

Isolation and Characterization of 30 Microsatellite Loci for Cunninghamia Ianceolata (Taxodiaceae)

Authors: Wang, Si-Si, Zhang, Yang, Liu, De-Chen, Sun, Xiao-Wei, Wang, Rong, et al.

Source: Applications in Plant Sciences, 5(9)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1700060

The BioOne Digital Library (<u>https://bioone.org/</u>) provides worldwide distribution for more than 580 journals and eBooks from BioOne's community of over 150 nonprofit societies, research institutions, and university presses in the biological, ecological, and environmental sciences. The BioOne Digital Library encompasses the flagship aggregation BioOne Complete (<u>https://bioone.org/subscribe</u>), the BioOne Complete Archive (<u>https://bioone.org/archive</u>), and the BioOne eBooks program offerings ESA eBook Collection (<u>https://bioone.org/esa-ebooks</u>) and CSIRO Publishing BioSelect Collection (<u>https://bioone.org/csiro-ebooks</u>).

Your use of this PDF, the BioOne Digital Library, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Digital Library content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne is an innovative nonprofit that sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

PRIMER NOTE

Isolation and characterization of 30 microsatellite loci for *Cunninghamia lanceolata* $(Taxodiaceae)^1$

SI-SI WANG², YANG ZHANG², DE-CHEN LIU², XIAO-WEI SUN², RONG WANG², AND YUAN-YUAN LI^{2,3}

²School of Ecological and Environmental Sciences, Tiantong National Station of Forest Ecosystem, Shanghai Key Laboratory for Urban Ecology and Restoration, East China Normal University, Shanghai 200241, People's Republic of China

- *Premise of the study:* To quantify the population-level genetic characteristics of *Cunninghamia lanceolata* (Taxodiaceae), an important timber conifer, we developed 30 pairs of microsatellite primers based on the nuclear genome.
- *Methods and Results:* Using the streptavidin-biotin capture system, we developed 14 polymorphic and 16 monomorphic microsatellites. Polymorphisms were detected in 14 loci using 94 individual trees that were collected from three *C. lanceolata* populations in Hubei and Zhejiang provinces and in Chongqing Municipality, China. There were three to 30 alleles per locus, and the observed and expected heterozygosities ranged from 0.0313–0.8333 and from 0.0313–0.9246, respectively. Cross-species amplification showed that two to seven polymorphic loci were functional in three of the five related species that were collected.
- *Conclusions:* Our newly developed microsatellite primers provide neutral molecular markers that are beneficial to future studies of population genetics and germplasm conservation of *C. lanceolata.*

Key words: cross-amplification; Cunninghamia lanceolata; genetic diversity; microsatellite; Taxodiaceae.

Cunninghamia lanceolata (Lamb.) Hook. (Taxodiaceae), known as Chinese fir, is an evergreen, outcrossing, and longlived conifer that is widely distributed in southern China and northern Vietnam. Because of its relatively low nutrient demands, fast rate of growth, and strong resistance to corrosion and insect attacks, *C. lanceolata* is an important timber source that has been cultivated for more than 2000 yr (Yeh et al., 1994). Its present plantations cover about 4 million hectares accounting for 20–25% of the total commercial production of timber in China (Bao and Jiang, 1998; Huang et al., 2005). Understanding its genetic background is therefore critical to selecting germplasm resources and managing forests.

Some codominant molecular markers have been reported for *C. lanceolata*, e.g., 10 pairs of polymorphic microsatellite primers based on the nuclear genome (Li et al., 2015), 28 polymorphic expressed sequence tag–simple sequence repeat (EST-SSR) markers (Wen et al., 2013), and 97 polymorphic SSR loci based on transcript data (Xu et al., 2016). Microsatellite loci located in noncoding regions are neutral and usually show higher mutation rates than those located in encoding regions of the genome (Charlesworth et al., 1994). Neutral markers can be used to study population genetic diversity that is not related to adaptive

¹Manuscript received 30 May 2017; revision accepted 11 July 2017.

The authors thank Dr. X.-Y. Chen for helpful comments on the manuscript. This work was supported by the National Natural Science Foundation of China (31670540). The authors thank LetPub (www.letpub.com) for linguistic assistance during the preparation of this manuscript.

