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Abstract
Appropriate soil management maintains and improves the health of the entire ecosystem. Soil appropriate administration

necessitates proper characterization of its properties including soil organic matter (SOM) and soil moisture content (SMC).
Image-based soil characterization has shown strong potential in comparison with traditional methods. This study compared
the performance of 22 different supervised regression and machine learning algorithms, including support vector machines
(SVMs), Gaussian process regression (GPR) models, ensembles of trees, and artificial neural network (ANN), in predicting SOM
and SMC from soil images taken with a digital camera in the laboratory setting. A total of 22 image parameters were extracted
and used as predictor variables in the models in two steps. First models were developed using all 22 extracted features and then
using a subset of six best features for both SOM and SMC. Saturation index (redness index) was the most important variable
for SOM prediction, and contrast (median S) for SMC prediction, respectively. The color and textural parameters demonstrated
a high correlation with both SOM and SMC. Results revealed a satisfactory agreement between the image parameters and the
laboratory-measured SOM (R2 and root mean square error (RMSE) of 0.74 and 9.80% using cubist) and SMC (R2 and RMSE of
0.86 and 8.79% using random forest) for the validation data set using six predictor variables. Overall, GPR models and tree
models (cubist, RF, and boosted trees) best captured and explained the nonlinear relationships between SOM, SMC, and image
parameters for this study.

Key words: digital camera images, image color and texture features, cubist, random forest, soil characterization, computer
vision

Résumé
Une bonne gestion du sol gardera l’écosystème en santé et en rehaussera la vitalité. Pour cela, il faut d’abord en caractériser

correctement les propriétés, notamment la concentration de matière organique (CMO) et la teneur en eau (TE). La caractéri-
sation du sol par l’image laisse entrevoir un potentiel supérieur à celui des méthodes classiques. Les auteurs ont comparé la
performance de 22 algorithmes de régression et d’apprentissage automatique supervisé, y compris des machines à vecteurs de
support (MVS), des modèles de régression gaussiens (MRG), des forêts d’arbres décisionnels et des réseaux neuronaux artificiels
(RNA) pour prédire la CMO et la TE à partir de photos du sol prises avec un appareil numérique en laboratoire. À cette fin,
ils ont extrait 22 paramètres des images et s’en sont servi comme variables explicatives en deux étapes, dans les modèles.
Tout d’abord, ils ont élaboré les modèles à partir de ces paramètres, puis ils y ont appliqué un sous-ensemble constitué des six
meilleurs à la prévision de la CMO et de la TE. L’indice de saturation (rougeur du sol) est la variable la plus utile pour prédire
la CMO, le contraste (médiane de S) ayant la même utilité pour la TE. La couleur et la texture sont des paramètres étroitement
corrélés à la CMO et à la TE. Les résultats révèlent une concordance satisfaisante entre les paramètres de l’image et la CMO (R2

et écart-type de 0,74 et 9,80 % respectivement avec cubist) ainsi que la TE (R2 et écart-type de 0,86 et 8,79 %, respectivement
avec la forêt d’arbres décisionnels) établies en laboratoire pour valider le jeu de données fondé sur les six variables explicatives
retenues. Dans l’ensemble, les MRG et les modèles à arbre décisionnel (cubist, forêt d’arbres décisionnels, arbres décisionnels
amplifiés) saisissent et expliquent mieux les relations non linéaires entre la CMO, la TE et les paramètres de l’image examinés
dans le cadre de cette étude. [Traduit par la Rédaction]
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Introduction
Soil organic matter (SOM), an indicator of soil health and

quality (Zhang et al. 2006), is a significant component of any
ecosystem (Li et al. 2013) and influences agricultural sustain-
ability, food security, and climate (Were et al. 2015). Organic
carbon (OC), as a key element of soil, plays an essential role
in the global carbon cycle, so it is critical to measure its con-
tent in the soil (Kumar and Lal 2011; Yang et al. 2016). Soil
moisture content (SMC), another significant component, not
only influences the growth of crops, but also is a key fac-
tor in any crop management decisions including precision
agriculture practices (Chukalla et al. 2015; Feki et al. 2018).
Therefore, quantification of the spatial and temporal distri-
bution and dynamics of SOM and SMC provide critical infor-
mation to authorities concerned with the management and
policymaking regarding soil and climate (Meersmans et al.
2008), food production (Taghizadeh-Mehrjardi et al. 2016),
ecosystem modeling (Li et al. 2003), agriculture, forestry,
land degradation management, environment protection, and
most importantly land-use planning (Li et al. 2013). However,
for detailed characterization, traditional measurement ap-
proaches are expensive, often involve use of hazardous chem-
ical reagents, and time- and labor-intensive (Sudarsan et al.
2016; Lazzaretti et al. 2020). This often leads to delays in mak-
ing decisions or resorting to outdated data, which ultimately
forces users to make wrong decisions.

With the advancement of machine learning techniques
and increasing access to digital image acquisition systems,
digital image processing has emerged as an inexpensive tech-
nique to deal with these problems (Sudarsan et al. 2016; Fu
et al. 2020; Swetha et al. 2020). With digital image process-
ing approaches, soil properties, including but not limited to
SOM, SMC, soil texture, iron, and fine particle contents, can
be quantitatively estimated by formulating relationships be-
tween laboratory-measured soil properties and readily mea-
surable soil image color and texture features (Levin et al.
2005; Rossel et al. 2008; Zhu et al. 2011; Sudarsan et al. 2016).
Generally, color and (or) reflectance of soil can be attributed
to numerous properties of soil such as SMC, SOM, parent
material, mineralogy, and texture (Hummel et al. 2001; Fu
et al. 2020; Gholizadeh et al. 2020; Taneja et al. 2021). This as-
sociation justifies developing relationships between soil re-
flectance and its properties to predict their content using
modeling.

In developing predictive relationships with image parame-
ters, regression-based methods have been used in many fields
including soil science (Persson 2005; dos Santos et al. 2016;
Wu et al. 2017; Sakti et al. 2018). While it showed variable
performance, various linear and nonlinear regression-based
methods are still the commonly and popularly used methods
(Rossel et al. 2008; dos Santos et al. 2016; Swetha et al. 2020).
Recently, with advances in data processing and computing
power, several data-driven modeling and machine learning
approaches, including support vector machine (SVM), ensem-
bles of trees (cubist, random forest, boosted trees, bagged

trees), and Gaussian process regression (GPR), have been uti-
lized with variable performance and reasonable success in
developing predictive relationships in many fields (Gill et al.
2006; Matei et al. 2017; Chen et al. 2019; Kotlar et al. 2019).
However, image-related approaches and the details of mod-
els’ performance in predicting soil properties are limited and
need further studies. In addition, due to the variable per-
formances in the variable image set, it is difficult to under-
stand and compare the performance of these algorithms com-
pared to conventional regression-based methods in predict-
ing soil properties. However, some researchers have com-
pared the performance of two to three different algorithms
in creating a predictive relationship (Gregory et al. 2006;
Rossel et al. 2008; Wu et al. 2018). A complete compari-
son can only provide a good justification for the choice of
method for predicting soil properties, especially SOM and
SMC.

In addition to modeling, the collection of soil images is an-
other important component that determines the success of
image-based soil characterization. With a focus on targeted
laboratory applications, most of the studies collected soil
images under defined enclosures illuminated by controlled
sources of light (Rossel et al. 2008; Zhu et al. 2011; Gómez-
Robledo et al. 2013; Sakti et al. 2018; Wu et al. 2018; Fu et al.
2020). However, with a focus on developing computer vision
or image analysis-based proximal soil sensors for various in
situ applications, including precision agriculture, research
carried out in controlled environment may not provide as
much useful information as required. Collection of images
in natural conditions would improve universality of the rela-
tionship developed.

