundance Time-consuming, lack of reference
databases, low expression level of
regulator proteins

Jorrín-Novo et al. 2009; Yang
et al. 2017

Secretomics Studies proteins secreted into the
extracellular space (constitutive or
induced)

Tanveer et al. 2014; Yadav
et al. 2015a; Agrawal et al.
2010

Phosphoproteomics Characterizes proteins containing
phosphates

Perazzolli et al. 2016; Nuhse
et al. 2004; van Bentem
and Hirt 2007

Glycoproteomics Characterizes proteins containing
carbohydrates

Kumar et al. 2013; Thaysen-
Andersen and Packer
2014

Low-molecular-
weight
molecules
(metabolites)

Metabolomics Measures the abundance of small cellular
metabolites

Chemically complex, huge diversity,
lack of reference databases,
dynamic and fleetingly stable

De Vos et al. 2007; Miyagi
et al. 2010

Lipidomics Systems-level analysis of lipids and factors
that interact with lipids

Narayanan et al. 2016; Welti
et al. 2007

Glycomics Study of entire complement of sugars and
sugar associated macromolecules

Pedersen et al. 2012; Yadav
et al. 2015b

Phytochemomics Studies the structures and mechanism of
action of the phytochemicals and natural
products

Amigo-Benavent et al. 2014;
del Castillo et al. 2013

Cellular
components and
regulators

Interactomics Resolves the whole set of molecular
interactions

Complex, difficult to reproduce,
very sensitive to environmental
fluctuations

Braun et al. 2013; Morsy
et al. 2008

Fluxomics Studies the molecular and cellular changes
of biochemical traits within a cell over
time

Heinzle et al. 2007; Niittylae
et al. 2009

Phenomics Measures the expression of the genomic and
biochemical traits in response to a given
environment

Finkel 2009; Großkinsky
et al. 2015

Physionomics Describes the physiological profile of the
organism

Grossmann et al. 2012a;
Szechyńska-Hebda et al.
2015
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invasiveness, as well as weed genetic diversity and hybridization
among related weed species (Corbett and Tardif 2006; Horvath
2010). Excellent reviews on weed genomics and DNA-based
herbicide-resistance techniques have been produced by Basu et al.
(2004), Corbett and Tardif (2006), Stewart (2009), and Tranel and
Horvath (2009). Recently, the weed science community has
initiated the International Weed Genomics Consortium to facil-
itate genomics for weed science (Ravet et al. 2018). However,
applications of other omics for studying agronomically important
weeds are at a nascent stage, as seen by the limited number of
published studies (Table 2).

In addition to genomics, other omics techniques have also
been used to investigate areas critical to weed science, including
stress response, weediness/invasiveness, herbicide resistance, and
genetic diversity (Délye 2013; Grossmann et al 2010; Keith et al
2017; Stewart 2009; Stewart et al. 2009, 2010; Zhang and Reichers
2008). However, due to the complexity of the molecular and
environmental interactions, no single omics analysis can inde-
pendently explain the intricacies of fundamental physiology
(Fukushima et al. 2009; Hirai et al. 2004; Liberman et al. 2012).
Hence, an integrated systems biology approach is needed to
provide precise information about the molecular, biochemical,
and physiological status of the target organism (Figure 1). An
integrated systems biology approach can help not only in anno-
tating unknown genes, but also in identifying their regulatory
networks and the metabolic pathways they would influence

(Pérez-Alonso et al. 2018). This would aid in understanding the
genotype–phenotype relationship and consequently help to
improve the existing weed management strategies in agricultural
fields. Although there are several omics platforms, the present
review will strive to highlight omics approaches used to study
physiological aspects of agriculturally important weeds that have
not been previously touched upon, such as elucidating physiology
of bud dormancy, deciphering the mechanisms of herbicide
resistance, and identifying potential herbicidal phytochemicals
using omics approaches.

Transcriptomics to Investigate Herbicide Resistance

Compared with the availability of genome sequence information
and genetic resources for model plants such as mouse-ear cress
[Arabidopsis thaliana (L.) Heynh.] (Arabidopsis Genome Initia-
tive 2000), barrelclover (Medicago truncatula Gaertn.) (Bell et al.
2001), and purple false brome [Brachypodium distachyon (L.)
P. Beauv.] (Vogel et al. 2010) and the genome sequences of several
other dicot and monocot crops that are either sequenced or soon
will be, to date only four draft genome assemblies have been
completed for agronomic weed species (Table 3). Next-generation
sequencing (NGS) techniques such as RNA-Seq have enabled
accurate and powerful transcriptome analysis approaches for
non-model species such as weeds, without requiring a fully
assembled genome. A review of 15 RNA-Seq studies conducted in

Table 2. Examples of omics papers on phytotoxins, including herbicides.