³Author for correspondence: yyli@des.ecnu.edu.cn

doi:10.3732/apps.1700060

traits, and therefore can better reveal spatial genetic structure, gene flow, and historical events (e.g., bottlenecks and founder effects) that contribute to conservation of germplasms. However, detecting gene flow patterns, especially in fine-scale analyses such as parentage analyses, requires genetic resolution high enough to distinguish every individual and is thus dependent on a large number of neutral markers with high polymorphism. It is therefore necessary to develop more informative neutral molecular markers for *C. lanceolata*. Here, 14 polymorphic and 16 monomorphic microsatellite loci were isolated and characterized in the nuclear genome of *C. lanceolata* to facilitate future studies on population genetics and germplasm conservation.

METHODS AND RESULTS

Total genomic DNA was extracted from dried leaves of one C. lanceolata individual (located in Tiantong in Zhejiang Province, China [Appendix 1]) using the Plant Genomic DNA Extraction Kit (Tiangen, Beijing, China). Approximately 250 ng of DNA were digested with the restriction enzyme MseI (New England Biolabs, Beverly, Massachusetts, USA), and fragments of 200-800 bp were fractionated. The fragments were linked with an MseI-adapter pair (F: 5'-TACTCAGGACTCAT-3'; R: 5'-GACGATGAGTCCTGAG-3'). The diluted products were amplified by an MseI-N primer (5'-GATGGTCCTGAGTAAN-3') under the following conditions: an initial step at 95°C for 3 min, followed by 20 cycles of 30 s at 94°C, 1 min annealing at 53°C, and 1 min at 72°C. The products were hybridized with 5'-biotinylated probes (AG)15 in a 250-µL reaction system at 48°C for 2 h. The hybridization products were adhered by streptavidin-coated magnetic beads (Promega Corporation, Madison, Wisconsin, USA). The washed and eluted DNA fragments were further amplified with the MseI-N primer using the conditions given above for 30 cycles. The products were purified using a multifunctional DNA Extraction Kit (BioTeke, Beijing, China) and were ligated to a pMD19-T vector (TaKaRa Biotechnology Co., Dalian, China). Then, the products were transformed into Escherichia coli

Applications in Plant Sciences 2017 5(9): 1700060; http://www.bioone.org/loi/apps © 2017 Wang et al. Published by the Botanical Society of America. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-SA 4.0), which permits unrestricted noncommercial use and redistribution provided that the original author and source are credited and the new work is distributed under the same license as the original.

Table 1.	Characterization of 14 polymorphic and	16 monomorphic microsatellite	loci developed in Cunninghamia lanceolate	a.ª
----------	--	-------------------------------	---	-----