Studies on the direct use of machine learning algorithms
on image-derived color and texture data for SOM and SMC
prediction have not yet appeared. Therefore, the overall ob-
jective of this research was to comprehensively compare
the performance of various commonly used regression-based
methods with machine learning based methods in predict-
ing SOM and SMC from soil images collected with an inex-
pensive digital camera. The specific objectives of this study
were to

1. assess the feasibility and usability of digital images to pre-
dict SOM and SMC in soil;

2. optimize the image parameters for developing predictive
relationships;

3. and comprehensively compare the performance of a range
of regression and machine learning algorithms (22 in to-
tal) in predicting SOM and SMC.

Proper assessment and comparison of various modeling al-
gorithms and an optimum set of image parameters will serve
as an informative guide on the use of digital images for pre-
dicting SOM and SMC.
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Materials and methods
The overall methodology is divided into three sections:

data collection, image analysis, and data analysis (Fig. 1).

Study site description and sample collection
Soil samples were collected in an earlier study by Ji et al.

(2016) from two agricultural fields, Field 26 (∼11 ha) and
Field 86 (∼17 ha) located on the MacDonald Campus research
farm of McGill University, Sainte Anne De Bellevue, Quebec,
Canada (Fig. 2). These two fields exhibited high spatial vari-
ability in terms of soil texture, organic matter, and soil type
(Ji et al. 2016). The landscape of this area has undergone nu-
merous processes during the last deglaciation including land-
level rise, invasion of saline water, lake formation, retreat
of ice, and deposition of glaciers, leading to the formation
of highly variable soil. For example, soils of Field 26 ranges
from mineral to organic deposits (peat) with high variability
in soil textures including clay loam, loam, silt loam, sandy
loam, and sand.

Field 86 mostly includes mineral soils with sandy clay loam,
loam, sandy loam, clay, and clay loam texture (Fig. 3). Soil
samples from the depth of 0–15 cm were collected from Field
26 and Field 86, respectively, in late April and early May in
2015 before seeding following a stratified random sampling
strategy.

The fields were under no-tillage practices and corn–
soybean rotation with soybean and corn being the preced-
ing crops in Field 26 and Field 86, respectively. A total of 25
soil samples (17 from Field 26 and 8 from Field 86) exhibit-
ing a wide variation in SOM (3.30%–62.70%), representing the
range of SOM present in these fields, were carefully selected
for this study (Fig. 4). These 25 samples represented both or-
ganic (mainly from Field 26) and mineral soils (present in
both fields). This was done deliberately to include universal-
ity and increase robustness in training models. However, in
laboratory terms, by adding different amounts of moisture
to the samples, the number of samples used in modeling has
increased significantly for processing (125 samples).

Laboratory analysis and soil imaging
The samples were air-dried, ground, and sieved through a

2 mm sieve. The processed samples were then used to capture
images as well as measure soil properties in the laboratory.
SOM was measured using loss on ignition (LOI) method. Ig-
nition conditions were 550 ◦C for three hours (Schulte and
Hopkins 1996). Processed soil samples were evenly placed in
Petri dishes (∼8 mm thickness) and the surface of the samples
were captured with a 12.1-megapixel digital camera (Canon
PowerShot SX270 HS) mounted on a tripod (27 cm) with the
lens facing downward toward the sample. The camera was set
to a 3000 × 4000 pixel resolution and the “best” jpeg com-
pression, thereby supplying smaller sized images in contrast
to uncompressed tiff files, but of comparable quality. A cam-
era lens aperture setting of f/3.5 was regarded as appropriate
for image acquisition under the normal lighting conditions
of the laboratory, which was determined by repetitive tests
conducted on distinct group references (Fu et al. 2020; Taneja
et al. 2021).

A total of five sets of pictures were captured on the same
soil samples. Before starting image capture, the weight of
the empty Petri dishes and dishes with air-dried soil sam-
ples were recorded. The first set of images was collected on
these soil samples (set 1). Then, water was added carefully
(without disturbing the soil surface) and gradually over a pe-
riod of time to simulate saturation-like conditions. The sec-
ond set of images was collected corresponding to this con-
dition (set 2). The saturated soil samples were then permit-
ted to dry in open air under laboratory conditions. Two more
sets of images were captured during the natural drying pro-
cess of samples corresponding to two different SMCs. Finally,
the soil samples were oven-dried at 105 ◦C for 24 hours to
get 0% SMC and the images were captured of the driest soils.
The weight of the soil samples (including the Petri dish) was
recorded during each stage of image acquisition to calcu-
late the gravimetric SMC based on the loss of weight dur-
ing each drying event. Thus, a total of five sets of images
corresponding to five different levels of SMC were collected.
These sets were then grouped into five categories in increas-
ing order of SMC with the images of oven-dried soil sam-
ples forming the Group 1, while those corresponding to the
highest SMC and simulating saturation conditions formed
the Group 5. Two images were captured for each soil sample
in each SMC level (250 initial images). To reduce the uncer-
tainty in modeling different soil parameters using imaging,
the imaging was repeated. Then, the average of the two im-
ages is used (125 final images used in next steps). Figure 5
shows the SMC (%) of 25 soil samples at five different SMC
levels.

In this study, the SMCs of samples in the same group were
not kept constant. It was different from the SMC settings of
other studies in which soil samples had the same SMC at the
same wetting level and abrupt bi- or tri-modal soil moisture
distributions were generated (Nocita et al. 2013; Rienzi et al.
2014; Rodionov et al. 2014). However, SMC in a field is likely
to follow a normal or quasi-normal distribution. Moreover,
soil samples with varying levels of SOM have different water-
holding capacities and, thus, have varying drying character-
istics. As an example, the sample with 3.3% SOM had a satu-
ration SMC of 36.91% while that with 62.7% SOM had a satu-
ration SMC of 119.60% (Fig. 5). Therefore, setting up a fixed
SMC would have biased the image acquisition process. Con-
sequently, the setting of varying soil moisture in this study
(not controlling the SMC and allowing it to vary) had advan-
tages to well simulate the continuous variation of soil mois-
ture through space in the field.

In various studies that use digital images to obtain infor-
mation about soil color, soil samples are confined to defined
enclosures that are illuminated by a fixed light source (Rossel
et al. 2008; Zhu et al. 2011; Gómez-Robledo et al. 2013; Sakti
et al. 2018; Wu et al. 2018). But, in this study, there was not
any such limitation laid down during imaging. This was done
intentionally to simulate field conditions since variations in
lighting conditions in actual field conditions are abrupt, vari-
able, and uncontrolled. Moreover, it is necessary to avoid such
restrictions in developing proximal soil sensors that must be
used in field conditions and not in controlled laboratory en-
vironment.
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Fig. 1. Overview of the framework used for this study. [Color online]

Image analysis
A proficient image acquisition system tries to capture qual-

ity images and appropriate image analysis approaches help
to derive useful information from the images and make a
substantial contribution to the computer vision applications.
Similar to other disciplines, it is necessary to exercise pru-
dence when images captured using digital cameras must be
processed. Numerous elements, for instance, reflection from
water (in case of high SMC), nonuniform lighting conditions,
and foreign particles (plant litter, residues of roots, and white
colored powder such as that of lime or fertilizer) present
on the surface of the soil, affect the quality of the image
(Gonzalez et al. 2004). Thus, corrections must be made before
useful information can be extracted from the images.

Image preprocessing-cropping
Images were cropped to a square area of 950 × 950 pixels

roughly from the geometric center of the image. This was

done to remove the white background as well as to reduce
the effects caused by the edges of the Petri dishes (Fig. 6).