Approaches Phytotoxin/herbicide References

Transcriptomics Glyphosate Zhu et al. 2008; Dogramaci et al. 2014, 2015, 2016

Transcriptomics Cinidon-ethyl, tribenuron-methyl, and 2,4-D Pasquer et al. 2006

Transcriptomics 2,4-D Raghavan et al. 2006

Transcriptomics Flufenacet Lechelt-Kunze et al. 2003

Transcriptomics Atrazine and bentazon Zhu et al. 2009

Transcriptomics L-DOPA Golisz et al. 2011

Transcriptomics Fagamine and phenolics Golisz et al. 2008

Transcriptomics Diclofop-methyl Gaines et al. 2014

Transcriptomics Pyroxsulam Duhoux et al. 2015

Transcriptomics Juglone Chi et al. 2011

Transcriptomics Benzoxazolin-2(3H)-one Baerson et al. 2005

Transcriptomics Imazapyr, primisulfuron-methyl, glyphosate,
cloransulam-methyl, and sulfometuron-methyl

Das et al. 2010

Transcriptomics Imazapyr Manabe et al. 2007

Proteomics Cantharidin Bajsa et al. 2015

Proteomics Diuon, paraquat, and norflurazon Nestler et al. 2012

Proteomics Paraquat and glyphosate Ahsan et al. 2008

Proteomics Dicamba and clopyralid Kelley et al. 2006

Proteomics Butachlor Kumari et al. 2009

Proteomics Amiprophos-methyl Wang et al. 2011

Metabolomics Eremophilanes Cantrell et al. 2007

Metabolomics Ascaulitoxin Duke et al. 2011

Metabolomics Glyphosate Maroli et al. 2015, 2017

Metabolomics Saflufenacil Grossmann et al. 2010

Metabolomics Cinmethylin Grossmann et al. 2012b
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weeds to find candidate genes for herbicide resistance and abiotic
stress tolerance identified that increased replicate number and
controlling genetic background were important factors to increase
detection power and minimize the false-discovery rate (Giacomini
et al. 2018). The first weed species transcriptomes released were
horseweed (Erigeron canadensis L.) (Peng et al. 2010) and
waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer]
(Riggins et al. 2010), with at least 22 weed transcriptomes
sequenced and assembled to date, including weeds of agronomic
crops, turfgrass, and invasive weeds (Gaines et al. 2017; McElroy
2018). Compared with transcriptomics methods such as micro-
array, which provide relative quantification, NGS-based tran-
scriptome approaches produce absolute quantification of

transcript expression as well as the sequence of all transcripts in a
given sample. All expressed genes can be studied for changes in
regulation (for example, upregulation of cytochrome P450s to
increase herbicide metabolism), and several genes can be exam-
ined for candidate nonsynonymous mutations that could confer
resistance. The identification of transcripts with differential reg-
ulation and/or mutations generates a hypothesis to be tested with
subsequent validation. For discussion about transcriptomics in
weeds before the introduction of NGS, the reader is referred to
reviews by Lee and Tranel (2008) and Horvath (2010).

RNA-Seq measures the transcriptome abundance at a given
time from a genome. The data can be used for various analyses,
such as identification of differentially expressed transcripts

Figure 1. Classical systems biology concept and omics organization. The central dogma of molecular biology covers the progressive functionalization of the genotype to the
phenotype. The omics techniques track and capture various molecular entities across the biological system.

Table 3. Draft genome assemblies of agronomic weed species sequenced using next-generation sequencing technologies.

Agronomic weed Plant line
Estimated
genome size

Sequence
coverage

Genome
coverage Sequencing platforms References

Wild radish
(Raphanus
raphanistrum L.)

5th generation inbred 515 Mb NA 49.3% Illumina® Genome Analyzer II Moghe et al.
2014

Horseweed
(Erigeron canadensis L.)

Tennessee glyphosate-
resistant biotype (TN-R)

335 Mb 350x 92.3% Roche 454 GS-FLX, Illumina®

HiSeq 2000, and
PacBio® RS

Peng et al.
2014

Field pennycress
(Thlaspi arvense L.)

MN106 539 Mb 87x 76.5% Illumina® HiSeq 2000, Illumina®

MiSeq, and PacBio®

SMRT

Dorn et al.
2015

Barnyardgrass
[Echinochloa crus-
galli (L.) P. Beauv.]

STB08 1.41Gb 171x 90.7% Illumina® HiSeq 2000
and PacBio® RS II

Guo et al.
2017
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between treatments, analysis of sequence variants, or character-
ization of alternative splicing. Due to its digital nature, RNA-Seq
has a linear-detection dynamic range over five orders of magni-
tude, enabling quantification of even transcripts with very low
expression. A typical RNA-Seq experiment consists of the steps
outlined in Figure 2. Numerous downstream transcriptome data
analyses can also be used to help interpret data, such as identi-
fication of enriched pathways with differentially expressed tran-
scripts. RNA-Seq is also advantageous for studying complex gene
families, such as those involved in enhanced metabolic resistance
(for example, cytochrome P450s, glutathione-S-transferases, glu-
cosyl transferases, ABC transporters). The results of the RNA-Seq
experiments alone are not sufficient to prove causation for a
candidate mechanism. RNA-Seq should be considered an
experimental approach to generate robust hypotheses for candi-
date gene function. Subsequent forward genetics validation
experiments are essential to prove function, such as testing

cosegregation of a molecular marker (increased gene expression
and/or a mutation) with resistance, testing for the presence of the
molecular marker in unrelated populations of the same species,
and preferably expression or knockout in a heterologous system
such as Arabidopsis or yeast (for example, Cummins et al. 2013;
LeClere et al. 2018). Differential expression can then be measured
on validation samples using qRT-PCR on cDNA.

