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Abstract

Embryo implantation is one of the hottest topics during female reproduction since it is the first dialogue between maternal uterus and developing
embryo whose disruption will contribute to adverse pregnancy outcome. Numerous achievements have been made to decipher the underlying
mechanism of embryo implantation by genetic and molecular approaches accompanied with emerging technological advances. In recent
decades, raising concepts incite insightful understanding on the mechanism of reciprocal communication between implantation competent
embryos and receptive uterus. Enlightened by these gratifying evolvements, we aim to summarize and revisit current progress on the critical
determinants of mutual communication between maternal uterus and embryonic signaling on the perspective of embryo implantation to alleviate
infertility, enhance fetal health, and improve contraceptive design.

Summary Sentence
We revisit the progress on the critical determinants of mutual communication between maternal uterus and embryonic signaling on the
perspective of embryo implantation and aim to advance the mechanism study of embryo implantation and ultimately alleviate infertility, enhance
fetal health, and improve contraceptive design.
Keywords: Embryo implantation, diapause, activation, embryonic signal
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Introduction

Embryo implantation involves the adequate mutual con-
versations between implantation competent embryo and
receptive uterus under the precise orchestration of molecular
interactions directed by steroid hormones estrogen and
progesterone. Embryo implantation is the one of the critical

rate-limiting steps of pregnancy success, whose quality is
sophisticatedly determined by both embryonic and maternal
signaling [1]. Accompanied with technological advance, the
elaboration of embryo implantation is updated encompassing
earlier genetic evidence, current epigenetic modification and
further to endometrium and embryo cell heterogeneity. Even
with these abundant emergent evidences, the detailed and
ingenious mechanism governing the orderly transitions of
implantation events is still far to fully decrypt.

The hormone responsive uterus is derived from the inter-
mediate mesoderm and Mullerian ducts with a monolayer
of luminal epithelium surrounded by undifferentiated mes-
enchyme. The epithelium subsequently buds and invaginates
into endometrium to form glands at the developmental win-
dow at postnatal day (PND) 6–9 [2, 3]. The undifferenti-
ated mesenchyme develops into stroma under the guiding
of subepithelial Amhr2 positive cells [4]. The formation of
functional endometrium is accompanied with the develop-
ment of myometrium from mesenchyme which is not fully
illustrated as well as the infiltration of distinct immune cells
[3]. In adult mouse uterus, the mesenchyme derived stromal
cells are further classified as five distinct cell types, including
vascular smooth muscle cells located around large basal blood
vessels, pericytes positioned around smaller vessels through-
out the tissue, and three divergent fibroblast cells [5]. The
deciphering of cell-type specific functions of these cells will

Downloaded From: https://bioone.org/journals/Biology-of-Reproduction on 24 Apr 2024
Terms of Use: https://bioone.org/terms-of-use

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/biolre/ioac135


340 Embryonic signaling ensures embryo implantation, 2022, Vol. 107, No. 1

open new avenues to decrypt the regulatory apparatus of
transient embryo implantation window and embryo–uterus
communications.

Embryo implantation

Although the strategies of embryo implantation are species
dependent, the ultimate goal is to establish adequate com-
munications between fetus and mother. For mice, this pro-
cess is a little tortuous since the embryo needs to settle
down in the uterine implantation chamber by the adhesion
of lateral trophectoderm to uterine wall and subsequently
to remove the surrounding epithelium by a nonapoptotic
process termed entosis and apoptotic process mediated by
embryonic Tumor necrosis factor (TNF) and epithelial TNFRI
to establish the embryo–stroma communication and induce
stromal cells decidualization at anti-mesometrial (AM) site,
then deeply invade into maternal uterus at mesometrial (M)
site, the entry site of blood vessels into the uterus [6, 7]. For
humans, this process is more straightforward by orienting the
polar trophectoderm (TE) with inner cell mass (ICM) toward
the epithelium to penetrate into stroma to initial intimate
dialogue between blastocyst and uterus [1].