Image preprocessing enhancement
To enhance the images, contrast adjustment was per-

formed using “imadjust” function of MATLAB (MathWorks
2017). This assisted in segmentation (next step) through ex-
clusion of noise and prevention of useful information from
fading into noise (Fig. 6).

Image segmentation
For this study, image segmentation denoted identification

and retention of the pixels that represented soil in the im-
ages. For instance, certain parts of some images were visibly
occupied by residues of small leaves and black cracks (only
detected after careful examination) or a film of water which
gave rise to exceptionally bright reflections (Fig. 6). Irrespec-
tive of the area occupied by the gloss or the foreign particles,
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Fig. 2. Geographic location of the study area, Field 86 (left) and Field 26 (right) of Macdonald Campus Farm, McGill University,
Quebec, Canada, as well as field elevation maps for Field 26 and Field 86 along with the soil map. The letters in the map
represent various soil series. The base map is downloaded from Google Earth and processed in ArcGIS, the projection used in
NAD84 with UTM zone 18. [Color online]

it was considered essential to eliminate them to avoid inac-
curate calculations. Because the image intensity values cor-
responding to these areas do not depict the image intensity
values of the actual soil surface, the mean value would not
denote the mean of the soils’ pixels.

Therefore, an experiential-based segmentation technique
was developed based on the image histogram to distinguish
the pixels covered by soil from nonsoil particles. To segment
the image, noticeable dissimilarities in the intensity values of
the pixels of soil and nonsoil were used. Because the nonsoil
pixels occupied a small portion in contrast with the whole
image, a value was ascertained after several trials. This as-
sumption was made with the conviction that image intensity
values whose counts were lower than or equivalent to the de-
fined value were regarded as those belonging to nonsoil mat-
ter and subsequently discarded. A value of 3000 was chosen
for this study; the value may differ for soil from different re-
gions and parent materials (Taneja et al. 2021). In addition,
the pixels analogous to the water film were white-colored. In
such cases, the histogram was examined to obtain the “high-
est count” of the image intensity values falling in the range
248–255 Gy scale values (illustrating a range of values demon-
strating the color white). In this situation, different threshold
values were set rather than previous for nonsaturated soils.
For example, the images were converted to grayscale and the
pixels with gray-scale values between 248 and 255 were exam-
ined for the “highest count.” The “highest count” was then
compared with the threshold set for nonsaturated soils (i.e.,

3000) and the greater value was set as the threshold. For ex-
ample, for a saturated soil sample, the “highest count” of
4518 was recorded on gray-scale value of 251. Then, the 4518
value was compared with the previously optimized value of
3000 and the higher value, which means 4518, was set as the
threshold.

Color space conversions and feature extraction
The RGB images (the color of pixel was made up of red,

green, and blue components (Kumar and Verma 2010)) were
converted to HSV (the colors were represented by hue (tones),
saturation (purity), and value (brightness)) and grayscale im-
ages using color space conversions (Fig. 6); then, color fea-
tures such as redness index (RI), coloration index (CI), hue
index (HI), and saturation index (SI), as well as texture fea-
tures including entropy, contrast, energy, and homogene-
ity, were the sum of squared elements in the gray-level co-
occurrence matrix (GLCM). “Homogeneity” was extracted and
indices were derived using MATLAB. The list of extracted fea-
tures and derived indices is presented in Fig. 7.

A total of 22 image parameters were extracted. “Mean” rep-
resented average of values of all the pixels in an image. “Me-
dian” represented the middle pixel value after all the pixels
were sorted in numerical order. “Entropy” was the statisti-
cal measure of randomness. “Contrast” was the measure of
intensity contrast between a pixel and its neighbor over the
whole image. “Energy” was the sum of squared elements in
the GLCM. “Homogeneity” was the closeness of distribution
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Fig. 3. Soil texture classification (following Canadian System
of Soil Classification) of soil samples collected from Field 26
and Field 86. The 25 samples selected for this study are repre-
sented by red colored signs while blue color signs represent
the remaining 95 samples (out of the total 120 samples). The
triangle was prepared using “soiltexture” package in R. [Color
online]

Fig. 4. The 25 soil samples selected for this study collected
from Field 26 and Field 86.

of elements in the GLCM to the GLCM. RI, CI, HI, and SI were
calculated as:

RI = R2

B × G3
(1)

CI = R − G
R + G

(2)

HI = 2 × R − G − B
G − B

(3)

SI = R − B
R + B

(4)

Both mean and median values were used as predictors in
the modeling due to inconsistent information in the litera-
ture. For example, while some researchers used mean values
(Rossel et al. 2008; Sudarsan et al. 2016), others employed me-
dian values (Persson 2005; Rossel et al. 2008) in their research.
In fact, Persson (2005) advocates the application of median
values to handle the deviations resulting from the shading of
the microrelief developed on the surfaces of the samples of
soil. Depending on the viewing angle with respect to the di-
rection of the incident light, there might exist bidirectional
reflectance distribution function (BRDF) and shading influ-
ences (King 1995; Lillesand et al. 2015). The indices derived
from the images (RI, CI, HI, SI) were expected to reduce these
influences. Being the ratio indices, a view effectively balances
the abnormalities in brightness arising from the disparities
in the topography and emphasizes the color content of the
samples.

Data preprocessing and division
Multivariate outliers were determined based on the Maha-

lanobis distance (De Maesschalck et al. 2000). Regression ap-
proaches were employed to decide if a specific sample from
a sample population was an outlier through the combination
of ≥2 variable scores. Following this, data obtained from five
images were detected as outliers and were not included in
further calculations. The data were split to calibration and
validation sets randomly; 70% of the data were used as cal-
ibration data (84 images) and 30% of the data were used as
validation data (36 images). Statistical distribution of calibra-
tion and validation samples was normal. These data also in-
clude a wide range of SOM and SMC values. All the necessary
standards are considered in the selection and classification of
calibration and validation data sets (Table 1).

Model development
The image color and texture-related features were used to

develop predictive relationships against laboratory-measured
SOM and SMC. Under six broad types: (1) linear regression
(LR), (2) regression trees, (3) SVMs, (4) GPR, (5) ensemble of
trees, and (6) artificial neural network (ANN), a total 22 mod-
els were developed. Codes were written in MATLAB to run
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Fig. 5. Soil moisture content (SMC; %) for the 25 soil samples corresponding to five different levels of moisture represented as
five groups. [Color online]
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Sample 25
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C

 (%
)

Fig. 6. Images of soil sample with (A) 3.3% and (B) 62.7% soil organic matter (SOM) under five different soil moisture condition,
while the columns represent (a) original images, (b) corresponding cropped regions, (c) enhanced images, (d) segmented images,
(e) color space converted gray images, and (f) color space-converted hue saturation value (HSV) images, respectively. [Color
online]

these models on data sets except for cubist model, which was
executed in R program (version 3.5.3) on RStudio (Team 2015).

Model performance assessment
Several statistical parameters were computed to assess the

accuracy of the models.

1. Coefficient of determination (R2): it represents the per-
centage of total variation in dependent variable. Its value
can vary from 0 to 1. Large values imply higher prediction
accuracies (eq. 5).

2. Root mean square error (RMSE): it represents the mean ab-
solute error between the measured and observed values.
Lower values are desirable (eq. 6).

3. Lin’s concordance correlation coefficient (LCCC): the LCCC
was employed for model quality evaluation since it rep-
resents the fit of 1:1 line of the predicted and observed
values. Also, because of it being unitless in nature, it is ad-
vantageous to compare different models of the same soil
property and (or) comparison of models for different soil
properties (Sorenson et al. 2017). Large values represent
higher prediction accuracy (eq. 7).
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Fig. 7. Overview of extracted features and indices derived from the images. RGB, red, green, and blue; HSV, hue, saturation,
and value. [Color online]

Table 1. Descriptive statistics of the whole, calibration, and validation data set for soil organic
matter (SOM) and soil moisture content (SMC).

