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a b s t r a c t 

Quantifying rangeland vegetation amounts with remotely sensed satellite data is a proliferating field of 

study. Yet the resulting datasets are rarely related to use-based monitoring indicators (i.e., utilization 

or residual biomass), which are critical for adaptive management and to inform the subsequent year’s 

grazing plans. To better assess our ability to use remotely sensed data products for grazing monitoring 

and adaptive management, we tested the relationships between a variety of vegetation biomass metrics 

derived from remotely sensed data on a bunchgrass-dominated grassland in northeast Oregon and two 

common indicators: stocking rate at the pasture scale (40 −250 ha; a management indicator) and field- 

based utilization estimates at the plot scale (25 −50 m; a grazing indicator). At the pasture scale, we 

correlated stocking rate to biomass metrics and found two metrics that had consistent relationships to 

stocking rate: fall mean biomass ( r values range: −0.52 to −0.56; P values < 0.001) and the 10th per- 

centile of the relative difference between summer and fall biomass ( r values range: −0.47 to −0.52; P 

values < 0.01). Scatterplots from these correlations were then evaluated alongside managers’ knowledge 

to interpret why some pastures deviated from the overall pattern. At the plot scale, we correlated in- 

field utilization estimates to biomass metrics and found consistent relationships with fall mean biomass 

( r values range: −0.32 to −0.47; P values < 0.001) and the relative difference between summer and fall 

biomass ( r value: from −0.20 to −0.62; P values < 0.005). To further visualize the utilization correla- 

tions, we classified these two biomass maps into three categories guided by our utilization estimates. 

Significant changes in biomass due to management and interannual variation in biomass amounts stood 

out. The results and visualizations demonstrate how remotely sensed data relate to conventional grazing 

monitoring indicators and exemplify how remotely sensed data can be used to inform adaptive manage- 

ment. 

© 2021 The Authors. Published by Elsevier Inc. on behalf of The Society for Range Management. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Temperate grassland ecosystems are threatened worldwide by 

onversion to crop agriculture ( Hoekstra et al. 2005 ), livestock mis-

anagement ( Alkemade et al. 2013 ), and climate change ( Joyce

t al. 2013 ; Polley et al. 2013 ; Tietjen et al. 2017 ; Souther et al.

020 ). Livestock can impact the structure and function of grassland

cosystems ( Milchunas and Lauenroth 1993 ), causing short-term 
✩ Funding was provided by the Priscilla Bullitt Collins Trust Northwest Conserva- 

ion Fund, The Nature Conservancy, and the Natural Resources Conservation Ser- 

ice, US Dept of Agriculture, under a Conservation Innovation Grant (agreement 

R193A750 0 08G0 05). 
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ffects such as reduced litter cover and compacted soils ( Schmalz

t al. 2013 ), as well as long-term effects, including reduced pro-

uctivity and a shift from native perennial grasses to invasive an-

ual grasses ( Bartolome et al. 1980 ; Reisner et al. 2013 ). Over time,

eavy stocking rates may reduce profitability and threaten the eco- 

omic and ecological sustainability of a ranch ( Holechek 1988 ).

owever, well-managed grazing has also been used to increase 

eterogeneity of vegetation pattern in grasslands ( Fuhlendorf and 

ngle 2001 ; Fuhlendorf et al. 2012 ), which may have positive

onservation outcomes for biological diversity ( Adler et al. 2001 ).

ildlife and insects can have variable responses to grazing inten- 

ity; some are sensitive to grazing, while other species benefit from

razing-induced changes in vegetation structure ( Severson and Ur- 

ess 1994 ; Derner et al. 2009 ; Johnson et al. 2011 ; Kimoto et al.

012 ). In native grassland systems, livestock grazing is often pre-

erred over other land uses, such as exurban development or cul-
nge Management. This is an open access article under the CC BY license 

v 2024
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Terms of U
ivation, which generally result in higher degrees of alteration and

mpacts to natural communities ( Brunson and Huntsinger 2008 ).

herefore, the continued presence of sustainable livestock produc-

ion enterprises can prevent or slow the threat of habitat loss

y fragmentation and conversion to other land uses ( Brunson and

untsinger 2008 ). 

To avoid or mitigate the undesired effects of livestock graz-

ng and to balance economic profitability with biologic diversity

nd long-term productivity, many rangeland practitioners employ

daptive management strategies ( Wilmer et al. 2018 ; Davis et al.

020 ). Effective adaptive management relies on monitoring rele-

ant indicators ( Joyce et al. 2013 ), translating monitoring results

nto information that can be used by decision makers at relevant

cales, and integrating stakeholder experiences into the scientific

rocess ( Juntti et al. 2009 ; Bestelmeyer and Briske 2012 ; Wilmer

t al. 2018 ). However, climatic variability and spatial heterogeneity

ake it difficult and expensive to adequately measure the ecologi-

al outcomes of grazing management decisions (e.g., setting stock-

ng rates, animal species, or rotations) across large areas and across

any years. As a result, there is a significant lack of useful quanti-

ative monitoring data collected at the landscape scale that can be

asily accessed by land managers or ranchers for adaptive decision

aking ( Bestelmeyer and Briske 2012 ). 

Research into remotely sensed approaches that provide esti-

ates of commonly monitored rangeland attributes such as above-

round biomass (e.g., Anderson et al. 1993 ; Todd et al. 1998 ; Jansen

t al. 2018 ; Jones et al. 2020 ); vegetation fractional cover (e.g.,

arsett et al. 2006 ; Hagen et al. 2012 ; Jones et al. 2018 ; Allred

t al. 2020 ); or bare ground (e.g., Guerschman et al. 2009 ; Jones

t al. 2018 ; Allred et al. 2020 ) has increased in recent years. It

s also becoming more common to attempt to isolate the impact

f grazing on vegetation with remotely sensed data. For example,

esearchers have used single-year analysis to compare estimated

egetation amounts between pixels with different grazing levels

 Todd et al. 1998 ; Numata et al. 2007 ; Jansen et al. 2016 ), time-

eries analysis to track vegetation indices over time in conjunction

ith land/grazing management ( Archer 2004 ; Evans and Geerken

004 ; Washington-Allen et al. 2006 ; Wessels et al. 2012 ; Tsalyuk et

l. 2015 ) and spatial statistics to evaluate changes in spatial hetero-

eneity with grazing ( Sankey et al. 2009 ; Virk and Mitchell 2015 ;

carth and Trevithick 2017 ; Jansen et al. 2019 ). Recently Gillan et

l. (2019) explored the use of remote sensing from an unmanned

erial vehicle (UAV) to quantify the differences in vegetation before

nd after grazing within a single year. 