In weed science, several transcriptomic studies have focused
on herbicide-resistance traits, including target-site resistance
mechanisms (Riggins et al. 2010; Wiersma et al. 2015; Yang et al.
2013) and non–target site resistance (NTSR) mechanisms (An
et al. 2014; Gaines et al. 2014; Gardin et al. 2015; Leslie and
Baucom 2014; Peng et al. 2010; Riggins et al. 2010; Yang et al.
2013). Studying the entire transcriptome is especially useful for
NTSR mechanisms, because NTSR generally involves multiple
genes and gene families (Délye 2013). Examples of RNA-Seq
studies on NTSR in grasses include acetyl-CoA carboxylase
(ACCase)-inhibitor resistance in rigid ryegrass (Lolium rigidum
Gaudin) (Gaines et al. 2014) and Brachypodium hybridum
Catalán, Joch. Müll., L.A. Mur & T. Langdon (Matzrafi et al.
2017) and acetolactate synthase (ALS)-inhibitor resistance in L.
rigidum (Duhoux et al. 2015) and blackgrass (Alopecurus myo-
suroides Huds.) (Gardin et al. 2015). Both NTSR and target-site
mechanisms were evaluated in barnyardgrass [Echinochloa crus-
galli (L.) P. Beauv.], using NGS to identify candidate genes
involved in ALS-inhibitor and synthetic auxin (quinclorac)
resistance (Yang et al. 2013). Responses to glyphosate and gly-
phosate resistance have also been studied using RNA-Seq in tall
morningglory [Ipomoea purpurea (L.) Roth] (Leslie and Baucom
2014) and kochia [Bassia scoparia (L.) A. J. Scott] (Wiersma et al.
2015). Employing differential expression (DE) analysis using
RNA-Seq, the study by Leslie and Baucom (2014) found a range
of candidate genes that may explain differences in glyphosate
response between populations, including metabolism, signaling,
and defense-related genes with differential expression. Similarly,
in glyphosate-resistant B. scoparia, RNA-Seq was used to confirm
overexpression of 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS) due to gene amplification, to determine that no other
genes in the shikimate pathway besides EPSPS were differentially
expressed between resistant and susceptible populations, and to
establish that no candidate resistance-conferring mutations were
present in the EPSPS sequence from the resistant population
(Wiersma et al. 2015). This mutation analysis is referred to as
deep sequencing, and it is used to identify mutations that may be
expressed at a low level and not detected by traditional sequen-
cing approaches. Recently, a mutation for dicamba resistance in
B. scoparia was identified using transcriptomics and subsequently
functionally validated using forward genetics and expression in
heterologous systems (LeClere et al. 2018)

Transcriptomics to Investigate Bud Dormancy and
Vegetative Growth

Early studies on bud dormancy employed traditional or accessible
molecular approaches (Anderson et al. 2005; Horvath and
Anderson 2002; Horvath et al. 2002). However, accessibility of the
genome sequence for A. thaliana (Arabidopsis Genome Initiative
2000) and availability and adoption of cDNA microarray tech-
nology for plant genes (Schena et al. 1995) allowed researchers to
examine transcriptome profiles for a variety of tissues and
treatments and enabled the development of cross-speciesFigure 2. Workflow of transcript analyses by RNA-Seq and qRT-PCR.
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adoption of Arabidopsis platforms (Horvath et al. 2003). Omics
approaches were employed for elucidating signals, pathways, and
mechanisms governing dormancy in underground adventitious
buds (UABs) of leafy spurge (Euphorbia esula L.) (Anderson and
Horvath 2001; Anderson et al. 2004, 2007; Foley et al. 2013;
Horvath et al. 2006, 2008). Euphorbia esula is a noxious and
perennial rangeland weed that can reproduce and spread vege-
tatively from an abundance of UABs (Anderson et al. 2005). As
dormancy in these buds often contributes to escape from control
measures, it is essential to understand the seasonal dormancy
cycles (paradormancy, endodormancy, and ecodormancy) for
UABs. Horvath et al. (2006, 2008) studied the transcriptome of
E. esula UABs during transitions in these well-defined phases of
dormancy under greenhouse and field conditions using high-
density microarrays constructed from an E. esula expressed
sequence tag database (Anderson et al. 2007). This work helped to
identify transcripts encoded by a gene with similarity to
DORMANCY ASSOCIATED MADS-BOX, which has since been
strongly implicated in dormancy processes of several perennial
plant systems (Horvath 2015). Meta-analysis of microarray-based
transcriptome data also identified transcripts similar to Arabi-
dopsis COP1, HY5, MAF3-like, RD22, and RVE1 as potential
molecular markers for endodormancy in E. esula UABs
(Doğramacı et al. 2015).

Studies have also been done to determine the impact of growth
regulators on dormancy by examining changes in transcriptome
profiles of E. esula UABs in response to foliar glyphosate treat-
ment (Doğramacı et al. 2014, 2015, 2016). Although glyphosate is
widely used as a broad-spectrum herbicide (Duke and Powles
2008), it is also known to have hormetic activity (Belz and Duke
2014; Velini et al. 2008). When applied at sublethal concentra-
tions, it can cause tillering in some plant species due to axillary
and root-bud growth. Maxwell et al. (1987) reported that
glyphosate application at higher rates (~2 to 6 kg ae ha− 1) to
E. esula under field conditions caused an increase in the number
of stems per square meter as a result of shoot growth from UABs,
a phenomenon referred to as “witches’ brooming.” Discovery or
development of a growth regulator that could induce or inhibit
shoot growth from UABs would be a significant step toward long-
term control of other perennial weeds such as Canada thistle
[Cirsium arvense (L.) Scop.], field bindweed (Convolvulus arvensis
L.), and hedge bindweed [Calystegia sepium (L.) R. Br.]. Initial
studies conducted using qRT-PCR, indicated that glyphosate had
the most significant impact on abundance of ENT-COPALYL
DIPHOSPHATE SYNTHETASE 1, which is involved in a com-
mitted step for gibberellic acid (GA) biosynthesis, and auxin
transporters, including PINs, PIN-LIKES, and ABC TRANS-
PORTERS. Foliar glyphosate treatment also reduced the abun-
dance of transcripts involved in cell cycle processes, which was
consistent with altered growth patterns (Doğramacı et al. 2014).