SOM (%) SMC (%)

Scope Count Min Max Mean SD Min Max Mean SD

All 125 3.3 62.7 19.0 17.6 0 119.6 29.2 29.2

Without
outliers∗

120 3.3 62.7 18.4 17.2 0 119.6 25.2 27.5

Calibration 84 3.3 62.7 17.9 16.6 0 119.6 29.2 0.2

Validation 36 3.3 62.7 19.7 18.6 0 87.3 15.9 22.9

Note: SD, standard deviation. An asterisk (∗) indicates that the number of outliers is five.

4. Mean of the residuals (Bias): it is used to analyze the un-
derfitting or overfitting of the model predictions. Value of
bias = 0 implies unbiased predictions (eq. 8).

5. Ratio of performance to deviation (RPD): it is the ratio of
standard deviation of observed or measured values to the
standard error of prediction (Chang et al. 2001). The RPD
values >2 are often considered to represent good model
performance.

6. Ratio of performance to interquartile distance (RPIQ): it is
the ratio of interquartile range of the observed values to
the RMSE of prediction. The RPIQ takes into consideration
both the variation of measured values and the prediction
error, thereby being an indicator of model quality, which
is more objective than the RMSE of prediction and, thus,
it can be easily used for the comparison of different mod-
els. The greater the value of RPIQ, higher is the model’s
capacity to predict.

R2 = 1 −
∑N

i=1

(
Yobserved − Ypredicted

)2

∑N

i=N

(
Yobserved − Ypredicted

)2(5)

RMSE = 2

√√√√√√

⎛
⎜⎝

∑N

i=1
(observedi − predictedi)

2

N

⎞
⎟⎠(6)

LCCC = 2ρσpredictedσobserved

σ 2
predicted + σ 2

observed + (
μpredicted − μobserved

)2(7)

Bias =
∑N

i=1
predictedi − observedi

N
(8)

where N was the number of samples, Ypredicted was the pre-
dicted values, Yobserved was the observed values and Yobserved

was the mean of observed values.
All these statistics were tested on both the calibration and

validation data sets. At first, all the 22 extracted features
(color and texture characteristics) were treated as predictor
variables and were used to develop the models for SOM (%)
and SMC (%) prediction. Later, a subset of six optimum predic-
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tors (optimization described in the next section) were used
for model development. A 10-fold cross-validation was per-
formed on the calibration data set as a means of internal val-
idation (IV). Models were also externally validated using an
independent validation data set. The residuals (difference be-
tween observed and predicted) were also tested for the pres-
ence of normality and the absence of autocorrelation and
were found satisfactory for regression relations development.

Variable screening to identify optimum
predictors

To study the relative importance of predictor variables in
predicting SOM and SMC, a z-score was defined following six
different analysis: analysis of variance (ANOVA), random for-
est (RF), cubist, principal component analysis (PCA), Vtreat
variable reduction, and correlation analysis. Under each anal-
ysis, all the image parameters (predictor variables) were rated
on a scale of 0–100 (most important) and then averaged to get
a z-score. While some analysis techniques, such as cubist and
RF, by default, provided variable importance on a scale of 0–
100. Correlation analysis was simply 1:1 correlation between
dependent variable and each predictor. The absolute values
of the correlation coefficients were first calculated and were
scaled at 0–100, with the lowest and highest absolute correla-
tion coefficients being assigned a value of 0 and 100, respec-
tively. For ANOVA, the p value for each predictor variable was
scaled to 0–100 with 0 and 100 being assigned to the lowest
and highest p value, respectively. “Vtreat” is an R package for
looking at the variable importance/significance. The values
of R2 were scaled to 0–100, with the lowest and highest value
being assigned 0 and 100, respectively. These 0–100 scaled
values were then added and averaged to get the final scaled
values at the range of 0 and 100 and was named z-score for
that predictor. The top six predictor variables were then iden-
tified as the optimum predictors for both SOM and SMC. All
the models were then developed using these six predictors as
independent variables and the model performance statistics
were recalculated.

Results

Descriptive statistics of soil properties
Table 2 presents the descriptive statistics for SOM, SMC,

various image color, and texture features and derived indices.
The soil properties and thus image parameters showed a high
degree of variation with the coefficient of variation, CV (%)
varying between 10.14 and 168.20. The SOM content varied
between 3.30 (%) and 62.70 (%) with an average of 18.44 (%)
and a standard deviation of 17.23 (%). The SMC also varied be-
tween 0.00 (%) and 119.60 (%) with a mean of 25.16 (%) and a
standard deviation of 27.48 (%). With an acceptable approxi-
mation, all image parameters except mean H, energy, and RI
were normally distributed (kurtosis approximately between
−3 and 3). The RI had a very large CV of about 168.20%. On
the other hand, homogeneity comparatively varied less sig-
nificantly, with a CV of around 10.14%. The high variability

Table 2. Descriptive statistics of soil organic matter
(SOM), soil moisture content (SMC), and soil color mea-
surements.

Parameter Mean SD Range Kurtosis CV (%)

Mean R 0.31 0.15 0.06–0.59 − 1.24 47.90

Mean G 0.28 0.14 0.05–0.53 − 1.21 49.06

Mean B 0.24 0.11 0.04–0.44 − 1.19 47.86

Mean H 0.08 0.03 0.04–0.22 6.75 38.35

Mean S 0.20 0.08 0.05–0.48 − 0.27 41.88

Mean V 0.31 0.15 0.06–0.59 − 1.24 47.82

Mean gray 0.28 0.14 0.05–0.54 − 1.22 48.43

Median R 0.37 0.20 0.00–0.74 − 1.26 53.56

Median G 0.32 0.18 0.00–0.67 − 1.23 55.60

Median B 0.27 0.15 0.00–0.54 − 1.20 55.57

Median H 0.08 0.02 0.00–0.11 2.24 22.87

Median S 0.22 0.10 0.00–0.51 − 0.13 45.94

Median V 0.37 0.20 0.00–0.74 − 1.26 53.56

Median gray 0.33 0.18 0.00–0.67 − 1.24 54.75

Entropy 5.47 0.60 2.85–6.40 1.32 11.00

Contrast 2.14 1.64 0.09–6.48 − 0.84 76.98

Energy 0.17 0.15 0.06–0.80 3.64 86.31

Homogeneity 0.76 0.08 0.66–0.96 − 0.43 10.14

Redness
index

73.26 123.23 5.30–734.50 8.44 168.20

Coloration
index

0.07 0.07 0.01–0.19 1.14 49.98

Hue index 3.38 3.38 2.11–7.47 1.77 30.25

Saturation
index

0.14 0.14 0.03–0.44 1.56 52.76

SOM (%) 18.44 17.23 3.30–62.70 0.36 93.45

SMC (%) 25.16 27.48 0.00–119.60 0.46 109.19

Note: SD, standard deviation; CV, coefficient of variation.

of SOM and SMC presented an opportunity to test the predic-
tion capability of the developed models.

Linear correlation between SOM, SMC, and soil
color

Several soil color parameters showed high correlations
with SMC, although comparatively weaker correlations were
observed with SOM (Fig. 8). Soil moisture content showed a
high negative correlation with mean gray with a correlation
coefficient of –0.85. In addition, SMC was also negatively cor-
related with mean B (–0.84), mean G (–0.84), and mean R (–
0.84). SOM content was negatively correlated with median
S values (–0.65) followed by SI (–0.62) and mean S (–0.54).
SMC was weakly correlated with SI (–0.06) while SOM was
weakly correlated with RI (0.16). In general, the reflection
intensity decreased with the increase in organic matter and
moisture content. Significant correlation was also observed
among color and texture parameters to some extent.