While these studies highlight the ability of remotely sensed

ata to quantify vegetation amounts and elucidate potential drivers

f vegetation change, getting these data into the hands of range-

and managers in a consistent manner for practical applications

e.g., Butterfield and Malmstrom 2006 ) has been a long-sought

oal ( Marsett et al. 2006 ). In the past few years there has been

 proliferation of tools based on remote sensing intended to as-

ist in rangeland monitoring, management, and planning (e.g.,

ttps://vegmachine.net/ [Beutel et al. 2019] , https://rangelands.app/

 Allred et al. 2020 ; Jones et al. 2020 ], RangeSat [ https://www.

angesat.org/ ], GrassCast [ https://grasscast.unl.edu/ ] [ Peck et al.

019 ; Hartman et al. 2020 ], RDMapper [Ford et al. 2017] ). Although

hese data products are freely accessible to land managers, the po-

ential value of intergrating these data products into grazing mon-

toring and adaptive management frameworks is largely still devel-

ping. 

To incorporate remotely sensed monitoring indicators into 

daptive management of livestock grazing, it is important to iden-

ify the types of indictors that are used in a decision-making con-

ext. Herrick et al. (2012) categorized rangeland monitoring in-

icators into three groups: 1) driving mechanisms (e.g., stock-

ng rates, animal type, rotations); 2) short-term responses (e.g.,
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Nov 20
se: https://bioone.org/terms-of-use
esidual biomass or utilization); and 3) long-term responses (e.g.,

pecies composition, soil stability). Short-term response indicators 

haracterize direct effects of management actions on ecosystem at-

ributes and are used to adaptively manage in a timely manner and

elp interpret trends detected in long-term indicators ( Herrick et

l. 2012 ). Long-term response indicators capture trends in ecosys-

em process and function and provide additional feedback about

he influence of drivers ( Herrick et al. 2012 ). This framework is

elpful for defining monitoring objectives and clarifying the re-

ationships between the short-term monitoring indictors and the

eaningful processes or phenomena in question ( Herrick et al.

012 ). As with in-field monitoring data, remotely sensed moni-

oring data should be tested and applied within existing adaptive

anagement objectives and decision-making cycles. 

In this paper we evaluated the utility of a remotely sensed

iomass product that was created to monitor vegetation responses

o cattle grazing on a grassland in northeast Oregon ( Jansen et

l. 2018 ). Our two main objectives were to determine 1) which

emotely sensed biomass metrics at the pasture scale (40 −250

a) have the strongest correlations to prescribed stocking rates,

 driving mechanism indictor; and 2) which remotely sensed

iomass datasets are most correlated to in-field estimates of end-

f-year utilization, a short-term response indicator used to moni-

or grazing at the plot scale (25 to 50 m 

2 ). Guided by the results

rom these objectives, we then created two data visualizations to

emonstrate practical use of the results for adaptive management.

hese visualizations consist of 1) scatterplots of biomass metrics

ersus stocking rates at the pasture scale and 2) maps of biomass

hange (i.e., the relative difference) and fall biomass data at the

ixel scale, classified into three quantitative categories. 

ethods 

tudy Area 

This study took place on the Zumwalt Prairie in northeast Ore-

on, which is a highly valued remnant of Pacific Northwest Bunch-

rass Prairie ( Fig. 1 ). The Zumwalt Prairie is a moderately produc-

ive (1 200 −1 900 kg · ha −1 ) grassland system that is privately

wned and used primarily for cattle production. The Nature Con-

ervancy, a private landowner within the study area, has been

anaging livestock grazing in accordance with its conservation

oals since 2006 using adaptive management principles. Across the

onservation area, residual vegetation and utilization have been es-

imated annually to provide feedback to managers regarding live-

tock impacts. These measures, along with calculated grazing re-

ponse indices (GRI) ( Reed et al. 1999 ) and managers’ casual obser-

ations, provide the “best available” information to interpret graz-

ng effects and to adjust timing and stocking rates for the follow-

ng year’s grazing rotation. Field and management data come from

astures with a range of different grazing strategies and stocking

ates due to inherent variation in productivity. 

razing Management and Monitoring Data 

asture Stocking Rate Data 

Across the 3-yr study period (2015–2017), stocking rates (an-

mal unit months [AUM] · ha −1 ) were calculated by pasture for

ach year based on records provided by managers including dates,

umber, and type of grazing animal and accessible acres per pas-

ure. Adjustments were made in animal use equivalents (AUEs) for

ifferent types of animals (e.g., bulls had 1.2 AUE, yearlings 0.75

UE, and cow-calf pairs 1.0 AUE). Each stocking rate for each pas-

ure in each year was categorized by season of use on the basis

f the grazing timing: cool summer (May 1–June 30), hot sum-

er (July 1–September 15), and fall (September 16–November 30).
24
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Fig. 1. Zumwalt Prairie is a Pacific Northwest bunchgrass prairie ecosystem located in northeastern Orgon. The shaded area within the map represents the general location 

of pastures analyzed. 

Table 1 

Number of plots sampled for grazing utilization using the Landscape Appearance 

method across the Zumwalt Prairie from two survey campaigns (2015 −2017). 

Yr Survey campaign Utilization plots (N) 

2015 Upland vegetation structure 170 

Riparian stubble height 84 

2016 Upland vegetation structure 125 

Riparian stubble height 92 

2017 Upland vegetation structure 0 

Riparian stubble height 136 
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Downlo
Terms o
hen grazing dates overlapped two seasons, the season with the 

ajority of grazing days was used. Stocking rates across the study

astures ranged from 0 to 1.54 AUM · ha −1 . 

tilization Data 

Plot-scale utilization data were collected across the 2015 −2017 

eld seasons using the Landscape Appearance method ( Coulloudon 

t al. 1999 ). In this rapid qualitative method, observers looked for

vidence of grazing on key forage plants and classified the plot

nto one of six categories corresponding to percent utilization. In 

his study we used Landscape Appearance utilization data from 

wo different monitoring surveys: one from riparian stubble height 

urveys (collected from 2015 to 2017) and the other from upland

egetation structure monitoring (collected only in 2015 and 2016) 

 Table 1 ). For the riparian surveys, plot locations were selected in

 Geographic Information System (ESRI’s ArcMap) by intersecting a 

00-m grid with mapped streams. For the upland vegetation sur- 

eys, plot locations were randomly placed to represent the vari- 

ty of ecological site types and management histories across the 

tudy area. Sampling plots were placed between 50 m and 1 0 0 0

 from roads and > 50 m from stock ponds and fences, and they

ad to be > 100 m apart. The monitoring design for both types

f surveys was intended to evaluate conditions across the whole 

anch, not individual pastures. Plots were revisited in the field each

ear with a Garmin Global Positioning System (GPS) unit but were

ot permanently marked. Plot selection was made without prior 

nowledge of typical patterns of livestock use within pastures. All 

tilization estimates were made at the end of the grazing season

September–November) regardless of when cattle were removed 

rom pastures. 
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 No
f Use: https://bioone.org/terms-of-use
andsat Remotely Sensed Data 