Newly developed 3D staining and tissue clearing provides
spatial cues for this enigmatic process and cast new opinions
for this black box. Although the even distribution of implanta-
tion site in uterus is described for many decades [8], it remains
disputable about how the implantation chamber forms which
have two prevailing conjectures: formed before embryo enters
into the uterus and formed by the implanting embryo. The
advancement of 3D staining provides innovative perspective
that there are regular wrinkles-like epithelial evaginations
evenly distributed at both sides of luminal epithelium [9].
Whether these folds herald future implantation sites warrant
further attempts. VANGL2, a critical member of planar cell
polarity (PCP) whose lose remarkably disrupts the epithelial
architecture and contributes to inferior embryo implantation,
is supposed to participate the appropriate implantation cham-
ber formation by regulating the arrangement of epithelium
[9]. After the embryos enter into the lumen, they gradually
gather in the middle of uterus and travel back and forth
to be evenly distributed in the uterus [10]. Additionally, the
appropriate embryo distribution is also regulated by LPA3
and myometrial β-AR (β2-adrenoreceptor) signaling [11, 12].
It is of potential interest whether the pre-distributed embryos
will home to these wrinkles-like pockets. It is well recognized
that the mouse embryos need to invade into decidualized
stromal cells at AM site accompanied with thinner decidua
with the progress of pregnancy based on the observation of
2D histological section, while 3D staining and the fact of rare
stromal cells proliferation after day 8 provide an alternative
explanation that the thinner decidual would be primarily
ascribed to the rapid growing embryo similar to inflated
balloon. The revisit of embryo implantation at another dimen-
sion will remarkably advance our understanding on embryo
implantation.

The stability of the receptor of pregnancy
hormone: progesterone receptor

Receptivity preparation involves intricate reciprocal interac-
tion between stromal and epithelial cells under the instruction
of steroid hormones estrogen and progesterone (P4). During
early pregnancy, influenced by preovulatory estrogen (E2),

the epithelium proliferation is almost ceased on D1 (the first
day post-coitum) then undergoes massive apoptosis on day
2 owing to long exposure to ovulation estrogen [13]. The
uterus then gradually switches from an estrogen dominate to
progesterone dominate milieu on day 3 characterized with
incited stromal cell proliferation in stromal PR-dependent
manner which account for synthesized progesterone from
newly formed corpus luteum [14]. Synchronized with small
estrogen surge on day 4, P4 prepares the hostile uterus to
implantation favorable environment by stimulating intensive
stromal cells proliferation, epithelium cell cycle quiescence,
and differentiation [15]. Although the genomic regulation
of PR after binding with P4 has been unraveled in both
mouse and human uterus, the stability of PR protein is not
fully explored. Utilizing genetic, biochemical, and pathophys-
iological approaches, P4-PR responsiveness is evidenced by
post-translational modification via Bmi1 polycomb ring finger
oncogene (BMI1) and ubiquitin protein ligase E3A (UBE3A)
mediated PR ubiquitination in a polycomb complex inde-
pendent manner [16]. Normally, as a critical component of
the PRC1, BMI1 directs the ubiquitination of lysine 119
of histone H2A through provoking the complex’s E3 ligase
activity to restrain gene expression [17, 18]. The potentially
novel regulatory mechanism of BMI1 in governing endome-
trial P4-PR responsiveness through ubiquitination provides
an alternative regulation of PR transcriptional activation in
embryo implantation. Our recent work also provides evidence
that SOX4 (SRY-box 4), the highest expressed SOX member
in mouse and human uterus, modulates PGR stability by
repressing E3 ubiquitin ligase HERC4-mediated degradation
[19]. In a word, emerging evidence imply that PR stability is
regulated by ubiquitination modification through divergence
mechanisms (Figure 1). Since PR can also be modulated by
phosphorylation [20] and acetylation [21], whether there are
other covalent modifications of PR and how these modifica-
tions affect PR function in pregnancy deserve further efforts.

The landmark of transcription regulated
by ERα in embryo implantation

Epigenetic landmarks dynamically and reversibly regulate
gene expression without changing DNA sequence. As
an important sensor of external environment, epigenetic
medication also contributes to inherent diversity by pro-
grammed DNA packaging [22]. Accumulated data have
been emerged for those modifications in reproduction. As an
essential transcription factor, ERα plays vital roles in uterine
development and embryo implantation [23–25]. The direct
target genes of ERα are identified in uterus by integrating
genomic-wide mRNA and binding site assay, such as insulin-
like growth factor 1 (IGF1) and PR [26, 27]. The poised
promoter-proximal phosphor-Ser5 polymerase II (p-Ser5-Pol
II) enrichment in some rapidly induced genes after estrogen
treatment supports the underlying mechanism for acute
estrogen response. Noticeably, the binding of ERα and Pol
II at enhancer regions insinuates the transcription of potential
enhancer RNA (eRNA) [28, 29]. Recently, the deletion of
enhancer located in the upstream of IGF1 remarkably ablates
IGF1 expression, which further corroborates the physiological
function of these enhancer in uterus [30]. It is interesting to
notice that there is a significant enrichment of ERα and Pol II
at 20 kb downstream of LIF [27], whether this region behaves
as an eRNA responsible for LIF expression needs to be further
determined.
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Figure 1. PR stability and transcriptional activity regulation in uterus.