Identification of optimum predictors
To underline which explanatory variables were mainly im-

portant for the prediction of SOM and SMC, radial plots were
studied following six different analysiss (Figs. 9–12). Color fea-
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Fig. 8. Correlation plot for soil organic matter (SOM), soil moisture content (SMC), color space model parameters, and indices
derived from them. RI, redness index; CI, coloration index; HI, hue index; SI, saturation index. [Color online]

tures were more important than textural features in SOM pre-
diction. Also, the impact of mean values in SOM prediction
accuracy was greater than that of median values. Whereas,
for SMC, the impact of median values and textural features
in SOM prediction accuracy were greater than that of mean
values and color features.

Saturation index was the most important variable for
SOM prediction followed by mean H, median R, mean R,
mean V, and median S. The least important variable was RI
(Fig. 10).

For SMC, contrast was the most important predictor vari-
able followed by median B, median R, mean B, homogene-
ity, and energy. The least important variable was median S
(Fig. 12). Several soil color parameters showed high corre-
lations with SMC, although comparatively weaker correla-
tions were observed with SOM (Fig. 8). Soil moisture content
showed a high negative correlation with mean gray with a
correlation coefficient of –0.85. In addition, SMC was also
highly negatively correlated with mean B (–0.84), mean G (–
0.84), and mean R (–0.84). SOM content was negatively corre-
lated with median S values (–0.65) followed by SI (–0.62) and
mean S (–0.54). Soil moisture content was weakly correlated
to SI (–0.06) while SOM was weakly correlated to RI (0.16). In
general, the reflection intensity decreased with the increase
in organic matter and moisture content. Significant correla-
tion was also observed among color and texture parameters
to some extent.

Predictive accuracy of the models
Saturation index models developed with 22 and 6 image

color- and texture-related features were calibrated and val-
idated against laboratory-measured SOM and SMC. Descrip-
tive regression statistics of the predicted vs. laboratory mea-
sured values of soil properties are presented in Tables 3 and 5
for SOM using 22 and 6 predictor variables, respectively, and
Tables 4 and 6 for SMC using 22 and 6 predictor variables,
respectively.

Prediction of SOM using 22 predictor variables

10-fold cross (internal) validation

In general, the GPR-based models yield the higher predic-
tive accuracy, while the LR-based models were least accurate
for the SOM prediction. From the results (Table 3), it was evi-
dent that the most accurate predictions were obtained using
ANN. The R2, RMSE, LCCC, bias, RPD, and RPIQ values were
0.86, 6.32%, 0.91, –0.13, 2.63, and 3.18, respectively. Also, the
second accurate predictions were obtained using exponential
GPR model with R2, RMSE, LCCC, bias, RPD, and RPIQ values
of 0.79, 7.60%, 0.88, –0.08, 2.19, and 2.65, respectively. The
least accurate predictions were obtained using interactions
linear model with R2, RMSE, LCCC, bias, RPD, and RPIQ val-
ues of 0.01, 256.99%, 0.01, 6.78, 0.06, and 0.08, respectively
(Table 3).
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Fig. 9. Relative significance of each individual image parameter as a predictor variable for soil organic matter prediction
corresponding to (a) analysis of variance (ANOVA), (b) random forest (RF), (c) principal component analyses (PCA), (d) cubist, (e)
Vtreat, and (f) correlation. [Color online]

Fig. 10. z-score of each individual image parameter represent-
ing its contribution toward soil organic matter prediction. RI,
redness index; CI, coloration index; HI, hue index; SI, satura-
tion index. [Color online]

External validation

The GPR-based models yield the highest accuracy with an
average R2 higher than 0.70, followed by SVM and regres-
sion tree-based models. The R2 value for the model trained
using squared exponential GPR producing best predictions
was 0.77, the RMSE was 8.87%, the LCCC was 0.85, the bias
was –0.68, the RPD was 2.09, and the RPIQ was 2.46 (Table 3).
The performance of ANN for the test data set was compara-
ble but relatively weaker with R2 of 0.74 and RMSE of 9.88%.
The LCCC was 0.80, the bias was –1.31, the RPD was 1.88, and
the RPIQ was 2.21. On the other hand, the poorest predic-
tions were produced by interactions linear model giving an
R2, RMSE, LCCC, bias, RPD, and RPIQ values of 0.14, 69.64%,
0.17, 4.19, 0.27, and 0.31, respectively (Table 3).

Prediction of SMC using 22 predictor variables

10-fold cross (internal) validation

The SMC was predicted with higher accuracy than SOM.
Except the interaction LR approach, all other modeling ap-
proaches predicted SMC with high accuracy. GPR approaches,
however, outperformed other models with consistent higher
prediction. The exponential GPR model produced the best
predictive relationship between SMC and soil color and tex-
ture features with R2 = 0.89, RMSE = 9.40%, LCCC = 0.93,
bias= –0.10, RPD = 3.02, and RPIQ = 4.78 (Table 4). The inter-
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Fig. 11. Relative significance of each individual image parameter as a predictor variable for soil moisture content prediction
corresponding to (a) analysis of variance (ANOVA), (b) random forest (RF), (c) principal component analyses (PCA), (d) cubist, (e)
Vtreat, and (f) correlation. [Color online]

Fig. 12. z-score of each individual image parameter represent-
ing its contribution toward soil moisture content prediction.
RI, redness index; CI, coloration index; HI, hue index; SI, sat-
uration index. [Color online]

actions linear model exhibited poor predictive performance
with an R2 of 0.00 and an RMSE of 308.97%, while the LCCC,
bias, RPD, and RPIQ were –0.01, –47.91, 0.09, and 0.15, respec-
tively (Table 4).

External validation

Excellent prediction was observed using all the models
with the R2 > 0.80 and RPD values >2 except for ANN,
interactions linear, and PLSR. The R2 value for the model
trained using exponential GPR, which produced best predic-
tions, was 0.95, the RMSE was 5.21%, the LCCC was 0.96,
the bias was 1.12, the RPD was 4.39, and the RPIQ was 4.82
(Table 4). The worst predictions were produced by interac-
tions linear model with R2, RMSE, LCCC, bias, RPD, and
RPIQ of 0.01, 75.87%, 0.06, −5.65, 0.30, and 0.33, respectively
(Table 4).

Prediction of SOM using six predictor variables

10-fold cross (internal) validation

ANN produced the most accurate predictions with R2,
RMSE, LCCC, bias, RPD, and RPIQ of 0.74, 8.51%, 0.84, –
0.26, 1.96, and 2.36, respectively (Table 5). Overall, the
ensemble tree and GPR modeling approaches predicted
SOM with higher accuracy (R2 > 0.65). The LR, regres-
sion trees and SVM yield inconsistent prediction accuracy.
The model calibrated using cubic SVM produced the worst
predictions with R2, RMSE, LCCC, bias, RPD, and RPIQ
of 0.47, 13.52%, 0.68, –1.15, 1.23, and 1.49, respectively
(Table 5).
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Table 3. Accuracy of different models for the prediction of soil organic matter in the calibration and validation data sets using
22 predictor variables.