For this study we used Landsat satellite imagery, which has a

ixel resolution of 30 × 30 m. Landsat images have been collected

t 16-d intervals since 1984 and are available free of charge. We

ownloaded the climate data record (CDR) Collection 1 Level 2 

roduct (terrain corrected and processed to at-surface reflectance) 

verlapping the study area for the yr 2015 −2017 from the USGS

arth Explorer website (https//earthexplorer.usgs.gov/). For each 

cene the pixel quality assurance band (pixel_qa) and aerosol band 

ere used to mask clouds, cloud shadows, and smoke over the

tudy site. We clipped the images to study area pastures, masked

ut nongrassland vegetation as defined by the ReGap Ecological 

ystems data ( Kagan et al. 2006 ), and manually masked any tree

r shrub visible with the 2014 National Agriculture Inventory Pro- 

ram imagery that the ReGap Ecological Systems data misclassified 

s grassland habitat but was actually tree or shrub cover type. 

andsat-Derived Aboveground Biomass Datasets 

Our goal was to select images corresponding to peak biomass 

nd postsenescence (end-of-season) timings because most of the 

razing happens between this timeframe in this study area. To 

chieve this, for each of the downloaded and masked scenes, we

omputed aboveground biomass for each pixel across each of the 

aster images using the model developed for this study area by

ansen et al. (2018) . This model relies on three vegetation indices

omputed from the climate data record (CDR) Collection 1 Level 2

urface reflectance products: the normalized burn ratio (NBR) for 

hen the plants are green, the normalized tillage index (NTDI) for

hen the plants are brown, and the normalized difference veg- 

tation index (NDVI) to guide which model (the green or brown

odel) is applied to each pixel in the scene throughout the graz-

ng season. All green and brown models were developed as linear

egressions between the vegetation indices and field data collected 

uring both summer and fall periods over 3 yr from 2015 to 2017,

hich spanned both wet and dry years ( Fig. S1 , available online

t …). The resulting model for Landsat 8 was found to have a r 2 

alue of 0.76 and a root mean squared difference of 32.2 g/m 

2 (See

ansen et al. 2018 for more details). Using this model, we created

iomass datasets across the growing seasons for 2015, 2016, and 
v 2024
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Fig. 2. Biomass estimates across the grazing season for the study area located on the Zumwalt Prairie, Oregon to guide scene selection. Scenes selected for this analysis are 

boxed in with black squares. Landsat 8 data (closed circles) were given preference to increase the available data used for pasture-level statistics. 

Table 2 

Scenes selected for the analysis and associated biomass raster datasets used for the pasture and plot scale analysis. Each of the biomass datasets were computed for each 

year. 

Yr Summer scene dates 

(sensor) 

Fall scene dates (sensor) Pasture scale—biomass raster datasets Plot scale—biomass raster datasets 

2015 6/10 (LS7), 6/11 (LS8) 10/17 (LS8) 1) Summer MaxPasture 

2) Fall 

3) RelDif MaxPasture 

1) Summer MeanPixel 

2) Summer MaxPixel 

3) Fall 

4) RelDif MaxPixel 

5) RelDif MaxPixel 

2016 5/28 (LS8), 6/20 (LS8) 11/11 (LS8) 

2017 5/22 (LS8), 6/23 (LS8) 10/29 (LS8) 
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017 to visualize biomass growth curves and identify scenes that

epresented summer (peak) biomass, as well as end-of-year resid-

al standing crop in the fall ( Fig. 2 ). Due to known differences in

ominant plant phenology, which impacts the timing of maximum

ummer biomass across the study area, we selected two different

cenes for data analysis that were within the peak biomass win-

ow of late May through June and had minimal cloud coverage

ver the study area. From these two summer scenes we created

ean and maximum biomass raster composites for each year at

he pixel scale. For each year, the maximum summer pixel com-

osites (Summer MaxPixel ) were created by selecting the maximum

iomass pixel value between the two summer biomass scenes,

hile the mean summer pixel composite (Summer MeanPixel ) took

he average pixel value between the two summer scenes. At the

asture scale we created one composite image, the summer max-

mum pasture composite (Summer MaxPasture ). This was done by

omputing the average biomass across each pasture for each sum-

er scene and then assigning the higher biomass value to each

asture. We elected to only explore maximum pasture compos-

tes to keep the biomass patterns true to one point in time and

ongruent with the scale of analysis for spatial statistics and inter-

retation purposes. For the fall, we selected the latest and clearest

cene for each year that corresponded to end-of-year standing crop

 Table 2 ). 

Once the summer composites were created at the pixel and

astures scales, they were used along with the Fall biomass raster

ata to compute relative difference biomass datasets using the fol-
 a  

d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Nov 20
se: https://bioone.org/terms-of-use
owing equation: 

efDi f (x , y , z) = 

(
Fall Biomass − Summer Biomas s composite [ x , y , z ] 

)
/ 

Summer Biomas s composite (x , y , z) ) (1) 

From this equation for each year we produced three rela-

ive difference biomass datasets: RelDif MaxPixel , RelDif MeanPixel , and

elDif MaxPasture for plot and pasture scale analysis (see Table 2 ). The

elative difference raster produces negative values when the fall

iomass amount is less than peak summer biomass amount. In this

ase values typically range from −100% to 0, with larger negative

alues indicating greater change. 

asture and Plot Scale Biomass Metrics 

We created multiple statistics that have previously been used

o assess grazing at pasture scales in this system, such as mean

iomass, the coefficient of variation and spatial metrics ( Jansen et

l. 2019 ), as well as percentiles that can provide more informa-

ion on relationships between variables that are not based solely

n measures of central tendency (means and medians) ( Cade and

oon 2003 ). Therefore, for each pasture area that had a corre-

ponding grazing record, we used the biomass datasets from each

ear to compute a variety of summary and spatial statistics. The

ummary statistics calculated using the biomass data by pasture

ncluded the mean, the 10th, 25th, 50th, 75th, and 90th per-

entiles, as well as the standard deviation and coefficient of vari-

tion. To explore measures of spatial heterogeneity, we computed
24
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Table 3 

Spearman rank correlations between stocking rate (AUM · ha −1) and biomass dataset metrics at the pasture scale. This table shows only the metrics that are significant 

across all years of data. For the complete table, see Table S1, available online at ... 