FoxA2 is a pivotal factor for implantation by regulating LIF
expression in glands [31, 32]. As a multiple face factor, the
function of FoxA2 is overtly different in neonatal and adult
mice [33, 34]. The FoxA family members interact with ERα

to influence epigenetic signature establishment in the presence
of E2 in MCF7 cells [35]. In vivo evidence also shows that the
FoxA1/A2 deficient female mice predispose to develop liver
cancer, but not in male, ascribing to the mostly overlapping
peaks of Foxa2 and ERα in female liver [36]. Whether FoxA2
would regulate estrogen targets through affecting ERα activity
in glands warrants further efforts.

With respect to PR, genomic evidence reveals that there is
an array of binding sites in both promoter and enhancer [37].
The widely overlapping of ERα and PR binding sites indicates
that ERα and PR would potentially function together to alter
histone modification to guide gene expression. Meanwhile,
PR also directs gene expression by cooperating with other
transcription factors. For instance, PR and SOX17 regulate
Indian hedgehog (IHH), expression in the epithelium at distal
enhancer to modify epithelium–stroma communication [38].
GATA2 is a recently identified essential gene for embryo
implantation and decidualization by not only directly regu-
lating PR expression but also modulating genome-wide PR
transcriptional activity as a coregulator of PR [39].

Spatial–temporal expression of embryo implantation asso-
ciated genes is a complex process involving transcription
factor binding, chromatin modification mediated by histone
alteration, and subsequent chromatin architecture configura-
tion (Figure 2). Until now, the genome-wide binding of tran-
scription factors in the uterus is very limited, further efforts
are encouraged to untangle previously unappreciated uterus
specific pioneer factors and their interactions with histone
landmark and chromosome conformation [40, 41].

Maternal epigenetic modification regulates
embryo implantation

FOXAs and GATAs, representative pioneer factors possessing
nucleosome-binding properties that distinguish from other

DNA-binding factors, actively facilitate the assembly of regu-
latory factors on the DNA to modify opening the chromatin
locally to recruit other chromatin modifiers and coregula-
tors, including hormone receptor ERa [42]. Among them,
Gata2, one of critical PR downstream target genes, is highly
expressed in uterus modulating a key regulatory network
of gene expression for progesterone signaling in uterus [39,
43, 44]. While how these uterine pioneer factors direct local
epigenetic alteration remain intangible. Epigenetic modifi-
cation signature participates in many fundamental biologi-
cal processes by influencing gene expression and some of
these modifications inherit to the next generation through
germ cells without changing genome sequence. There are two
important complexes: polycomb repressive complex 1 (PRC1)
and polycomb repressive complex 2 (PRC2) which contain dif-
ferent components. The core components of PRC1 encompass
Ring1A and Ring1B, which are E3 protein ligases responsible
for ubiquitylation of histone H2A and gene repression [45],
chromoboxs (CBXs) family, polycomb group RING finger
protein (PCGF) family, polyhomeotic-like (PHC) family, and
RING1 and YY1-binding protein/YY1 associated factor 2
(Rybp/Yaf2) [46].

Most of the components of PRC1 are differentially and
spatiotemporally expressed in the peri-implantation uteri
with H2AK119ub1 (mono ubiquitination of histone-H2A
at lysine-119) and H3K27me3 colocalized with Cbx4/2 and
Ring1B in the polyploid decidual cells. And inhibition of
PRC1 activity by Ring1A/B inhibitor compromises decidual-
ization and polyploidy development during early pregnancy.
Meanwhile, interfering CBX4 expression in stroma cells also
shows defective stromal cell decidualization and polyploidy
development in vitro [47]. While the in vivo function of these
components of PRC1 remains ambiguous.