R2 RMSE Concordance Bias RPD RPIQ

Models IV EV IV EV IV EV IV EV IV EV IV EV

Random forest 0.68 0.74 9.40 9.81 0.79 0.80 − 0.52 − 1.42 1.77 1.89 2.14 2.22

Cubist 0.77 0.74 8.02 9.49 0.87 0.83 0.07 − 1.08 2.07 1.96 2.50 2.30

Aritificial neural network 0.86 0.74 6.32 9.88 0.91 0.80 − 0.13 − 1.31 2.63 1.88 3.18 2.21

Linear regression 0.55 0.64 11.42 11.29 0.73 0.74 0.19 − 1.12 1.46 1.65 1.76 1.93

Interactions linear 0.01 0.14 256.99 69.64 0.01 0.17 6.78 4.19 0.06 0.27 0.08 0.31

Robust linear 0.31 0.52 15.26 13.49 0.55 0.62 − 1.36 − 4.20 1.09 1.38 1.32 1.62

Linear regression-pure
quadratic

0.48 0.65 13.56 11.04 0.69 0.75 0.93 − 1.24 1.23 1.68 1.48 1.97

Stepwise linear 0.68 0.73 10.09 9.75 0.82 0.82 1.02 − 1.19 1.65 1.90 1.99 2.24

Fine tree 0.60 0.69 10.87 10.40 0.76 0.80 − 0.35 − 1.68 1.53 1.79 1.85 2.10

Medium tree 0.58 0.65 10.93 10.94 0.75 0.79 − 0.24 − 0.16 1.52 1.70 1.84 1.99

Coarse tree 0.43 0.54 12.55 12.63 0.62 0.68 − 0.07 − 1.89 1.33 1.47 1.60 1.73

Linear SVM 0.59 0.58 10.84 13.08 0.72 0.62 − 2.17 − 4.11 1.54 1.42 1.85 1.67

Quadratic SVM 0.70 0.75 9.70 9.65 0.83 0.82 − 0.50 − 1.92 1.72 1.92 2.07 2.26

Cubic SVM 0.24 0.73 25.52 9.83 0.42 0.84 0.57 − 0.35 0.65 1.89 0.79 2.22

Fine Gaussian SVM 0.57 0.68 11.65 11.53 0.61 0.71 − 1.47 − 2.86 1.43 1.61 1.73 1.89

Medium Gaussian SVM 0.70 0.69 9.29 10.96 0.79 0.74 − 1.27 − 2.02 1.79 1.69 2.16 1.99

Coarse Gaussian SVM 0.61 0.59 11.65 14.40 0.63 0.52 − 3.66 − 5.66 1.43 1.29 1.73 1.51

Boosted tree 0.71 0.72 8.97 10.06 0.82 0.80 − 0.99 − 2.30 1.86 1.85 2.24 2.17

Bagged tree 0.70 0.69 9.15 10.75 0.80 0.75 − 0.15 − 1.63 1.82 1.73 2.20 2.03

Squared exponential GPR 0.75 0.77 8.24 8.87 0.86 0.85 − 0.07 − 0.68 2.02 2.09 2.44 2.46

Matern 5/2 GPR 0.76 0.76 8.13 9.02 0.86 0.85 − 0.10 − 0.87 2.05 2.06 2.47 2.42

Exponential GPR 0.79 0.75 7.60 9.30 0.88 0.83 − 0.08 − 0.93 2.19 2.00 2.65 2.35

Rational quadratic GPR 0.77 0.74 7.98 9.47 0.87 0.83 − 0.15 − 1.33 2.09 1.96 2.52 2.30

Partial least square regression 0.33 0.40 13.59 14.78 0.49 0.48 0.00 − 2.60 1.23 1.26 1.48 1.48

Note: RMSE, root mean square error; RPD, ratio of prediction to deviation; RPIQ, ratio of performance to interquartile distance; IV, internal validation; EV, external
validation; SVM, support vector machine; GPR, Gaussian process regression. These are results of 10-fold cross-validation IV, EV, RPD, and RPIQ, respectively. The bold
numbers in the rows refer to the best models.

External validation

For the external validation data set, the ensemble tree hav-
ing edge to GPR-based model with consistent higher accuracy.
The most accurate predictions were obtained by cubist, with
R2, RMSE, LCCC, bias, RPD and RPIQ of 0.74, 9.80%, 0.81, –2.02,
1.90 and 2.23, respectively (Table 5). However, using other
methods, the RMSE of the cubist model prediction lowered by
approximately 9%–44%. The least accurate predictions were
those produced by linear SVM model with R2, RMSE, concor-
dance, bias, RPD and RPIQ of 0.51, 14.08%, 0.57, –4.78, 1.32
and 1.55, respectively (Table 5).

Prediction of SMC using six predictor variables

10-fold cross (internal) validation

The ensemble tree modeling approaches constantly yield
prediction accuracy with R2 > 0.82, while all the GPR-based
models resulted in same prediction accuracy. The other
model approaches also predicted SMC with an average accu-
racy with R2 > 0.70. The most accurate predictions were ob-
tained using boosted trees, with R2, RMSE, LCCC, bias, RPD,
and RPIQ values of 0.86, 10.86%, 0.91, −1.63, 2.61, and 4.13,

respectively (Table 6). The next best predictions were pro-
duced by Cubist model with R2, RMSE, LCCC, bias, RPD, and
RPIQ values of 0.85, 10.88%, 0.92, 0.67, 2.61, and 4.13, re-
spectively. The least accurate predictions were from coarse
tree model with R2, RMSE, LCCC, bias, RPD, and RPIQ val-
ues of 0.69, 15.76%, 0.82, –0.54, 1.80, and 2.85, respectively
(Table 6).

External validation

Overall, excellent predictions were obtained with all the
models showing RPD > 2 apart from few models (LR, Robust
Linear, Linear SVM, and Coarse Gaussian SVM) showing an
RPD < 2. Utilizing R2 to evaluate the model performance also
produced similar results, with validation R2 ≥ 0.69 for all
the calibrated models (Table 6). The R2 value for the model
trained using RF producing best predictions was 0.86, the
RMSE was 8.79%, the LCCC was 0.91, the bias was 1.73, the
RPD was 2.60, and the RPIQ was 2.86 (Table 6). On the other
hand, the poorest predictions were produced by linear SVM
model giving an R2, RMSE, LCCC, bias, RPD, and RPIQ val-
ues of 0.73, 12.29%, 0.81, 3.64, 1.86, and 2.04, respectively
(Table 6).
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Table 4. Accuracy of different models for the prediction of soil moisture content in the calibration and validation data sets
using 22 predictor variables.

R2 RMSE Concordance Bias RPD RPIQ

Models IV EV IV EV IV EV IV EV IV EV IV EV

Random forest 0.87 0.87 10.07 8.44 0.93 0.91 − 0.03 1.62 2.82 2.71 4.46 2.97

Cubist 0.88 0.93 9.62 6.20 0.93 0.95 0.22 1.27 2.95 3.68 4.66 4.05

Aritficial neural
network

0.81 0.76 14.33 12.50 0.81 0.78 − 2.15 3.36 1.98 1.83 3.13 2.01

Linear regression 0.82 0.86 11.94 8.84 0.90 0.90 0.38 2.79 2.38 2.59 3.76 2.84

Interactions linear 0.00 0.01 308.97 75.87 − 0.01 0.06 − 47.01 5.65 0.09 0.30 0.15 0.33