Biomass dataset metric 2015 (n = 37) 2016 (n = 60) 2017 (n = 72) 

r P value R P value r P value 

Fall mean −0 .55 < 0 .001 −0 .56 < 0 .001 −0 .52 < 0 .001 

Fall p10 −0 .56 < 0 .001 −0 .59 < 0 .001 −0 .49 < 0 .001 

Fall p25 −0 .53 < 0 .001 −0 .57 < 0 .001 −0 .50 < 0 .001 

Fall p50 −0 .52 < 0 .01 −0 .54 < 0 .001 −0 .50 < 0 .001 

Fall p75 −0 .54 < 0 .001 −0 .51 < 0 .001 −0 .51 < 0 .001 

Fall p90 −0 .53 < 0 .001 −0 .49 < 0 .001 −0 .56 < 0 .001 

Fall CV 0 .50 < 0 .01 0 .51 < 0 .001 0 .32 < 0 .01 

RelDif mean −0 .32 0 .05 −0 .33 < 0 .01 −0 .54 < 0 .001 

RelDif p10 −0 .50 < 0 .01 −0 .52 < 0 .001 −0 .47 < 0 .001 

RelDif p25 −0 .44 < 0 .01 −0 .47 < 0 .001 −0 .47 < 0 .001 

RelDif p50 −0 .34 0 .04 −0 .33 < 0 .01 −0 .48 < 0 .001 

Table 4 

Spearman rank correlations between pasture level metrics and stocking rate, grouped by season of use. 

Biomass dataset metric Cool summer ( n = 91) Hot summer ( n = 103) Fall ( n = 73) All-season 3-yr mean 

r P value r P value R P value 

Fall mean −0 .21 < 0 .05 −0 .40 < 0 .001 −0 .38 < 0 .001 −0 .33 

Fall p10 −0 .19 0 .08 −0 .37 < 0 .001 −0 .36 < 0 .01 −0 .31 

Fall p25 −0 .18 0 .09 −0 .39 < 0 .001 −0 .38 < 0 .001 −0 .31 

Fall p50 −0 .19 0 .07 −0 .39 < 0 .001 −0 .40 < 0 .001 −0 .33 

Fall p75 −0 .22 < 0 .05 −0 .41 < 0 .001 −0 .38 < 0 .001 −0 .34 

Fall p90 −0 .27 < 0 .01 −0 .43 < 0 .001 −0 .33 < 0 .001 −0 .35 

Fall CV 0 .04 0 .71 0 .27 < 0 .01 0 .33 < 0 .001 0 .22 

Fall Moran’s_I −0 .13 0 .23 −0 .46 < 0 .001 −0 .34 < 0 .001 −0 .31 

RelDif mean −0 .38 < 0 .001 −0 .42 < 0 .001 −0 .28 < 0 .05 −0 .36 

RelDif p10 −0 .39 < 0 .001 −0 .52 < 0 .001 −0 .42 < 0 .001 −0 .44 

RelDif p25 −0 .36 < 0 .001 −0 .48 < 0 .001 −0 .37 < 0 .01 −0 .40 

RelDif p50 −0 .34 < 0 .01 −0 .39 < 0 .001 −0 .29 < 0 .05 −0 .34 

RelDif p75 −0 .36 < 0 .001 −0 .34 < 0 .001 −0 .24 < 0 .05 −0 .31 

RelDif p90 −0 .37 < 0 .001 −0 .34 < 0 .001 −0 .21 0 .07 −0 .30 

Shown are statistics that were significant in at least two out of the three seasons at the 0.05 P value (in bold font, P value < 0.05). 
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he sill, nugget, range, and magnitude of spatial heterogeneity from 

heoretical variograms. Because the pasture scale spatial hetero- 

eneity metrics failed to produce consistent significant relation- 

hips with stocking rate, we only included these methods and re-

ults in the supplemental materials (Supplement Text A1 and Table 

1, available online at…). 

At the plot scale for each sample site we computed two met-

ics: the mean and minimum biomass values extracted across a 

 × 2 pixel window intersecting each in-field monitoring plot for 

ach biomass dataset for each year (see Table 2 ). 

ata Analysis 

asture Scale 

To identify the biomass metrics most sensitive to stocking rate 

t the pasture scale, we calculated Spearman rank correlation co- 

fficients and P values between the pasture stocking rates (AUM ·
a −1 ) and the biomass statistics listed in Table 3 . Only pastures

eeting the following conditions were used for analysis: 1) the 

asture contained at least 20 valid pixels, 2) valid pixels accounted

or > 33% of all possible pixels within the pasture (i.e., pastures

hat were mostly obscured by clouds were dropped), 3) the pasture

as dominated by upland grassland vegetation (i.e., exclusion of 

anyon grassland pastures), 4) the period of grazing in the pasture

ccurred between the selected summer and fall Landsat scenes, 

nd 5) pastures could not have been used for supplemental feed-

ng with hay. We also included ungrazed pastures that met criteria

–3 and 5. We performed this analysis for each year individually,

s well as by season of use (spring, cool summer, hot summer,

all) using all years combined. Only correlations with P values <

.05 are reported here (see Table S1, available online at …, for the
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 No
f Use: https://bioone.org/terms-of-use
omplete list). Following the correlation analysis, we created sim- 

le scatterplots between select biomass metrics and stocking rate 

o visualize these results across the management area by year. 

lot Scale 

To identify the biomass metrics most sensitive to end-of-year 

razing utilization, we computed Spearman rank correlations be- 

ween in-field estimates of percent utilization with the mean and 

inimum plot-scale biomass metrics co-located with each moni- 

oring plot. We did this for each of the biomass datasets listed in

able 2 (plot scale analysis). For plot-level analysis we used the in-

eld data from pastures that were grazed between the dates of the

elected Landsat scenes or were ungrazed for the entire year. We

lso limited the in-field dataset to data collected in October and

ovember to better match the timing of our remotely sensed fall

ata. 

lassifying Biomass Datasets for Monitoring and Management 

nterpretation 

To simplify the interpretation of biomass metrics relative to es- 

ablished conventions of acceptable utilization levels, we classified 

he fall biomass and relative difference maps into three categories 

Low, Medium, and High), using the in-field utilization data col- 

ected each year to guide classification breakpoints. Two classifi- 

ation breakpoints were selected on the basis of the median pixel

alue associated with two landscape appearance utilization classes: 

he 6–20% and 41–60%. Thus, the “Low” biomass class represented 

–5% utilization class; the “Medium” biomass class represented 

tilization classes between 6% and 40%, and the “High” biomass 

lass represented utilization classes > 40% (see Table 6 ).While the

election of breakpoints is admittedly arbitrary, the “High” class 
v 2024
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Table 5 

Spearman rank correlations between in-field utilization measures and biomass raster data at the plot scale. 