RNA-Seq identified nearly 13,000 differentially expressed
transcripts in UABs in response to foliar glyphosate treatment
(Doğramacı et al. 2015). Of these transcripts, 6,239 had sig-
nificant changes ≥ 2-fold in either direction, which included
transcripts associated with many processes involving shoot apical
meristem maintenance and stem growth. The foliar glyphosate
treatment increased shikimate abundance in UABs before
decapitation of aboveground shoots, indicating that EPSPS,
the target site of glyphosate, was inhibited. Interestingly, the
abundance of shikimate in new aerial shoots (6 wk after growth-
inducing decapitation) derived from UABs of foliar glyphosate-
treated plants was similar to controls. The abundance of

transcripts (i.e., EPSPS, EMB1144, SK1) involved in various stages
of chorismate/shikimate biosynthesis had little change in ampli-
tude, indicating glyphosate was not directly affecting transcription
for components of the pathway in these tissues. Hormone ana-
lyses indicated that auxins, gibberellins (precursors and catabo-
lites of bioactive gibberellins), and cytokinins (precursors and
bioactive cytokinins) were more abundant in the aboveground
shoots derived from UABs of glyphosate-treated plants versus the
control. Based on the accumulation of transcriptome and meta-
bolite data, it was proposed that the classic stunted and bushy
phenotypes resulting from vegetative reproduction of E. esula
UABs following foliar glyphosate treatment involve complex
interactions, including shoot apical meristem maintenance, hor-
mone biosynthesis and signaling (auxin, cytokinins, gibberellins,
and strigolactones), cellular transport, and detoxification
mechanisms (Doğramacı et al. 2015).

An expanded investigation into glyphosate-induced witches’
brooming under field conditions was accomplished (Doğramacı
et al. 2016). Field plots treated with high rates (3.3 and 6.7 kg ae
ha− 1) of glyphosate had increased UAB-derived shoots displaying
the stunted and bushy phenotype characteristics. qRT-PCR ana-
lysis to quantify the abundance of a selected set of transcripts in
UABs of nontreated versus treated plants (0 vs. 6.7 kg ae ha− 1)
further supported the impact that glyphosate has on molecular
processes involved in biosynthesis or signaling of tryptophan or
auxin, GA, ethylene, and cytokinins, as well as cell cycle processes.
Moreover, these glyphosate-induced effects on vegetative growth
and transcript abundance persisted in the field for at least 2 yr.
Transcriptome studies have now progressed to a point where
testable hypothesis-driven studies could be initiated as a step
toward next-generation approaches for weed management.
Though foliar application of glyphosate to E. esula causes effects
that impact molecular processes in UABs, this broad-spectrum
herbicide would not be ideal for manipulation of bud growth in
rangeland perennial weeds due to its effect on non–target plant
species. Nevertheless, this proof of concept project sets the stage
to screen commercially available libraries of compounds, growth
regulators, natural products, and other bioactive molecules that
could be applied to perturb bud growth and shoot development.

Although transcriptome and metabolite analysis can identify
potentially important signals, pathways, and molecular mechan-
isms involved in dormancy and glyphosate-induced witches’
brooming, it is important to remember that these changes in
transcript abundance do not reflect a direct association with
activity occurring at the posttranscriptional levels (Beckwith and
Yanovsky 2014). Moreover, as with many weedy species, the
genome for E. esula has not been completely sequenced or
annotated. Therefore, research employing molecular, genomics,
and genetics approaches must rely on the annotated genomes of
model species such as Arabidopsis.

Metabolomics and Fluxomics to Understand Weed
Physiology

The realization that genes, transcripts, and proteins alone cannot
completely explain several physiological responses has triggered a
marked increase in employing approaches that can relate gene
expression to the final phenotypic outcome. Metabolomics is one
such approach that comprehensively identifies and quantitates
low-molecular-weight metabolites (metabolome), thus offering a
powerful approach for molecular phenotyping (Fiehn 2002).
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A common workflow for metabolomics experiments involves
metabolite extraction, chromatographic separation, detection,
data processing, metabolite identification, and statistical valida-
tion (Figure 3). Most often in plant metabolomics, metabolite
separation is carried out by either liquid chromatography or gas
chromatography followed by mass spectrometer detection
(De Vos et al. 2007; Haggarty and Burgess, 2017; Maroli et al.
2015, 2017).