Robust linear 0.83 0.86 11.67 8.90 0.90 0.90 − 0.43 2.94 2.43 2.57 3.85 2.82

Linear regression-pure
quadratic

0.78 0.86 14.30 8.71 0.87 0.90 0.64 1.38 1.99 2.63 3.14 2.88

Stepwise linear 0.85 0.90 11.27 7.31 0.92 0.93 0.41 0.92 2.52 3.13 3.99 3.43

Fine tree 0.84 0.85 11.61 9.06 0.91 0.91 0.32 1.63 2.45 2.52 3.87 2.77

Medium tree 0.83 0.83 11.83 9.78 0.90 0.89 − 0.18 2.21 2.40 2.34 3.80 2.57

Coarse tree 0.66 0.80 16.43 10.25 0.80 0.87 − 0.56 1.97 1.73 2.23 2.73 2.45

Linear SVM 0.85 0.82 11.16 10.40 0.91 0.87 0.23 3.86 2.54 2.20 4.02 2.42

Quadratic SVM 0.86 0.90 10.94 7.26 0.92 0.93 − 0.09 1.46 2.60 3.15 4.11 3.46

Cubic SVM 0.55 0.82 21.66 9.68 0.73 0.89 − 1.10 0.34 1.31 2.36 2.07 2.59

Fine Gaussian SVM 0.68 0.90 17.69 7.87 0.70 0.92 − 1.98 1.78 1.61 2.91 2.54 3.19

Medium Gaussian SVM 0.87 0.91 10.21 7.15 0.92 0.93 − 0.67 1.66 2.78 3.20 4.40 3.51

Coarse Gaussian SVM 0.85 0.78 11.47 11.47 0.90 0.84 − 0.51 4.08 2.47 1.99 3.91 2.19

Boosted trees 0.87 0.87 10.33 8.10 0.92 0.92 − 1.13 0.70 2.75 2.82 4.35 3.10

Bagged trees 0.88 0.87 9.99 8.50 0.93 0.91 − 0.14 2.05 2.84 2.69 4.49 2.96

Squared exponential
GPR

0.88 0.93 9.78 6.32 0.93 0.94 − 0.15 1.37 2.90 3.62 4.59 3.97

Matern 5/2 GPR 0.88 0.93 9.82 5.94 0.93 0.95 − 0.08 1.24 2.89 3.85 4.57 4.23

Exponential GPR 0.89 0.95 9.40 5.21 0.93 0.96 − 0.10 1.12 3.02 4.39 4.78 4.82

Rational quadratic GPR 0.88 0.93 9.88 6.18 0.93 0.95 − 0.21 1.35 2.87 3.70 4.54 4.07

Partial least square
regression

0.72 0.69 14.90 13.26 0.83 0.80 0.00 3.61 1.91 1.72 3.01 1.90

Note: RMSE, root mean square error; RPD, ratio of prediction to deviation; RPIQ, ratio of performance to interquartile distance; IV, internal validation; EV, external
validation; SVM, support vector machine; GPR, Gaussian process regression. These are results of 10-fold cross-validation IV, EV, RPD, and RPIQ, respectively. The bold
numbers in the rows refer to the best models.

Discussion

Identification of important predictors
Reasonable and similar prediction accuracies were ob-

tained for both soil properties (i.e., SOM and SMC), even after
the removal of insignificant predictors compared to that ob-
tained using the full set of predictor variables. This suggested
that a lot of parameters explained only a very little portion
of the variation and, hence, their identification and removal
was necessary. In addition, removal of redundant parame-
ters also facilitated reduction in processing power and time
without compromising the accuracy. Other researchers have
shown that the large number of model inputs does not neces-
sarily increase its accuracy, and the removal of additional and
ineffective parameters improves the model’s performance in
predicting SOM and SMC (Zhao et al. 2020; Fathololoumi et al.
2021b).

Model performance
The independently validated statistics also showed that

both SMC and SOM content of samples could be predicted

with high accuracy using appropriate modeling techniques.
Overall, SMC was predicted with greater accuracy than SOM
content, and the choice of different models had a clear im-
pact on the prediction quality for both SMC and SOM con-
tent (Tables 4-6). This result is in line with some previous re-
search (Paloscia et al. 2008; Fang et al. 2020; Zhou et al. 2020).
Fu et al. (2020) quantified the effects of soil moisture on the
relationship between SOM and the color parameters derived
from mobile phone images using univariate LR models. How-
ever, in the present study, various neural network and ma-
chine learning algorithms were used to evaluate the impact
of soil properties on SOM and SMC. The results showed dif-
ferent performance of these algorithms.

A closer look at the results showed that the GPR models
demonstrated excellent prediction ability, as compared to all
other models, for both calibration data sets and validation
data sets (for both SOM and SMC with 22 predictor variables).
Its superior performance can be attributed to the fact that it
yields reliable responses to the provided input data, thereby
increasing its reliability as a probabilistic model (Rasmussen
and Nickisch 2010).
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Table 5. Accuracy of different models for the prediction of soil organic matter in the calibration and validation data sets using
six predictor variables.

R2 RMSE Concordance Bias RPD RPIQ

Models IV EV IV EV IV EV IV EV IV EV IV EV

Random forest 0.66 0.68 9.72 10.66 0.79 0.77 − 0.61 − 1.86 1.71 1.74 2.07 2.04

Cubist 0.71 0.74 8.94 9.80 0.83 0.81 − 0.40 − 2.02 1.86 1.90 2.25 2.23

Artificial neural
network

0.74 0.62 8.51 11.57 0.84 0.72 − 0.26 − 1.23 1.96 1.61 2.36 1.88

Linear regression 0.58 0.57 10.83 12.57 0.74 0.64 − 0.13 − 1.37 1.54 1.48 1.86 1.73

Interactions linear 0.68 0.62 9.61 11.52 0.82 0.72 0.11 − 0.92 1.73 1.61 2.09 1.89

Robust linear 0.42 0.55 13.07 13.38 0.63 0.61 − 1.88 − 4.06 1.27 1.39 1.54 1.63

Linear regression-pure
quadratic

0.66 0.61 9.80 11.71 0.80 0.71 − 0.08 − 1.03 1.70 1.59 2.05 1.86

Stepwise linear 0.63 0.61 10.19 11.70 0.79 0.71 − 0.05 − 1.07 1.63 1.59 1.97 1.86

Fine tree 0.58 0.52 11.17 13.06 0.75 0.69 − 0.26 − 2.39 1.49 1.42 1.80 1.67

Medium tree 0.50 0.65 11.96 10.94 0.69 0.77 − 0.34 − 1.51 1.39 1.70 1.68 1.99

Coarse tree 0.44 0.54 12.49 12.67 0.62 0.65 − 0.13 0.32 1.33 1.47 1.61 1.72

Linear SVM 0.57 0.51 11.00 14.08 0.72 0.57 − 1.93 − 4.78 1.51 1.32 1.83 1.55

Quadratic SVM 0.60 0.58 10.53 12.95 0.76 0.63 − 1.19 − 3.39 1.58 1.43 1.91 1.68

Cubic SVM 0.47 0.58 13.52 12.11 0.68 0.71 − 1.15 − 2.06 1.23 1.53 1.49 1.80

Fine Gaussian SVM 0.54 0.66 11.51 11.52 0.65 0.73 − 1.56 − 3.13 1.45 1.61 1.75 1.89

Medium Gaussian SVM 0.65 0.61 9.96 12.47 0.77 0.66 − 1.53 − 3.22 1.67 1.49 2.02 1.75

Coarse Gaussian SVM 0.61 0.55 10.96 13.87 0.70 0.57 − 2.74 − 4.75 1.52 1.34 1.83 1.57

Boosted trees 0.66 0.69 9.69 10.75 0.80 0.77 − 0.86 − 2.76 1.72 1.73 2.07 2.03

Bagged trees 0.63 0.68 10.12 11.12 0.76 0.74 − 0.26 − 2.31 1.65 1.67 1.99 1.96

Squared exponential
GPR

0.67 0.62 9.52 11.53 0.80 0.72 − 0.07 − 0.89 1.75 1.61 2.11 1.89

Matern 5/2 GPR 0.67 0.63 9.47 11.34 0.80 0.73 − 0.07 − 0.86 1.76 1.64 2.12 1.92

Exponential GPR 0.68 0.68 9.42 10.75 0.80 0.76 0.00 − 1.13 1.77 1.73 2.13 2.03

Rational quadratic GPR 0.67 0.63 9.61 11.46 0.80 0.73 − 0.10 − 0.87 1.73 1.62 2.09 1.90

Partial least square
regression

0.64 0.85 10.02 10.78 0.77 0.92 0.00 0.00 1.66 2.63 2.01 4.16

Note: RMSE, root mean square error; RPD, ratio of prediction to deviation; RPIQ, ratio of performance to interquartile distance; IV, internal validation; EV, external
validation; SVM, support vector machine; GPR, Gaussian process regression. These are results of 10-fold cross-validation IV, EV, RPD and RPIQ, respectively. The bold
numbers in the rows refer to the best models.