Biomass dataset 2 × 2 pixel window stats 2015 2016 2017 

R P value No. r P value No. r P value No. 

Summer meanpixel Mean −0 .17 < 0 .01 250 −0 .16 < 0 .05 215 0 .03 0 .7 139 

Summer maxpixel Mean −0 .17 < 0 .01 250 −0 .09 0 .20 204 −0 .08 0 .38 139 

Fall Mean −0 .33 < 0 .001 203 −0 .46 < 0 .001 212 −0 .47 < 0 .001 114 

RelDif meanpixel Mean −0 .20 < 0 .005 202 −0 .34 < 0 .001 212 −0 .59 < 0 .001 114 

RelDif maxpixel Mean −0 .23 < 0 .005 202 −0 .47 < 0 .001 212 −0 .49 < 0 .001 114 

Summer meanpixel Min −0 .21 < 0 .001 250 −0 .20 < 0 .01 215 −0 .01 0 .87 139 

Summer maxpixel Min −0 .21 < 0 .005 250 −0 .14 0 .05 204 −0 .08 0 .36 139 

Fall Min −0 .32 < 0 .001 203 −0 .44 < 0 .001 212 −0 .47 < 0 .001 114 

RelDif meanpixel Min −0 .26 < 0 .001 202 −0 .37 < 0 .001 212 −0 .62 < 0 .001 114 

RelDif maxpixel Min −0 .28 < 0 .001 202 −0 .47 < 0 .001 212 −0 .53 < 0 .001 114 

Relationships with P values < 0.05 are shown in bold font. 

Table 6 

Definition of biomass class thresholds for mapping using the median biomass pixel values grouped by in-field utilization classes. Bold values were used as breakpoints for 

classifying biomass raster data on maps (see Fig. 4 ). 

Grazing utilization 

range (%) 

Graze class midpoint 

(%) 

Relative difference (%) 

max pixel min 

Fall biomass dry-yr 

(2015) (g/m 

2 ) 

Fall biomass wet-yr 

(2016 −17) (g/m 

2 ) 

Raster class (degree of 

change) 

0 −5 2.5 −35.8 117.8 153.2 Low 

6 −20 13 −40.4 108.8 152.6 Med 

21 −40 30.5 −41.6 90.6 136.5 Med 

41 −60 50.5 −44.0 78.2 131.4 High 

61 −80 70.5 −47.2 63.6 122.5 High 

81 −94 87.8 −51.1 NA 129.0 High 
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Terms of U
reakpoint was selected on the basis of prior research, which es-

ablished a 30% to 40% utilization guideline for bunchgrass vege-

ation to remain productive ( Skovlin et al. 1976 ; Holechek 1988 )

nd the knowledge that high stocking rates with utilization above

5% across a pasture can be detrimental to nesting of some select

pecies of grassland songbirds ( Johnson et al. 2011 ). Differences

n annual production due to growing conditions compelled us to

ompute separate threshold values for the Fall biomass dataset for

015 (a dry year with low annual production) and for 2016 −2017

wet years with high annual production; see Fig. S1). No such sep-

ration was made with the relative difference analysis because in

heory the relative difference equation should normalize the year-

o-year variation in production. Using the threshold values derived

rom the empirical relationship between biomass and in-field uti-

ization, we mapped these categories across the study area to re-

eal patterns of end-of-season vegetation amounts and change in

egetation amounts between summer and fall. 

esults 

emotely Sensed Biomass Metrics Most Correlated to Stocking Rate at 

he Pasture Scale 

Spearman rank correlation coefficients between the pasture 

cale biomass metrics and pasture stocking rates revealed that

he summary statistics were more consistently related to stocking

ate than spatial statistics metrics derived from variogram mod-

ls (see Table S1). Across all years the Fall biomass mean and

ercentile metrics were negatively associated with higher stocking

ates, meaning that as the stocking rate increased, values for fall

iomass were lower and values for relative difference were more

trongly negative. The coefficient of variation (CV) was also corre-

ated ( P values < 0.05), but with a positive correlation to stock-

ng rate (see Table 3 ). With the Relative Difference Max Pasture

RelDif MaxPasture ) dataset, the 10th percentile was most strongly

orrelated to stocking rate across all years, with the mean, median,

nd 25th percentile also having P values < 0.05. While most of

hese correlations have P values constantly < 0.01, none are above

n absolute r value of 0.60, indicating a moderate to weak fit. 
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Nov 20
se: https://bioone.org/terms-of-use
In general, the same metrics that had P values < 0.05 across the

ears also had small and similar P values for season of use when

rouping all 3 yr of data. We did observe a decrease in the number

f metrics with P values < 0.05 across the fall biomass metrics for

ool summer ( Table 4 ). 

asture Scale Data Visualization: Stocking Rate Versus Biomass 

etrics 

We elected to plot two biomass metrics, one from the Fall

ataset and one from the Relative Difference dataset selected based

n their strength and consistency of the correlation across the

ears with stocking rate. These two metrics were Fall mean and

elative Difference 10 th percentile (RelDif p10 ) pasture metrics. Vi-

ualizing these data with scatterplots showed large variability sur-

ounding the linear model trend line for each year ( Fig. 3 , blue

ines), as well as the high range of values in ungrazed or rested

astures. In 2017 there were a few pastures that we noted as

utliers that were either well above (highlighted with the black

quare) or well below (highlighted with red circles) the linear

odel trend line (see discussion for more details). Removing these

astures from the 2017 analysis improved the spearman rank cor-

elations for both the RelDif 10 th percentile ( r = -0.61 from -0.47)

nd the Fall mean biomass ( r = -0.64 from -0.52) metrics. 

emotely Sensed Biomass Metrics Most Correlated to Grazing 

tilization at the Plot Scale 

Correlation coefficients between in-field utilization data col- 

ected at monitoring plots and the spatially corresponding biomass

ata showed negative correlations. Similar to the pasture scale

nalysis results, the correlations were weak to moderate in

trength, with all r values lower than an absolute value of 0.62

 Table 5 ). In most cases, the minimum pixel value in the 2 × 2-

ixel window had stronger negative correlations compared with

he average value across the 2 × 2 pixel window. The minimum

ixel value from the Relative Difference dataset, as well as from

he Fall scenes, were all related to in-field utilization with P values

 0.001. The RelDif dataset had only slightly stronger neg-
MaxPixel 
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Fig. 3. Mean fall biomass and relative difference (10th percentile) across all study area pastures by grazing season and management for the yr 2015 −2017. The trend line 