Locus		Primer sequences (5'–3')	Repeat motif	Allele size range (bp)	Α	$T_{\rm a}$ (°C)	Fluorescent dyeb	GenBank accession no.
CL22	F:	TGGTAGTACTCGCAGGAAAT	(GA) ₅	170	1	64	HEX	KY769227
	R:	CAGAGAATGGACACAAACAG	(01-1)3		-			
CL34*	F:	TGTCAAAGACTCCTGAGAAG	(CT) ₅	176–190	5	61	6-FAM	KY769205
CI 00*	R:	GCAGCAA'I'ACACACACA'I'AG	(ΛC)	214 222	5	65		VV760206
CL90*	r: p.		$(AG)_8$	214-222	3	05	IAMKA	K I /09200
CL108*	F:	GAGGTATAGAGTTTACGGTTTG	$(GA)_{7}$	108-124	6	64	HEX	KY769207
02100	R:	TCCTATGTGTCTAGTCATGTCC	(011)/	100 121	Ū	0.	11211	111/0/207
CL164	F:	GCTGGATGAACCTGAGTTGATT	(CT) ₁₂	124	1	63	6-FAM	KY769226
	R:	GAAGTTTCTCTTTTGCTTTGGC						
CL255	F:	CAACAGAGATATTGCAGCA	$(AG)_{21}$	118	1	63	ROX	KY769229
CI 256	R:		(\mathbf{AC})	107	1	61	DOV	VV760220
CL230	r: R·	GGTTGCTCAGGTTTGGA TCTCCCTCTACCTCTCA	$(AG)_{15}$	107	1	04	KUA	K1/09250
CL278	F:	GAGACTAAGCCTGGGAGAG	$(TC)_5$	114	1	65	ROX	KY769231
	R:	GAGAGGGGATCGAAAGAGA	(-75					
CL287	F:	GCAGCAATACACATACACACAGAAT	(AG) ₉	169	1	65	6-FAM	KY769220
	R:	ACAAGTGTCAAAGACTCCTAAGAAG						
CL288	F:	GCAGCAATACACAACATAAG	(AG) ₉	176	1	62	6-FAM	KY769221
CI 201	R:	TACCGAATTGTCTCCAGATA	$(\Lambda \mathbf{G})$	153	1	61	POY	KV760232
CL291	r. R:	AATACATTGTGCGGGTT	$(AO)_{24}$	155	1	01	KOA	K1709232
CL295*	F:	ATCATCAACACAATTAGCACCTGGAG	$(CT)_8$	157-163	4	65	ROX	KY769208
	R:	GCAGATCATCGAACGTGAGTTAGCTT						
CL343*	F:	TGCAAGTGTGAATAGAACC	$(GA)_{21}$	197–311	30	61	HEX	KY769209
GT 244	R:	GTAAAAGGGGAAAGGGAGT		112		65	DOV	1117(0000
CL346	F.:		$(AG)_{17}$	113	1	65	ROX	KY/69233
CL389*	F.	GCACATTGTAAAATGGACTCTAGCC	(AG) ₁	147-171	10	63	6-FAM	KY769210
01200	R:	CTTTTTCTTGTTCTTTCGGAGGAGC	(110)]5	11, 1,1	10	05	0 17101	111/0/210
CL396	F:	CCATGTGCCTCACTCTC	(CT) ₅	111	1	65	ROX	KY769234
	R:	GGTTAGGGGTTCAGGTT						
CL540*	F:	GGGTAGTGATCATGGAAGA	$(TC)_{10}A(CA)_{10}$	118–160	19	63	ROX	KY769211
CI 564*	R:		(CT)	204 228	15	65	UEV	VV760010
CL304**	r: R·		$(C1)_{12}$	204-238	15	05	ПЕА	K1/09212
CL586*	F:	CAGCAAAGAAACGGTTATGGT	(TC) _o	208-224	6	63	6-FAM	KY769213
	R:	GTTTTGTGGTATCCAACTAGG	< - <i>13</i>					
CL631	F:	TGGTGAGGAAGGATTCAGCCGACAG	(TG) ₅	273	1	65	ROX	KY769222
GT (50	R:	TCAGTTCCGGTTAGGCTCAGTACAC				50	DOM	
CL653	F:	AATGGAGGTATTGCAAC	$(AG)_{20}$	114	I	59	ROX	KY/69223
CI 654*	к: F·	ACCTGTAAGGGTTTTCC TCTCTCCTCCCTTTCCC	$(\mathbf{TC})_{\mathbf{c}}$	126-144	9	63	HEX	KY769214
CL054	R:	CCATGCGTTGAAGAAGTATCG	(10)8	120 144		05	111274	K170)214
CL723*	F:	ATCTCTGTCTTTTGCACTCTC	$(TC)_6$	211-227	5	63	TAMRA	KY769215
	R:	GGAATTATTGTTGGGGTTAGG						
CL753	F:	TAGAATCAACGCACAAGAAAGGC	$(GA)_9$	232	1	65	HEX	KY769236
CI 761	R:		(CT)	129	1	50	UEV	VV760224
CL/01	r: R·	TTTTCAGATGACTCTCGGA	$(CT)_6$	156	1	39	ΠΕΛ	K1709224
CL776*	F:	ACTGCAAAGGAGATACGCTGAAGG	(TC) _s	221-225	3	65	TAMRA	KY769216
	R:	GACGCAAAAGAGGTCCACAATACA	× 78					
CL783	F:	CTAGATACGAGTGTCGAAGA	$(TC)_6$	183	1	65	HEX	KY769237
GT 0 50.4	R:	GCAATACACATACACACAGA		104 110	-	(2)	DOM	
CL852*	F:	CTAGTGTCCAAAAAAGAGCA	(CT) ₉	136-148	1	63	ROX	KY/69217
CL871	:স দে	GAGATATGAGTAGAATGAGG ΨGGΨCCGCCGΨΨΔCΔΔCΔΦC	(GT)-	228	1	65	HFX	KY769225
CL0/1	R:	ACTCTGCCCTTTTCACTATTCTGC	(01)5	220	1	05	1112/1	IX I (U)223
CL878*	F:	CAGGGTAGCCTTTGAAACA	(AG) ₈	147-163	7	64	ROX	KY769218
	R:	GGCTCCATATAACAACATC	- 10					

Note: A = number of alleles; T_a = annealing temperature. ^aAll values are based on samples representing three populations located in Lichuan in Hubei Province, Lin'an in Zhejiang Province, and Wanxian in Chongqing Municipality, China.