PRC2 is an important H3K27 methyltransferase regulating
gene repression in the presence of enhancer of zeste 1 PRC2
subunit (EZH1) or enhancer of zeste 2 PRC2 subunit (EZH2),
embryonic ectoderm development (EED), SUZ12 PRC2
subunit (SUZ12), and RB binding protein 7 (RBAP46) or RB
binding protein 4 (RBAP48) [48]. The increased H3K27me3
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Figure 2. The genomic transcriptional activation of ER in uterus.

enrichment at the promoters of stromal chemokine (C–C
motif) ligand 8 (CCL8) and chemokine (C–C motif) ligand
9 (CCL9) contributes to T cell migration from stroma to
myometrium to confer a local immune privilege region
for embryo developing, indicating the importance of this
epigenetic hallmark in pregnancy [49]. EZH2 reported
dynamic change in human uterus and obviously depressed
in decidualized stromal cells, emphasizing the essential role
of EZH2-PRC2 mediated chromatin remodeling in human
endometrium [50, 51].

The prevailing hypothesis is the hierarchical model that
PRC2 is recruited to target locus to catalyze H3K27me3 then
recognized by PRC1 to modify H2AK119ub1 [52]. While
emerging evidence also show that PRC2 functions as down-
stream of PRC1 by reading H2AK119ub1 [53]. The physio-
logical significance of PRC2 complex and its components in
embryo implantation still remains to be elucidated.

Currently studies primarily focus on H2 and H3 modifica-
tion, emerging evidence concerning H4 modification is also
been well recognized recently. Histone H4 Lys 20 methylation
(H4K20me1) and the methyl-transferase activity of SET8 (PR-
Set7/KMT5a) are involved in regulating distinct processes
ranging from the DNA damage response, chromatin conden-
sation, and DNA replication to gene regulation [54]. Loss of
PR-Set7 is catastrophic for the mouse embryonic development
due to embryonic lethality and arrest between the four- and
eight-cell stages [55]. These findings have placed PR-Set7 and
H4K20me as central nodes of many important pathways.
Genome-wide study shows that H4K20me1 is enriched at
the coding region of active genes and associates with chro-
matin compaction [56, 57]. PR-Set7 is extensively expressed
in the postnatal uteri, whose conditional deletion resulted in
a complete lack of endometrial glands in postnatal uterus
which attributed to abolishment of the dynamic endometrial
epithelial population growth during the short window of
gland formation from PNDs 3–9 [58]. This study also raises
a novel hypothesis of ‘epithelial population growth threshold’
for adenogenesis governing uterine gland formation.

Maternal signaling is vital for embryo
activation

Embryo implantation necessitates the intricated communica-
tion between both uterus and embryo. Embryo implantation
would be postponed for several days in ovariectomized mice
on pregnancy Day 4 before the presumed estrogen surge in the
presence of P4 which can be terminated by E2 and P4 admin-
istration on Day 7, undoubtedly implying the indispensable
role of maternal uterus on embryo activation. While little to
rare is known about the maternal signaling curbing embryo
activation, there is an ingenious experiment by transferring
dormant embryos into estrogen pre-injected recipients for
different time points. The results show that the most effective
activation of dormant embryo is observed in 1 h estrogen pre-
injected recipients and then gradually decreased and totally
failed 4 h later (Figure 3) [59]. These results denote that the
rapid activation of both embryos and uterus is critical for
embryo implantation. There are evidence that E2 activates
uterus and embryo separately. For uterus, E2 is documented
to induce receptivity opening in delayed uterus for up to 24 h
[23]. Meanwhile, the E2 metabolite 4-hydroxy-E2 (4-OH-E2)
is proven to be one of the critical estromedins to activate
embryo by maternal CYP1B1 [60]. In summary, the above
proofs signify that embryo is mainly activated by E2 and
occurs at a very transient time, probably through 4-OH-E2
in ERα independent manner. While it is notable that CYP1b1
only expresses in stromal cells but not in epithelium. To
depict, the detailed maternal signaling contributing to embryo
activation remains a formidable challenge.

Currently, there are several factors that have been reported
related to implantation clock disruption. Msh homeobox 1
(MSX1) and Msh homeobox 2 (MSX2) are mainly expressed
on Days 3 and 4 uterine epithelium, whose loss contributes
to deferred embryo implantation [61]. Moreover, mechanism
study reveals that MSX1/2 regulates LIF expression, which
is a critical maternal factor for receptivity regulation by acti-
vating STAT3 phosphorylation via LIFR and GP130 [61–64].
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Figure 3. Embryo activation by estrogen at short window. Green color represents serum estrogen concentration after estrogen injection.