(simple linear model) in blue provides the overall relationship between the variables and helps to show the pastures that fall well above or well below the average trend. The 

three cool summer pastures highlighted with the black box they were grazed heavily for 5 days each from May 26th to June 9th in 2017, with adequate time for regrowth 

despite high stocking rates. Pastures with lower-than-expected mean fall biomass are denoted with red circles and were thought to have received grazing from trespass 

cattle, which would have increased the stocking rate. 
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tive relationships in most yr (2016 and 2017) compared with fall

iomass data. 

ixel Scale Data Visualization: Classifying Biomass Datasets Based on 

mpirically Derived Utilization Thresholds 

The boxplots (see Fig. 4 ) of the Fall and RelDif MaxPixel datasets

rouped by each Landscape Appearance utilization graze class re- 
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 No
f Use: https://bioone.org/terms-of-use
ealed overlapping distributions of data across graze classes, with 

he median biomass value decreasing with increased grazing uti- 

ization ( Table 6 ). The boxplots for the RelDif MaxPixel (minimum of

 × 2 window) data grouped by utilization class, produced a small

ange in median threshold values from −40.4% separating the Low 

nd Medium classes to −44.4% separating the Medium and High 

lasses. With the Fall biomass data, there was around a 20 g · m 

−2 

ifference separating the Medium from the High raster classes in 
v 2024
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Fig. 4. Boxplots of the satellite-based raster data for a 2 × 2 pixel window at each of 

the utilization monitoring plots, grouped by graze class categories derived from uti- 

lization estimates. Panel A shows fall biomass, separated into low production (2015; 

N = 203; dark gray) and high production (2016 −2017; N = 326; light gray). Panel B 

shows the biomass data (all years combined) as a computed relative difference be- 

tween summer and fall biomass ( N = 528). 
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he wet-years with high production compared with a 30 g · m 

−2 

ifference in the dry low production yr (2015). The difference in

iomass values across production years (i.e., wet year −dry year for

ny graze class) ranged from 35.4 g · m 

−2 in the 0 −5% utilization

lass to a high of 58.9 g · m 

−2 in the 61 −80% utilization class,

llustrating the importance of climate as a major influence on end-

f-season residual biomass (see Table 6 ). 

Reclassifying the biomass datasets using the above thresholds

rovides spatially explicit information on change in vegetation

etween peak summer biomass and fall residual biomass ( Fig. 5 ).

sing the different fall thresholds from wet years with high

roduction versus dry years with low production also reveals large

ifferences in area mapped for each class due to interannual vari-

tion of precipitation (e.g., in 2015 when comparing map B with

ap C). These relative difference maps also show that in 2015 (a

rier yr), larger areas of the High class are mapped compared with

n wetter yr (2016 and 2017). 

iscussion 

Biomass estimates derived from Landsat satellite data were cor-

elated to both a driving indicator (stocking rate) at the pasture

cale and a short-term response indicator (utilization) at the pixel

cale, demonstrating the potential for remote sensing to inform

daptive rangeland management. The application of remote sens-

ng to rangeland management is powerful because of its capacity

o provide biomass estimates continuously across time and land-

capes in ways that are not feasible to evaluate with in-field mon-
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Nov 20
se: https://bioone.org/terms-of-use
toring data alone. However, this source of information is relatively

ew to most managers, and it is necessary to build evidence based

n empirical relationships to begin relating common in-field moni-

oring metrics to remote sensing metrics. By associating traditional

anagement and field data used to monitor relevant vegetation in-

icators with remotely sensed data, an important frame of refer-

nce that increases the usefulness and application of satellite data

or monitoring and management (e.g., Butterfield and Malmstrom

006 ; Bradley and O’Sullivan 2011 ; Tsalyuk et al. 2015 ; Ford et al.

017 ) is provided. 

asture Scale 

Before investigating the potential to use remote sensing as a

ool for monitoring short-term responses, we first wanted to de-

ermine the strength of the relationship between remotely sensed

ata and one of the fundamental management drivers in range-

ands: stocking rate. Across all the metrics explored in our study,

he metrics most sensitive to pasture level stocking rate across

ultiple years were derived from the fall biomass and the relative

ifference between summer and fall biomass. Specifically, we rec-

mmend using the 10th percentile relative difference metric and

he mean Fall biomass metric for monitoring applications in this

ystem. While we explored the use of summer biomass and spa-

ial heterogeneity metrics provided by variograms and the Moran’s

, these metrics were not consistently sensitive to stocking rate

cross all years. The finding that spatial heterogeneity metrics are

ot sensitive to grazing in this grassland system aligns with a

tudy by Jansen et al. (2019) , which showed that the 30 × 30 m

patial resolution is too large to detect finer-scale changes in veg-

tation patch size and heterogeneity that grazing induces on this

lready highly heterogeneous landscape. 

Our biomass to stocking rate relationships were weaker than

ansen et al. (2016) , who found R 2 of up to 0.80 when experimen-

ally controlling the timing and duration of livestock use in pas-

ures that were selected on the basis of similar habitat and pro-

uctivity, as well as Numata et al. (2007) , who found R 2 of 0.70

nd focused on one grass species and had many pasture areas with

igher stocking rates. We were not surprised to find weaker rela-

ionships in our study, which was observational and therefore did

ot control for historical land use and management effects, tim-

ng and duration of grazing, stocking rate, or habitat types. Tim-

ng of grazing is particularly important, as revealed by the weaker

elationships between Fall biomass and stocking rate for pastures

razed early in the year (cool summer) compared with pastures

razed later in the year (hot summer, fall). Also, stocking rate as

 driver is not expected to be strongly related to total change in

iomass as calculated between the summer and fall scenes in pas-

ures that were grazed early in the season and had an opportunity

or regrowth before the summer drought period began (typically

ate July). Furthermore, stocking rate does not account for reduc-

ions in biomass incurred from other herbivores (e.g., trespass cat-

le, elk, ground squirrels, and insects) or from senescence, all of

hich likely affected our correlation results. For example, elk pop-

lations in northeast Oregon have been increasing since the 1990s,

ith recent estimates between 1 0 0 0 and 2 50 0 animals on the

umwalt Prairie (ODFW, unpublished data). Their effects on vege-

ation are not accounted for in our study. 