^bFluorescent dyes (i.e., HEX, ROX, 6-FAM, and TAMRA) used for fragment analysis.

* Polymorphic microsatellite loci.

	Table 2.	Genetic pro	perties of 1	4 newly	developed	polymor	phic microsate	ellites of (Cunninghamia I	lanceolata.ª
--	----------	-------------	--------------	---------	-----------	---------	----------------	--------------	----------------	--------------

		Lich	uan population			Lin	'an population			Wan	xian population	
Locus	n	Α	$H_{\rm o}$	H _e	n	Α	$H_{\rm o}$	H _e	n	Α	$H_{\rm o}$	$H_{\rm e}$
CL34	30	4	0.2000*	0.5847	25	3	0.2000*	0.5200	29	4	0.2069*	0.5850
CL90	32	5	0.6563	0.6880	32	4	0.3750	0.5709	30	4	0.5667	0.6356
CL108	32	5	0.1875	0.2336	32	4	0.3125	0.3021	30	3	0.2333	0.3203
CL295	32	4	0.5938	0.6047	32	4	0.6563	0.5843	30	4	0.5000	0.5701
CL343	32	16	0.1875*	0.8750	32	17	0.1563*	0.9246	29	14	0.2759	0.8209
CL389	30	7	0.2667	0.3819	32	5	0.1250	0.1220	30	5	0.2000	0.1904
CL540	29	15	0.3793*	0.9165	29	14	0.5172*	0.9201	28	12	0.5000	0.8935
CL564	32	12	0.8125	0.8705	32	11	0.6250	0.6999	30	10	0.8333	0.8621
CL586	31	3	0.1613	0.2089	32	6	0.2813	0.3105	30	4	0.2667	0.2706
CL654	32	7	0.5625	0.6002	32	6	0.6250	0.6969	30	6	0.6333	0.6418
CL723	32	5	0.0938*	0.4454	32	3	0.1563*	0.4043	30	4	0.1000*	0.5028
CL776	32	3	0.3438	0.3031	32	2	0.0313	0.0313	30	2	0.3667	0.3045
CL852	32	4	0.2500	0.2555	32	6	0.4688	0.3973	30	4	0.6000	0.4729
CL878	32	6	0.1875	0.2073	32	5	0.2813	0.4772	30	3	0.2000	0.1859

Note: A = number of alleles; $H_e =$ expected heterozygosity; $H_0 =$ observed heterozygosity; n = number of individuals genotyped.

^aLocality and voucher information for the populations are available in Appendix 1.

*Indicates significant deviation from Hardy–Weinberg equilibrium (P < 0.05).

strain JM109 (TaKaRa Biotechnology Co.) through transient thermal stimulation following the TaKaRa *E. coli* JM109 competent cell protocol.

A total of 1400 colonies were selected and tested by PCR with (AG)10 and M13⁺/M13⁻ as primers, producing 469 positive sequences. The positive PCR products were sequenced on an ABI 3730 DNA Sequence Analyzer (Applied Biosystems, Foster City, California, USA). We designed 263 primer pairs using the software Primer Premier 5.0 (PREMIER Biosoft International, Palo Alto, California, USA). The criteria for primer design were: (1) primer length between 18-28 bp and amplicon length between 100-300 bp; (2) melting temperature $(T_{\rm m})$ in the range of 45–65°C; (3) GC content of the sequence between 40–60%, with no more than three Gs or Cs in the last five bases at the 3' end of the primer without mismatch or secondary structures. Polymorphisms were detected using 24 individuals selected randomly from three populations from Lichuan (Hubei Province, China), Lin'an (Zhejiang Province, China), and Wanxian (Chongqing Municipality, China), according to the method proposed by Schuelke (2000). The nested PCR used three primers: a sequence-specific forward primer with an M13(-21) tail (5'-TGTAAAACGACGGCCAGT-3') at its 5'-end, a universal M13(-21) primer labeled with a fluorescent dye, and a sequence-specific reverse primer. In the first 30 cycles, the forward primer was incorporated into the PCR products. Then these products were marked with the fluorescently labeled M13(-21) primer, which was incorporated during the following eight cycles at 53°C. Each reaction was run in a 20-µL system containing the following: 40 ng of DNA, 1× PCR buffer, 2.0 mM Mg2+, 0.2 mM of dNTPs, 0.1 µM M13(-21) primer labeled with HEX, ROX, or 6-FAM (Sangon Biotech, Shanghai, China), 0.025 µM forward primer with an M13(-21) tail, 0.1 µM reverse primer, and 2 units Taq DNA polymerase (Sangon Biotech). Thermocycling conditions were as follows: 5 min of denaturation at 94°C; 30 cycles of 30 s at 94°C, 45 s at 59-65°C (Table 1), and 45 s at 72°C; followed by eight cycles of 30 s at 94°C, 45 s at 53°C, and 45 s at 72°C; and a 10-min extension at 72°C. We genotyped the amplification products on an ABI 3730 automated sequencer using GeneScan 500 LIZ Size Standard (Applied Biosystems), and alleles were identified using GeneMapper 4.0 software (Applied Biosystems). Among the 263 primer pairs tested, 186 were not amplified in any samples, 32 did not produce clear and single-target bands, 12 could not be successfully amplified in the individuals used for testing, and three were