Additionally, MSX1/2 ablation also leads to uterine PCP aber-
rant in epithelium by modulating WNT5a/RORs/VANGL2/
SCRIB signaling pathway [64–66]. Furthermore, the observa-
tion of sustained uterine expression of MSX1/2 in multiple
diapause species designates its conserved role in divergent
mammalian [67, 68]. Leukemia inhibitory factor (LIF), an
essential implantation factor derived from glands of Day 4
uterus, is supposed to be critical for receptivity opening [69]. It
is interesting that there is complicated entanglement between
LIF and MSX1/2. On the one hand, MSX1/2 deficiency com-
promises LIF expression on Day 4 glands. On the contrary, E2-
induced epithelial MSX1 disappearance and dormant embryo
implantation in delayed uteri are dependent on maternal
LIF [61]. The casual relationship between these two factors
deserves further efforts.

Since LIF is critical for stem cell stemness, it is imaginable
that maternal factors also play a vital role in embryo develop-
ment and activation. Similar scenario is also observed for HB-
EGF. HB-EGF is expressed in maternal epithelial cells with its
receptor expression in blastocyst as well as its binding on the
surface of blastocyst [70, 71]. While the detailed regulatory
regiment of these maternal growth factors on embryo activa-
tion remains obscure, there is an explicit experiment proven
that 4-OH-E2, PGE2, and its downstream secondary messen-
ger cAMP activate dormant embryo efficiently to implant into
delayed uteri treated by 2-fluoroestradiol (2-FL-E2), an E2
derivation which cannot be metabolized to 4-OH-E2 and only
activate maternal uterus but not embryos [60]. It is possible
that uterine epithelial COX2-PGE2 activates diapausing
embryos by eliciting cAMP level after binding to its receptor.
Additionally, our previous work shows that RBPJ instructs
embryonic-uterine orientation to ensure decidual patterning
in a stage-specific manner corroborating the concept that
embryonic-uterine orientation requires appropriate guidance
from developmentally controlled uterine signaling [72], while
the underlying mechanism underpinning maternal uterus
directs embryo remains largely uncertain. To decipher the
latent crosstalk between embryo and epithelial cells in human
and mouse, we integrate published data in receptive epithe-
lium and implantation competent embryo data and probe
the prioritized ligands and corresponding receptors [73–75].
Intriguingly, apart from LIF, it appears that there are some
previously unappreciated ligand–receptor pairs deserving
further attention, such as CSF1-CSF1R in human (Figure 4).

In conclusion, until now, marginal progress has been made
on maternal factors responding to embryo activation. There
is another possibility that some small molecules derived from
epithelial cells via extracellular vesicles endow the embryo
diapause, such as Let-7 [76]. How progesterone maintains
high level of Let-7 in epithelial cells remains elusive.

Embryo diapause and activation

In wild animals, nutrition is considered to be a critical factor
for embryos diapause based on the observation of a delay
of parturition to ensure sufficient nutrition and survival of
the infant, which bring out the conjecture that metabolism
is one of the critical determinants for embryo diapause [77].
Especially, evidence support that the inhibition of polyamine
synthesis largely causes embryo diapause in both mouse and
mink [78, 79]. A recent study also shows that the content
of amino acids changes significantly in delayed and activated
uterine fluid in roe deer, which is supposed to be relevant with
mTOR signaling activation [80].

Especially, a recent study comparing the transcriptomic and
proteomic changes in diapause and activated embryos reveals
downregulated mTOR signaling with decreased glycolysis in
diapause embryo [81–83]. Moreover, arginine, leucine, and
glutamine are proven effective to stimulate porcine trophec-
toderm cells’ proliferation [84]. Since leucine and glutamine
are reported to promote mTORC1 translocation to the lyso-
some to incite downstream signaling pathway [85], it is very
possible that similar scenario is also applicable for embryo
development. The observation that mTOR inhibitors target-
ing both mTORC1 and mTORC2 induce reversible pausing of
mouse blastocyst strongly corroborates this hypothesis. The
mechanism is partly due to global profound suppression of
gene transcription [86]. The fact that targeting mTORC1 only
marginally extend blastocyst survival indicates the essential
role of mTORC2 in delayed blastocyst, while convincing
evidence warrants further efforts. Another interesting study
provides evidence that diapause embryo is characterized by
increased lipolysis which might be due to reduced fatty acid
β-oxidation. The metabolite analysis in diapause and pre-
implantation blastocyst offers insightful information for the
mechanism of embryo delay and reactivation. The increased
leucine degradation associated genes and leucine degradation
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Figure 4. Potential interactions between receptive epithelium and implantation competent embryos. The prioritized ligands in receptive epithelium and
their target signaling pathways in competent embryos in mouse (A) and human (B).