It is also important to note that the underlying model can in-

uence the relationships observed. While the goal of the biomass

odel was to be general across years and habitat types, it is

nown that the biomass model tends to underestimate vegeta-

ion amount in areas with high perennial grass cover ( Jansen et

l. 2018 ), which in turn will translate reduced accuracy and under-

stimation of change (i.e., the relative difference metric) and resid-

al vegetation amount (i.e., fall biomass) across pastures composed
24
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Fig. 5. Classified relative difference and fall biomass maps using both dry-year (i.e., low production) and wet-year (i.e., high production) thresholds across 2015 −2017. The 

three classes of change are high (red), medium (orange), and low (blue) with 2016 fires circled with red ovals. The white areas are masked data due to clouds. 
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argely of continuous and dense vegetation cover and years where 

rowing conditions tend to increase vegetation cover. Also, the 

odel performs better when vegetation is green (Landsat 8 valida- 

ion r 2 = 0.81, relative root mean square error (rRMSE) = 16.86%) as

pposed to brown (Landsat 8 validation r 2 = 0.70, rRMSE = 26.69%)

 Jansen et al. 2018 ). This introduces more uncertainty with the fall

iomass metrics as compared with estimates in summer. 
f  

aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 No
f Use: https://bioone.org/terms-of-use
Although the pasture scale results showed moderate to weak 

elationships, we believe management insight can be gleaned from 

hese data. For example, plotting fall biomass and relative differ- 

nce data at the pasture scale and categorizing individual pastures 

y their management history and season of use (see Fig. 3 ) al-

ows for examination of the overall relationships and draws at- 

ention to pastures that deviate from the prevailing pattern (i.e., 

ar above or below the trend line). In this example, scatterplots
v 2024
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f fall biomass by year at the pasture scale revealed several pas-

ures in 2017 that had unexpectedly high fall biomass correspond-

ng with high stocking rates. Further examination of the manage-

ent records revealed that these pastures were each grazed for 5

 early in the season (late May to early June). Coupled with the

acts that 2017 was above normal for production and these pas-

ures have inherently high productive potential, it can be reasoned

hat there was significant regrowth between the grazing event and

he time the fall scene was acquired. Using the satellite data in

his way improves a managers’ knowledge of pasture-specific re-

ponses to management, such as potential for regrowth under spe-

ific circumstances, which may lead to adjustments in timing or

ntensity of grazing in the subsequent year. A second example of

nterpreting these plots lies at the other end of the stocking rate

cale. Plotting the 10th percentile of the relative difference by pas-

ure revealed several pastures in 2017 that had abnormally large

elative difference values despite having low stocking rates. When

eviewing this with the land manager, we learned that these pas-

ures had high use by trespass cattle, which was not accounted for

n the manager’s records. Highlighting pastures with greater-than-

esired changes in biomass could allow a manager to investigate

easons for the patterns and, if necessary, reduce stocking rates,

est the pasture entirely for a year, or graze at a different time to

meliorate the conditions. The subsequent years’ relative difference

ap and plots could then provide feedback about the management

djustments. 

lot and Pixel Scale 

Relating the remotely sensed biomass data to in-field grazing

tilization data collected at the plot scale produced similar cor-

elation values as our analysis with stocking rates at the pasture

cale. The moderate to weak results between plot scale data and

he biomass raster data were likely due to several reasons. In-

eld utilization estimation is subjective and can have high observer

ariability ( Smith et al. 2007 ). Also, geographic coregistration and

he spatial size of the field plot to the Landsat pixel can lead to

patial mismatches between what the observer is estimating and

hat the satellite is estimating. Furthermore, as mentioned ear-

ier, the underlying model affects our ability to accurately and pre-

isely estimate a change in vegetation amount or fall biomass at

ny given pixel, which also influences the correlation results. For

xample, biomass in sample plots located in meadows and areas

ith dense vegetation cover are likely to be underestimated, while

iomass at sample plots having extensive moss and lichen cover

ay be overestimated (see Jansen et al. 2018 for more). Previous

tudies have shown that stratifying the landscape by vegetation

ype (e.g., meadow vs. upland) can improve statistical relationships

 Kawamura et al. 2005 ) and is generally helpful when making in-

erences from sample data ( Elzinga et al. 1998 ). Here we com-

ined utilization data that were collected across sites with a vari-

ty of dominant species (i.e., rhizomatous grasses and bunchgrass

pecies). We did this to produce a generalized dataset that could

e easily applied across the study area and interpreted for man-

gement decisions but acknowledge that combining all data across

egetation types may have resulted in a weaker relationship. As

ith stocking rate, the timing of grazing relative to the opportu-

ity for regrowth within the growing season may have also con-

ributed variability to the relationship between in-field utilization

nd biomass raster data. 

Using threshold values to classify biomass maps is a straightfor-

ard way to visualize remote sensing data for quick interpretation.

hen we used data from the landscape appearance method to

lassify maps of the Fall and Relative Difference biomass datasets,

t was easy to see areas with different amounts of vegetation

hange and locations of lower and higher residual biomass
d From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 Nov 20
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mounts and to interpret interannual variability due to climate

see Fig. 5 ). Variability in production that is driven by climate

s well known in grassland systems ( Briske et al. 2015 ), and an

nderstanding of interannual variation is important for the man-

gement of these systems ( Chapin et al. 1996 ; Joyce et al. 2013 ),

s well as analysis of data spanning multiple years (e.g., Archer

004 ; Evans and Geerken 2004 ; Brinkmann et al. 2011 ; Wessels et

l. 2012 ). This is exemplified and easily visualized when applying

hreshold values derived from a dry year with lower biomass to

 wetter year with higher biomass and vice versa. For example,

hen we applied the dry-year (i.e., Low) production thresholds

derived from 2015 data) to the 2016 Fall biomass data, the places

hat appear in the High change category are the patches that had

eceived prescribed burns that year (see Fig. 5 ). Conversely, when

pplying the wet-year (i.e., high) production thresholds (derived

rom 2016 −2017 data) to the 2015 fall biomass data, the majority

f the map is classified within the High class and the pixels with

ow and Medium change fall mostly in places with the greatest

roductivity over time, such as old fields, pastures that have been

ested for multiple years, and areas close to stream channels

 Fig. S2 , available online at …). Using the relative difference

iomass metric instead of the absolute value of fall biomass helps

o overcome the difficulty of interpreting interannual variability

see Fig. 5 ). Mapping the relative difference biomass data across

015 −2017 shows a pattern aligned with management (grazing

nd fire), as well as past land use history such as cultivated

elds. The small range ( < 4%) between the Medium and High

ategories (see Table 6 ) indicates weak sensitivity of this algorithm

o quantifying in-field measures of moderate grazing as estimated

y the Landscape Appearance method. Current research is being

erformed to address this sensitivity by 1) increasing the size of

he in-field utilization sampling plot to better match the size of a

andsat pixel; 2) exploring different selections of pregrazing and

ostgrazing scenes with relation to grazing events; and 3) scaling

p both the in-field and remote sensing data to determine which

cales are most reliable to provide estimates of livestock use within

astures. Further research could also seek to use classification and

achine learning approaches to estimate in-field utilization data

ith a variety of remotely sensed and geographic data layers. 