duplicates of previous markers in Li et al. (2015). Finally, 14 polymorphic and 16 monomorphic microsatellite loci were obtained (Table 1).

All polymorphic loci were further characterized using 94 *C. lanceolata* individuals from the same three populations mentioned above. One of four fluorescent dyes (HEX, ROX, 6-FAM, TAMRA) labeled the forward primers. PCRs were set up in 10-µL reaction volumes containing 40 ng of template DNA, 1× PCR buffer, 2.5 mM Mg²⁺, 0.2 mM of each dNTP, 0.1 µM forward and reverse primer, and 1 unit of *Taq* DNA polymerase. We used the following conditions: 5 min of denaturation at 94°C; 30 cycles of 30 s at 94°C, 45 s at 61–65°C (Table 1), and 1 min at 72°C; and a final extension at 72°C for 10 min. The amplification products were scanned on an ABI 3730 sequencer using GeneScan 500 LIZ Size Standard (Applied Biosystems), and alleles were called and binned using GeneMapper 4.0 software (Applied Biosystems).

The number of alleles varied from three to 30 with an average of 9.4 using FSTAT 2.9.3 software (Goudet, 1995) (Table 1). The observed and expected heterozygosities ranged from 0.0313–0.8333 and 0.0313–0.9246, respectively, analyzed by the software TFPGA version 1.3 (Miller, 1997) (Table 2). After the sequential Bonferroni adjustment (Rice, 1989), only two loci (CL34 and CL723) displayed significant deviations from Hardy–Weinberg equilibrium (P < 0.05) in all three populations, and two loci (CL34 and CL540) deviated significantly from Hardy–Weinberg equilibrium (P < 0.05) in context of the expective of the

We also tested the performance of 14 polymorphic primer pairs in five related species belonging to the same family (Taxodiaceae), using one to 10 individuals from each species (Table 3; Appendix 1). In *Metasequoia glyptostroboides* Hu & W. C. Cheng, successful amplifications occurred in seven loci (CL90, CL295, CL343, CL723, CL776, CL852, and CL878), of which three (CL90, CL723, and CL776) could also be amplified in *Cryptomeria fortunei* Hooibr. ex Otto & A. Dietr. and two (CL852 and CL878) in *Taxodium ascendens* Brongn. No polymorphic loci amplified successfully in *Cryptomeria japonica* (Thunb. ex L. f.) D. Don or in *Sequoia sempervirens* (D. Don) Endl. (Table 3). Unfortunately,

	Table 3.	Allele size ranges tested	in five additional taxa for c	ross-amplification trials of SSI	R loci isolated from Cunnin	ghamia lanceolata
--	----------	---------------------------	-------------------------------	----------------------------------	-----------------------------	-------------------

Locus	$Cryptomeria\ japonica\\(n=1)$	Cryptomeria fortunei (n = 5)	Metasequoia glyptostroboides (n = 10)	Sequoia sempervirens $(n = 2)$	Taxodium ascendens $(n = 2)$
CL90	_	268	218–220	_	_
CL295	_	_	159–165		_
CL343			193		
CL723		261	237–247		
CL776		225	217-225		
CL852			142		142
CL878	—	—	145–155	—	145

Note: — = primers could not be amplified.

http://www.bioone.org/loi/apps

we were unable to sample the only congeneric species of *C. lanceolata* (*C. konishii* Hayata), and thus the cross-amplification capability of these primers is likely underestimated.

CONCLUSIONS

Of the 30 markers reported here for *C. lanceolata*, 14 microsatellite loci showed a high level of polymorphism. These loci will be used to study population genetic diversity, gene flow, and mating systems. Combined with the previously isolated loci, these markers will facilitate the further investigation of parentage analyses and kinships between the planted and natural populations of *C. lanceolata*, all of which are relevant to germplasm conservation and forest management of this timber species.