Metabolomics has been used in the past decade to study the
mechanisms of action (MOAs) of synthetic and natural herbicidal
compounds using several model plant species, such as maize
(Zea mays L.) (Araníbar et al. 2001), sterile oat (Avena sterilis L.)
(Aliferis and Chrysayi-Tokousbalides 2006), and Arabidopsis
(Jaini et al. 2017; Sumner et al. 2015; Wu et al. 2018). However,
limited studies have employed metabolomics to characterize weed
physiology in response to herbicide applications (Aliferis and
Chrysayi-Tokousbalides 2011; Miyagi et al. 2010), herbicide-
resistance mechanisms (Aliferis and Jabaji 2011; Maroli et al.
2015, 2017; Serra et al. 2015; Vivancos et al. 2011), and non–
target site herbicide-resistance mechanisms such as detoxification
and metabolism (Wang et al. 2017). As reviewed earlier, appli-
cation of genomics and transcriptomics has helped to identify
herbicide-resistance mechanisms in some weeds (Chen et al.
2017; Délye 2013; Gaines et al. 2010; Nandula et al. 2012; Wright
et al. 2018a, 2018b). Apart from this, metabolomics approaches
have been recently adopted to understand effect of chemical
stresses on perennial ryegrass (Lolium perenne L.) (Serra et al.
2015), to identify complementary glyphosate resistance mechan-
isms in Palmer amaranth (Amaranthus palmeri S. Watson)
(Maroli et al. 2015), to determine glyphosate-induced global
physiological perturbations in glyphosate-resistant (Fernández-
Escalada et al. 2016, 2017) and glyphosate-tolerant (Maroli et al.
2017) weeds, and to examine herbicide metabolism in herbicide-
resistant weeds (Wang et al. 2017). For determination of phy-
siological perturbations, both Fernández-Escalada et al. (2016)
and Maroli et al. (2017) investigated the metabolic changes
induced in the weeds following exposure to nonlethal doses of
glyphosate.

Although MOAs of most herbicides have been well identified,
in many cases the sequence of phytotoxic events that result in
plant death is unclear, particularly for slow-acting herbicides,
which exhibit a significant time lag between herbicide application
and plant death. Using genetics and biochemical and metabolic
analyses, Fernández-Escalada et al. (2016) studied the physiolo-
gies of a glyphosate-resistant and glyphosate-susceptible A.
palmeri population and offered new insights into the physiolo-
gical manifestations of the evolved glyphosate resistance. The
authors indicated that aromatic amino acids do not have sig-
nificant regulatory effects on EPSPS protein and suggested that a
constant free amino acid pool including aromatic amino acids is a
key parameter in complementing glyphosate resistance by EPSPS
gene amplification. Similar observations were also reported earlier
by Maroli et al. (2015). By means of metabolite profiling, Maroli
et al. (2015) reported that in addition to EPSPS gene amplifica-
tion, glyphosate resistance in a biotype of A. palmeri may also be
complemented by elevated antioxidant capacity, with several
metabolites having known antioxidant properties elevated in the
resistant biotype compared with the susceptible biotype (Maroli
et al. 2015). Similarly, the study by Serra et al. (2015) challenged
L. perenne grass with a panel of different chemical stressors,
including glyphosate and its degradation compound AMPA, at
subtoxic levels. The authors concluded that all the subtoxic

chemical stresses investigated induced discrete physiological
perturbations and complex metabolic shifts via multilevel MOAs.
Studies have thus reported that monitoring the perturbations
induced in the metabolic-pool levels following herbicide exposure
can therefore provide cues to the sequence of cellular phytotoxic
events (Fernández-Escalada et al. 2016; Maroli et al. 2015, 2017;
Serra et al. 2015; Vivancos et al. 2011).

Advances in nanotechnology have enabled the use of nano-
materials in agriculture (Fraceto et al 2016), with nanopesticides
increasingly being looked at as alternates to chemical herbicides
(Ali et al. 2017; Hayles et al. 2017; Tan et al. 2018). Though they
are reported to provide equal or better performance at lower
doses compared with chemical herbicides (Parisi et al. 2015), their
effects on crop plants are still poorly understood (Zhao et al.
2017a, 2017b, 2017c). A series of metabolomics and tran-
scriptomics studies conducted to assess the metabolic response of
crop plants such as cucumber (Cucumis sativus L.) (Zhao et al.
2017a), maize (Zhao et al. 2017b), and spinach (Spinacia oleracea
L.) (Zhao et al. 2017c) to Cu(OH)2 nanopesticide exposure con-
cluded that the nanopesticide induced significant alterations in
the metabolite profiles of all the plants. In spinach, significant
reductions in antioxidant- and defense-associated metabolites
were reported, while in maize, Cu(OH)2 nanopesticide sig-
nificantly decreased leaf chlorophyll content and biomass but
induced an increase in the potassium and phosphorus levels and
phenolic acid precursors. In contrast, foliar exposure of cucumber
plants to a relatively lower dose of the nanopesticide induced
activation and upregulation in mRNA levels of antioxidant and
detoxification-related genes. Such studies bring into prominence
the reliability of omics platforms to help us understand crop–
environment interactions at a much finer level.