metabolites in diapause blastocyst in consistent with the con-
ception that leucine-activated mTOR signal is critical for
embryo activation [87]. While how to reconcile the observa-
tion of increased glutamine demand and diminished mTOR
requires further experiments to define the enigmatic mecha-
nisms.

A fascinating feature of dormant blastocysts is the activa-
tion of autophagy to prolong its survival and the disruption of
autophagy is associated with reduced blastocyst survival [88].
Since mTOR signaling is downregulated in diapause embryos,
how activated autophagy is regulated in diapause embryo
remains unclear.

Embryonic signaling guides embryo
implantation
The mechanism of embryo diapause and activation is widely
discussed, while how implantation competent blastocyst
educates receptive uterus to facilitate implantation is largely
ambiguous. The evidences originate from growth factors
soaped beads transferring into receptivity uterus support
that embryonic HB-EGF and IGF1 are effective to initiate
implantation [89]. These embryonic signals are first supposed
to direct the formation of tight junctional permeability barrier
in the decidualizing stroma [90]. To globally depict the
critical embryonic factors essential for embryo implantation,
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Figure 5. The communications between embryo and maternal uterus.

microarray was first applied to determine the potential
molecule. HB-EGF pathway as well as metabolism, tran-
scriptional regulation, and cell cycle genes are differentially
expressed in delayed and activated blastocyst [83]. To
profoundly illustrate the potential embryonic determinants,
high-throughput RNA-Seq was utilized to compare the
transcriptome of delayed, activating (6 h after E2 injection),
and activated (12 h after E2 injection) embryos. We notice that
the proinflammatory factors, including TNFα and S100A9,
are obviously increased in the activated embryos [82]. Our
previous work shows that embryonic TNF is critical for
epithelium removal through epithelial RAC1-Pak1-ERM
pathway via TNFR1 and p38 [7]. Furthermore, our lab also
notices that S100A9, which is highly expressed in activated
embryos, significantly promotes embryo implantation [82].

IGF1 is assumed to be a critical embryo derived factor
to promote embryo implantation [89]. We first detected the
expression of its receptor in peri-implantation uterus. Intrigu-
ingly, IGF1R is specifically localized in epithelium. The com-
promised embryo implantation by abrogating IGF1R in whole
uterus or only epithelium strongly underscores the vital role of
IGF1R. Our result also surprisingly observed that embryonic
IGF2 is essential for embryo implantation initiation [91].
Collectively, we have very limited evidence of how embryo
interplay with maternal uterus to facilitate embryo implan-
tation. To comprehensively interrogate, the communication
between embryo and uterus still remains a huge challenge and
requires further investigation (Figure 5).

Concluding remarks and future perspectives

Accumulating evidences show that there is adequate entan-
glement between implantation competent blastocyst and

receptive uterus. While this process is largely constrained
due to the rare material accessibility of embryos. Advances in
chromatin and chromosome research using sequencing-based
genomic approaches with limited number of cells will largely
pave the way for the epigenetic landmarks of the diapause and
delayed embryos [92]. Since blastocyst encompasses epiblast,
ICM, polar TE, and mural TE, the contribution of each
cell type in embryo implantation gradually attracts scientist
attention, the multi-omic single-cell signatures of heterogenic
embryo will also definitely shed new light on the mechanism
study of embryonic signal on embryo implantation [93]. Due
to the ethical limitation, it is difficult to investigate the process
of human implantation in vivo. The development of suitable
in vitro embryo implantation model resembles human is
imperative. The successfully established various assembled
endometrium in vitro will ensure the study of the cross talk
between embryo and endometrium [94–99]. Meanwhile, there
are also diverse trials to construct blastoids or blastocyst-
like cysts in vitro to effectively and faithfully mimic cellular
determination and morphogenesis according to the in vivo
developmental pace [100–106]. Future functional studies
leveraging genetic modification in these in vitro models will
greatly advance the mechanism study of embryo implantation
and ultimately improve pregnancy outcome.
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