LITERATURE CITED

- BAO, F. C., AND Z. H. JIANG. 1998. Wood properties of main tree species from plantation in China. China Forestry Publishing House, Beijing, China.
- CHARLESWORTH, B., P. SNIEGOWSKI, AND W. STEPHAN. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. *Nature* 371: 215–220.
- GOUDET, J. 1995. FSTAT (version 1.2): A computer program to calculate *F*-statistics. *Journal of Heredity* 86: 485–486.
- HUANG, Z., Z. XU, S. BOYD, AND D. WILLIAMS. 2005. Chemical composition of decomposing stumps in successive rotation of Chinese fir (*Cunninghamia lanceolata* (Lamb.) Hook.) plantations. *Chinese Science Bulletin* 50: 2581–2586.

- LI, Y. X., Z. S. WANG, J. K. SUI, Y. F. ZENG, A. G. DUAN, AND J. G. ZHANG. 2015. Isolation and characterization of microsatellite loci for *Cunninghamia lanceolata* (Lamb.) Hook. *Genetics and Molecular Research* 14: 453–456.
- MILLER, M. P. 1997. Tools for population genetic analyses (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. Website http://www.marksgeneticsoftware.net/ tfpga.htm [accessed 28 August 2017].
- RICE, W. R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.
- ROUSSET, F. 2008. GENEPOP'007: A complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* 8: 103–106.
- SCHUELKE, M. 2000. An economic method for the fluorescent labeling of PCR fragments. *Nature Biotechnology* 18: 233–234.
- VAN OOSTERHOUT, C., W. F. HUTCHINSON, D. P. M. WILLS, AND P. SHIPLEY. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4: 535–538.
- WEN, Y., S. UENO, W. HAN, AND Y. TSUMURA. 2013. Development and characterization of 28 polymorphic EST-SSR markers for *Cunninghamia lanceolata* (Taxodiaceae) based on transcriptome sequences. *Silvae Genetica* 62: 137–141.
- XU, Y., R. ZHENG, Z. WANG, Y. WANG, Z. HONG, L. YANG, Y. LU, ET AL. 2016. Identification and characterization of genic microsatellites in *Cunninghamia lanceolata* (Lamb.) Hook. (Taxodiaceae). Archives of Biological Sciences 68: 417–425.
- YEH, F. C., J. SHI, R. YANG, J. HONG, AND Z. YE. 1994. Genetic diversity and multilocus associations in *Cunninghamia lanceolata* (Lamb.) Hook. from The People's Republic of China. *Theoretical and Applied Genetics* 88: 465–471.

APPENDIX 1. Locality information of *Cunninghamia lanceolata* and its related species used in this study. Voucher specimens were deposited in East China Normal University (HSNU), Shanghai, China.

Species	Population	Collection locality	Geographic coordinates	N
<i>Cunninghamia lanceolata</i> (Lamb.) Hook.	Tiantong	Tiantong, Zhejiang, China	29°48′19″N, 121°47′43″E	1
0	Lichuan	Lichuan, Hubei, China	30°10'37"N, 108°37'03"E	32
	Lin'an	Lin'an, Zhejiang, China	30°19'14"N, 119°26'04"E	32
	Wanxian	Wanxian, Chongqing, China	30°39'43"N, 108°45'05"E	30
Cryptomeria japonica (Thunb. ex L. f.) D. Don	Shanghai	Shanghai Botanic Garden, Shanghai, China	31°08'48"N, 121°26'50"E	1
Cryptomeria fortunei Hooibr. ex Otto & A. Dietr.	Shanghai	Shanghai Botanic Garden, Shanghai, China	31°08'48"N, 121°26'50"E	5
Sequoia sempervirens (D. Don) Endl.	Nanjing	Nanjing Botanic Garden, Nanjing, China	32°04'15"N, 118°48'25"E	1
* * · ·	Hangzhou	Hangzhou Botanic Garden, Hangzhou, China	30°15'19"N, 120°07'22"E	1
Metasequoia glyptostroboides Hu & W. C. Cheng	Lichuan	Lichuan, Hubei, China	30°10'22"N, 108°39'32"E	10
Taxodium ascendens Brongn.	Nanjing	Nanjing Botanic Garden, Nanjing, China	32°04′15″N, 118°48′25″E	2

Note: *N* = number of individuals.