Metabolomics can robustly provide instantaneous information
about metabolite concentrations by measuring the static
metabolite-pool levels directly. However, as metabolic processes
are interconnected and dynamic, with rapid turnover rates,
characterization of metabolic networks requires quantitative
knowledge of intracellular fluxes (Fernie and Morgan 2013).
Quantitation of metabolic fluxes through each reaction within a
network can only be estimated indirectly with the help of iso-
topically labeled metabolic tracers (Gaudin et al. 2014; Gleixner
et al 1998; Sauer 2006). Fluxomics studies such as stable isotope–
resolved metabolomics (SIRM) are emerging as powerful strate-
gies used to measure fluxes in complex interconnected metabolic
networks (Kikuchi et al. 2004; Maroli et al. 2016; Srivastava et al.
2016). In weed science, only a couple of studies have used flux-
based omics studies to examine competitive physiology (Maroli
et al. 2016; Miyagi et al. 2011). SIRM experiments performed
using stable isotope–labeled metabolic precursors (tracers) would
be the most ideal approach to study metabolic fluxes in weeds. In
these experiments, the growth media can be supplemented with
labeled nutrients that can then be tracked throughout the meta-
bolic network as part of endogenous metabolism (Gaudin et al.
2014; Maroli et al. 2016). Flux rates can then be indirectly esti-
mated from metabolite changes and isotope distribution in a
network. For example, accumulation of amino acids following
glyphosate application is commonly observed in glyphosate-
susceptible plants (Fernández-Escalada et al. 2016; Maroli et al.
2015; Vivancos et al. 2011). Independent studies conducted by
Maroli et al. (2015) and Fernández-Escalada et al. (2016) have
reported that glyphosate-susceptible A. palmeri biotypes accu-
mulate higher concentrations of amino acids than resistant bio-
types. It is generally accepted that the higher accumulation of
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Figure 3. Designing a metabolomics study. (A) The various approaches for performing a metabolomics experimental study. GC-MS, gas chromatography–mass spectrometry; HILIC-LC-MS/MS, hydrophilic interaction chromatography
for liquid chromatography–tandem mass spectrometry; LC-MS/MS, liquid chromatography–tandem mass spectrometry. (B) The general metabolomics workflow. It involves formulating a biological question, setting up an experimental
design to test the hypothesis, sample treatment and harvest, metabolite extraction, clean-up, chromatographic separation, identification, statistical validation, and functional interpretation.
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amino acids following glyphosate treatment is due to proteolysis.
However, using SIRM analysis, Maroli et al. (2016) essentially
described the underlying cause of higher amino acid accumula-
tion in the susceptible biotype. It was shown that glyphosate-
induced amino acid accumulation in susceptible A. palmeri
biotypes is a consequence of proteolysis (catabolism) coupled
with de novo synthesis of certain amino acids. In contrast, amino
acid concentrations in the glyphosate-resistant biotype were
predominantly due to de novo synthesis (anabolism). Thus, it can
be seen from this study that the use of modern omics platforms
has helped to establish the connection between metabolome and
metabolic pool dynamics to elucidate the link between the gly-
phosate MOA and de novo amino acid synthesis.

Integrated Omics Approaches to Understanding
Phytotoxin MOA

Herbicides with new MOAs are desperately needed to combat
evolved and evolving herbicide resistance (Duke and Heap 2017),
and no new commercial herbicides with a clearly new MOA have
been commercialized since the 4-hydroxphenylpyruvate dioxy-
genase inhibitors in the 1980s (Duke 2012). Thus, discovery of
herbicides with new MOAs is of prime importance in herbicide
discovery efforts. Evidence from the natural phytotoxin literature
suggests that there are many more viable MOAs than the current
20 MOAs of commercial herbicides (Dayan and Duke 2014).
However, determination of the MOA of phytotoxins is not a
trivial pursuit, because what we observe after herbicide treatment
of a plant is the manifestation of many secondary and tertiary
effects resulting from an effect on the primary target site. The
literature is full of papers confusing secondary and tertiary effects
with primary effects. Many of the older herbicides were com-
mercialized before their MOAs were known, partly because the
target sites were not easy to determine, due to the difficulty in
working back from physiological effects to a molecular target site.

With the advent of omics technologies, new strategies for
MOA determination have been devised (Duke et al. 2013;
Grossmann et al. 2012a). Omics-based MOA discovery consists of
building a database of any one of the different omics responses to
herbicides with known MOAs and then comparing the response
profile of a phytotoxin with an unknown MOA to profiles gen-
erated by phytotoxins with known MOAs. To our knowledge, this
has been done in industry with only one omics method—meta-
bolomics. This approach can be highly effective if the new com-
pound happens to have an MOA that is in the database of omics
responses to compounds with known MOAs. If not, the approach
will indicate that the compound has a new MOA not represented
in the database. Most companies involved in herbicide discovery
have tried this approach, but only BASF has published a detailed
description of how it has used omics methods to identify MOAs
(Grossman et al. 2012a, 2012b). In that case, it combined both
metabolomic and physionomic methods to build extensive data-
bases of omics responses to phytotoxins with known MOAs
against which to evaluate data from compounds of unknown
MOAs. While a growing number of omics technologies are
available to choose from, some of them being quite narrow (for
example, lipidomics and glycomics), the scope of this segment
will be limited to transcriptomics, proteomics, metabolomics,
physionomics, and combined approaches.