Thresholds for classifying biomass maps could be derived from

arious sources for different purposes. For example, managers

ould derive thresholds from normal rainfall years and apply these

hresholds to drier yr (i.e., 2015) to locate areas that have the

apacity to remain above ecologically relevant residual biomass

hresholds even in low-production years (i.e., drought refugia). Re-

ults such as these are important conservation tools that help

o focus management on areas that have greater production or

onservation potential (e.g., Wiens et al. 2009 ), since the great-

st difficulty may lie in maintaining the higher range of biomass

uantity as climate variability continues to increase ( Joyce et al.

013 ; Briske et al. 2015 ). By mapping locations of biomass that

tay above important habitat thresholds in most years, managers

an try to maintain those areas by removing management drivers

hat reduce vegetation amounts. User-defined thresholds based on

urrent-year conditions could provide a customized visualization. 

or example, managers who have spent time surveying pastures

ould choose a particular pasture to represent “moderate” use and

hat biomass pasture average could be used as the breakpoint for

lassifying other pastures. 

ntegrating Remotely Sensed Data with In-field Monitoring and 

daptive Management 

Integrating vegetation information provided by satellites into 

eld-based monitoring has the potential to improve sampling de-

igns and thus increase the efficiency and interpretation of field-
24
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Downlo
Terms o
ased data. For example, if the goal is to monitor grazing uti-

ization efficiently and effectively, stratifying the landscape using 

he relative difference raster could potentially improve pasture or 

anch-wide estimates compared with a simple random sampling 

esign. Also, the fall and relative difference maps could be used

s an initial screening tool to identify critical and key areas to

onitor for signs of overuse or trends in plant composition. The

hresholds listed in this study should be continuously improved 

ith new monitoring and research data and tested for applicability

hen land managers define new objectives. Ideally, these remotely 

ensed data can advance the adaptive management cycle in an iter-

tive process whereby the remotely sensed data improves in-field 

razing monitoring efforts by providing better stratification for in- 

reased efficiency. In turn, yearly monitoring data would provide 

eedback to improve the remotely sensed classification of the fall 

nd relative difference biomass monitoring products. 

It is also important to understand how remotely sensed data re-

ates to in-field monitoring data and how this relationship affects 

nterpretations for adaptive management. First, utilization and rel- 

tive difference in biomass are estimates of two different things: 

tilization is an estimation of what percentage of forage plants

ave been removed, while relative difference in biomass is an es-

imate of the change in total biomass between two points in time,

ncluding losses due to senescence. Although the two indicators 

re both expressed as percentages and are expected to coincide 

n a relative way, many methodological factors (i.e., the accuracy 

f the biomass model) and ecological factors (i.e., regrowth, sum- 

er decomposition) impact the strength of this relationship. Fur- 

her development and study between this relationship are needed 

o help managers transition to using remote-sensing indicators. At 

resent, we do not consider relative difference to be a direct proxy

or utilization. Second, because stocking rate does not account for 

eductions in biomass incurred from other herbivores (trespass cat- 

le, elk, ground squirrels, and insects) or from senescence, we ad-

ise caution when interpreting patterns of total biomass change 

cross a pasture; some of these changes were caused by livestock,

ut not all. For this reason, we refrain from interpreting relative

ifference maps strictly as indicators of livestock use patterns. We 

re currently addressing these issues by placing GPS collars (e.g., 

arl and Sprinkle 2019 ) on a large percentage of cattle within

erds to narrow down where livestock use is happening within

ach pasture and relating those GPS location data to both in-field

tilization measures and remotely sensed vegetation measures to 

rovide a more complete understanding of the strengths, weak- 

ess, and relationships between field and remotely sensed data. 

astly, while many sources of satellite data are freely available (e.g.,

andsat, Sentinel, MODIS), and there are various platforms that use 

hese data for management-oriented tools (see Introduction), the 

on-the ground” relevance and effectiveness of such data products 

re not necessarily guaranteed. 

In our study we tested the relationship between a previously 

eveloped biomass model specific to a grassland type with limited 

eographic extent and two grazing-related indicators. While there 

re costs associated with data collection, model development and 

nline tool development (i.e., RangeSAT.org) methods for model 

evelopment and similar tests can be performed in other range-

and systems. For example, we are currently working on creating 

nd testing models in sagebrush steppe habitat following simi- 

ar workflows described by Jansen et al. 2018 . However, this de-

ree of model specificity may not be necessary in all places or

or other management-related questions, and existing broad-scale 

atasets ( Allred et al. 2020 ; Jones et al. 2020 ) may be sufficient

or improving in-field sampling designs, monitoring rangeland veg- 

tation amounts over time, or helping to set stocking rates (see

udson et al. 2020 ). Regardless of the spatial extent (i.e., local vs.

lobal models) of the underlying data, additional work is necessary 
aded From: https://bioone.org/journals/Rangeland-Ecology-and-Management on 04 No
f Use: https://bioone.org/terms-of-use
o test and inform remote-sensing products for livestock manage- 

ent and short-term use-based monitoring. To unlock the poten- 

ial of remote sensing for monitoring and management, collabo- 

ation among scientists, land managers, and ranchers will be im- 

ortant. Such collaborations should include direct input from land 

anagers and ranchers regarding the relevance of data products 

or decision making, along with education about both the uncer- 

ainty associated with the underlying model but also the most ap-

licable ways to integrate these data into monitoring and adaptive 

anagement. Future work aimed at comparing multiple remotely 

ensed vegetation products with various management actions and 

r disturbances would provide guidance to end users regarding the 

ost applicable uses, as well as provide valuable information to 

cientists who seek to improve these tools over time. 

onclusion 

While many remote-sensing studies seek to understand how 

tocking rate or grazing intensity change the aboveground es- 

imates of vegetation or vegetation indices ( Todd et al. 1998 ;

awamura et al. 2005 ; Jansen et al. 2016 ), few have related esti-

ates of grazing utilization with satellite-based remotely sensed 

ata from pregrazing and postgrazing scenes or with estimates of 

nd-of-season residual biomass. In performing the analysis in such 

 way, we hope that this technology will be more easily adopted

nd understood for short-term monitoring and adaptive manage- 

ent. The ability to monitor large landscapes with satellite data is

n important step in improving in-field data collection efforts, the 

daptive management cycle, and conservation outcomes at mean- 

ngful scales. In this study we attempted to move beyond the

tatistics of modeling of vegetation amounts with remotely sensed 

ata and demonstrated how remotely sensed vegetation data can 

irectly inform adaptive management. 
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