Most MOA transcriptomics has been done with Arabidopsis.
Transcription responses to several herbicides with known MOAs

have been published (Table 2). However, a major problem with
this method of determination is that at doses of the toxicant that
have even a sublethal effect on the plant (for example, the dose
that reduces growth by 50%), expression of many genes is affected
within a short time after treatment. Many of the affected genes are
those involved in stress responses and metabolic detoxification
and other means of dealing with xenobiotics. For example,
Baerson et al. (2005) found that the phytotoxic allelochemical
benzoxazolin-2(3H)-one (BOA) upregulated many Arabidopsis
genes involved in metabolism of xenobiotics and cell rescue and
defense within 24 h after treatment. An extreme example is that of
cantharidin, a potent natural phytotoxin that significantly affected
gene expression of more than 6% of the genes of Arabidopsis
within 2 h of treatment with a dose that reduced growth by 30%
(Bajsa et al. 2011a, 2011b). Eventually, 10% of the genome was
affected. This is not a surprise, as cantharidin and the herbicide
chemical analogue endothall both inhibit all of the serine/threo-
nine protein phosphatases (Arabidopsis has more than 20) in
plants (Bajsa et al. 2011a, 2012). These enzymes are heavily
involved in signaling pathways and gene expression.

Proteomics has been used considerably less than tran-
scriptomics to probe the MOAs or mechanisms of resistance to
herbicides. Zhang and Reichers (2008) reviewed the use of pro-
teomics in weed science research. The effects of paraquat, diuron,
and norflurazon on Chlamydomonas reinhardtii were studied
with proteomics (Nestler et al. 2012). Although the abundance of
the target protein of norflurazon, phytoene desaturase, was
unaffected, the amounts of other enzymes of the plastidic terpene
pathway were affected. Diuron increased the amount of its target,
the D1 protein of photosystem II, whereas some other proteins
involved in photosynthetic electron transport decreased. The
effects of the auxinic herbicides dicamba and clopyralid on the
proteome of soybean [Glycine max (L.) Merr.] were examined by
Kelley et al. (2006). They found four proteins to be strongly
affected, and one of them was the product of the GH3 gene, a gene
that they found to be strongly upregulated at the transcriptional
level. Kumari et al. (2009) found that butachlor reduced levels of
proteins involved in photosynthesis and respiration of the alga
Aulosira fertilissima. Because the MOA of butachlor is inhibition
of very long chain lipid synthesis, these effects are secondary or
tertiary. Likewise, amiprophos-methyl, a herbicide that affects
microtubule function, had effects on proteins associated with
diverse physiological and biochemical processes but not directly
associated with tubulin (Wang et al. 2011). More recently, the
natural phytotoxin α-terthienyl was found to affect 16 proteins
associated with energy transduction, of which the transketolase
protein was greatly reduced (Zhao et al. 2018). A transketolase-
altered mutant was less sensitive to the phytotoxin, and the
enzyme from the mutant was less inhibited by the compound. But
the weak effect of the toxin on the enzyme is not what one would
expect for a primary target site.

Studies using natural phytotoxins with unknown target sites
have revealed distinct metabolic effects but no clear indication of
a molecular target (Cantrell et al. 2007; Duke et al. 2011). Other
metabolomic studies of phytotoxin MOAs are discussed in Duke
et al. (2013). One of the more complete studies of this type was
that of Trenkamp et al. (2009), who examined the effects of
glufosinate, glyphosate, sulcotrione, foramsulfuron, benfuresate,
and an experimental herbicide on the metabolome of Arabi-
dopsis. Results matched the MOA for some but not all of the
phytotoxins. More systematic approaches that rely on metabolic
profiles of an array of phytotoxin MOAs have been more
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successful (Grossmann et al. 2010, 2012a, 2012b). Perhaps the only
new phytotoxin MOAs discovered by omics methods are the
determination that cinmethylin’s target site is tyrosine amino-
transferase (Grossmann et al. 2012b) and that of a phenylalanine
analogue (PHE1) is IAA synthesis (Grossmann et al. 2012a),
although in the latter case the specific enzyme target to the IAA
synthesis pathway was not determined. In both cases, physionomic
and metabolomic databases were used to narrow the search for the
target sites. Verification of the omics indications were followed by
physiological and biochemical studies.

Limitations, Conclusions, and Future Directions

Relying on orthologous genomes to annotate related genomes of
weedy species has pitfalls associated with proposing biological
interactions and processes based on spurious assumptions that
homologous genes have conserved functionality across species
(Doğramacı et al. 2015). Similarly, assembling a quality de novo
reference transcriptome for weeds can be computationally diffi-
cult, due to complex gene families and high levels of hetero-
zygosity that often occur in weeds. Polyploidy further complicates
reference transcriptome assembly, although the assembly can be
completed and yield insight into evolution of polyploidy in weeds
(Chen et al. 2016). This becomes more critical when studying
herbicide resistance, because RNA-Seq will detect all differences
in gene expression and sequence; therefore, using highly unrelated
resistant and susceptible populations will result in a large number
of false positives (genes with significant DE that are completely
unrelated to herbicide resistance). Hence, not all resistance
mechanisms can be detected using RNA-Seq. Therefore, for a
successful RNA-Seq experiment in non-model species such as
weeds, ideally, a high-quality reference transcriptome is desired
for identifying and quantifying DE genes or sequence variations.
Additionally, the quality of the de novo reference transcriptome is
also important, as genes will only be identified for DE and/or
sequence variation if they are present in the reference assembly.
In contrast, the major challenge for developing an effective high-
throughput metabolomics platform lies in the chemical com-
plexity, heterogeneity, and dynamic range of the metabolites and
the challenges in developing a single extraction procedure for all
metabolites. Plant extracts have a complicated biochemical
composition and require extensive extraction and separation
procedures to achieve reproducible results. Furthermore, very few
of these metabolites can act as distinct biomarkers for a particular
herbicide or phytotoxin MOA. Exceptions are EPSPS, PPO, and
ceramide synthase, which cause dramatic increases in the pools of
shikimic acid (Duke et al. 2003), protoporphyrin IX (Dayan and
Duke 2003), and sphingoid bases (Abbas et al. 2002), respectively.
Unfortunately, most other metabolites or phytotoxins do not have
such dramatic effects.

As no single omics method is likely to reveal the MOA of a
herbicide or natural phytotoxin, omics approaches to probe
MOAs, though powerful, have to be used with caution. Several
factors can influence the outcome of an omics experiment. First,
physiological effects and responses are dose dependent, such that
at high doses, results might be confounded by secondary targets,
while at low doses, a plant might compensate too rapidly to
observe anything meaningful. Second, the results are highly
dependent on exposure time, wherein responses can be rapid,
gradual, or delayed or sometimes may even reverse over time.
Third, omics responses can vary between plant tissues and cell

types, such that important effects in some cells could be masked
when the entire tissue or organ is extracted. Finally, metabolic-
pool sizes can be deceiving, as the pool size is determined by both
input and output of the pool. In many cases, changes in pool
fluxes would be much more informative about the effect of a
herbicide than the pool size. Moreover, even when omics methods
suggest a molecular target site, it must be verified by physiological
and biochemical methods. For example, histone deacetylase was
found to be the target site of a phytotoxic metabolic product of
BOA, and its MOA was further probed by transcriptome analysis
(Venturelli et al. 2015). It is evident that the transcriptome data
would have been very unlikely to reveal the molecular target site.

Another caveat involving omics studies is that all herbicides
and phytotoxins cause stress, including oxidative stress, so omics
methods can be misleading to the naïve researcher. For example,
Ahsan et al. (2008) found both paraquat and glyphosate to
enhance the amount of proteins involved in defense against
oxidative stress in leaves of glyphosate-susceptible rice (Oryza
sativa L.). They concluded that this was an “alternative” effect,
rather than a secondary or tertiary effect of herbicide-induced
stress. Clearly, the approximately 50-fold level of resistance of
crops made resistant to glyphosate by means of a glyphosate-
resistant EPSPS (Nandula et al. 2007) is proof that there is no
alternate primary effect of glyphosate. Comparing results with
different omics approaches is rare, but quite different effects have
been reported with different omics approaches. For example, in
the same experiment in which cantharidin’s effects on the tran-
scriptome were determined (Bajsa et al. 2011a, 2011b), samples
were taken for proteome studies (Bajsa et al. 2015). A remarkable
lack of correlation between transcriptome and proteome results
was observed, although the lack of correspondence between
transcriptome and proteome data could be due to multiple factors
(Duke et al. 2013; Narayanan and Van de Ven 2014; Payne 2015).
Similarly, Zhao et al. (2018) found decreases in the transketolase
protein of Arabidopsis treated with α-terthienyl, but the gene for
this enzyme was upregulated by the same treatment. They
hypothesized that the decrease in protein was due to direct
interaction with α-terthienyl, which resulted in upregulation of
the gene to compensate.

The disconnect between comparing individual omics plat-
forms to understand weed genetics, diversity, heterozygosity, and
importantly, evolution of herbicide resistance in weeds, especially
non–target site resistance, highlights the need to develop an
integrated omics platform. As an example of developing blue-
prints for constructing low-cost genomic assemblies in weed
species, Horvath et al. (2018) have sequenced gene space and
transcriptome assemblies of E. esula that were used to identify
promoter sequences, high-quality markers, and repetitive ele-
ments. Based on this framework, a reliable sequence for >90% of
the expressed E. esula protein-coding genes was made available.
Compared with conventional screening techniques, developing
herbicides with new MOAs and chemistries or evaluating natural
products for use as bioherbicides can be achieved at a much faster
rate using next-generation omics. Despite requiring a cautionary
approach, integrated systems biology can revolutionize weed
management practices by providing hitherto unknown biological
information (Han et al. 2017; Kraehmer 2012). A holistic line of
action with multidisciplinary integrated approaches and colla-
boration between weed scientist, extension specialist, and farmers
is required to allow for the development of long-term, weed
management strategies. Though information on candidate genes
is lacking for most weed species, global gene expression profiling
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techniques, such as microarrays, can serve as effective tools for
understanding NTSR mechanisms (Peng et al. 2010), while RNA-
Seq and whole-metabolome profiling can identify genes and
metabolites involved in regulating biochemical processes in a
weed. An outcome of a systems biology approach is the ambitious
RNAi technology (BioDirectTM) developed by Monsanto to
exploit precise RNA segments coding for EPSPS protein in
reversing glyphosate resistance in weeds (Hollomon 2012; Shaner
and Beckie 2014). In conclusion, it can be said that genomics,
transcriptomics, and other methods for high-throughput screen-
ing can yield promising results for elucidating basic weed biology
concepts as well as insights into the response of weeds to biotic
and abiotic stresses and crop–weed competition. Thus, with the
aid of these omics platforms, improved knowledge of weed biol-
ogy, genetics, and physiology can be gained quickly, paving the
way for the development of long-term, sustainable weed man-
agement practices.
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