Artificial neural network models were observed to perform
well during the SOM calibration phase (under both the cases
of utilization of 22 and 6 predictor variables). However, it
could not sustain its performance as far as the prediction of
SOM was concerned during the validation phase. This could
be due to the reason that ANNs possess a predefined structure
directed only toward minimizing errors on the training data
set. Zhao et al. (2020) and Fathololoumi et al. (2020) presented
a similar result in their research.

Apart from these, tree models provided satisfactory predic-
tion accuracies (cubist and RF for the prediction of SOM and
SMC, respectively using six predictor variables during the val-
idation phase and boosted trees for SMC using six predictor
variables and during the calibration phase). The reason for
their success could be linked to the several benefits associ-
ated with the utilization of tree models (or rule-based deci-
sion methods) such as insusceptibility to outliers, insensitive-
ness to irrelevant predictors, managing the provided data of
varying measurement scale and level, instinctive structure of
the models, etc. Similar results have been provided by Heung

et al. (2016), Dharumarajan et al. (2017), and Hajdu et al.
(2018).

Interactions linear model exhibited the poorest perfor-
mance when 22 predictor variables were used, for both cali-
bration and validation data sets for both soil properties. On
the other hand, when six predictor variables were used, its
performance was relatively better. On paying closer attention
to the structure of the developed model, it was observed that
utilization of 22 predictor variables resulted in a huge num-
ber of model parameters (interaction terms) as compared to
fewer terms when only six predictor variables were used.

Linear SVM showed poor prediction ability during the val-
idation phase for SOM and SMC using six predictors. This is
simply because linear SVM does not yield reasonable results
on data which are not linearly separable. This issue is dealt by
choosing the right kernel, which is why other types of SVM
used in this study performed somewhat better but not excep-
tionally good. In modeling based on regression models, the
use of the optimal number of predictor variables is very im-
portant. To reduce processing volume and fieldwork, the op-
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Table 6. Accuracy of different models for the prediction of soil moisture content in the calibration and validation data sets
using six predictor variables.

R2 RMSE Concordance Bias RPD RPIQ

Models IV EV IV EV IV EV IV EV IV EV IV EV

Random forest 0.84 0.86 11.20 8.79 0.91 0.91 − 0.07 1.73 2.54 2.60 4.01 2.86

Cubist 0.85 0.83 10.88 9.83 0.92 0.88 0.67 2.67 2.61 2.33 4.13 2.56

Artificial neural
network

0.86 0.82 11.27 9.89 0.90 0.87 − 3.24 0.97 2.52 2.31 3.98 2.54

Linear regression 0.79 0.76 12.91 11.65 0.88 0.84 0.03 3.07 2.20 1.96 3.48 2.16

Interactions linear 0.82 0.82 12.15 9.99 0.90 0.88 0.26 2.61 2.34 2.29 3.69 2.52

Robust linear 0.79 0.74 13.09 11.94 0.87 0.82 − 0.79 2.88 2.17 1.91 3.43 2.10

Linear regression-pure
quadratic

0.80 0.77 12.79 11.32 0.88 0.85 0.17 3.25 2.22 2.02 3.51 2.22

Stepwise linear 0.83 0.81 11.74 10.31 0.90 0.88 0.15 2.81 2.42 2.22 3.83 2.44

Fine tree 0.82 0.81 11.91 10.54 0.90 0.88 − 0.31 2.44 2.38 2.17 3.77 2.38

Medium tree 0.85 0.82 11.04 9.84 0.91 0.89 − 0.02 1.58 2.57 2.32 4.07 2.55

Coarse tree 0.69 0.80 15.76 10.25 0.82 0.87 − 0.54 1.97 1.80 2.23 2.85 2.45

Linear SVM 0.80 0.73 12.84 12.29 0.88 0.81 0.18 3.64 2.21 1.86 3.50 2.04

Quadratic SVM 0.81 0.77 12.34 11.40 0.89 0.85 0.02 3.08 2.30 2.01 3.64 2.20

Cubic SVM 0.77 0.85 13.68 9.03 0.87 0.90 0.31 1.87 2.08 2.53 3.28 2.78

Fine Gaussian SVM 0.78 0.81 13.53 10.18 0.85 0.87 − 0.21 1.60 2.10 2.25 3.32 2.47

Medium Gaussian SVM 0.81 0.76 12.59 11.49 0.88 0.84 − 0.90 2.90 2.26 1.99 3.57 2.19

Coarse Gaussian SVM 0.78 0.74 13.59 12.04 0.85 0.81 − 0.92 2.80 2.09 1.90 3.30 2.09

Boosted trees 0.86 0.83 10.86 9.49 0.91 0.89 − 1.63 0.80 2.61 2.41 4.13 2.65

Bagged trees 0.82 0.85 11.97 8.95 0.89 0.90 − 0.08 1.62 2.37 2.56 3.75 2.81

Squared exponential
GPR

0.82 0.79 11.85 10.80 0.90 0.86 0.01 2.88 2.40 2.12 3.79 2.33

Matern 5/2 GPR 0.82 0.80 12.01 10.56 0.90 0.87 0.09 2.71 2.37 2.16 3.74 2.38

Exponential GPR 0.82 0.82 12.04 9.80 0.89 0.88 0.20 1.93 2.36 2.33 3.73 2.56

Rational Quadratic GPR 0.82 0.79 11.87 10.80 0.90 0.86 0.04 2.88 2.39 2.12 3.78 2.33

Partial least square
regression

0.80 0.76 12.77 11.50 0.88 0.84 0.00 2.55 2.22 1.99 3.52 2.18

Note: RMSE, root mean square error; RPD, ratio of prediction to deviation; RPIQ, ratio of performance to interquartile distance; IV, internal validation; EV, external
validation; SVM, support vector machine; GPR, Gaussian process regression. These are results of 10-fold cross-validation IV, EV, RPD and RPIQ, respectively. The bold
numbers in the rows refer to the best models.

timal mode is to use the least number of predictor variables
with the highest modeling accuracy. In this study, we reduced
the number of 22 variables to 6 variables if the modeling ac-
curacy did not change significantly. This shows that these six
variables have been the most important and effective param-
eters in the modeling process. Although the modeling accu-
racy did not change significantly, the processing volume was
significantly reduced.

Overall, the nonlinear models performed well than the lin-
ear ones, it was inferred that there exists a nonlinear relation-
ship between the SOM, SMC, and image parameters. The effi-
ciency of nonlinear models such as RF and cubist for SOM and
SMC prediction has shown in some other studies (Taghizadeh-
Mehrjardi et al. 2020; Fathololoumi et al. 2021a; Zeraatpisheh
et al. 2022).

Conclusions
The SMC and SOM are known to influence the soil color;

soil high in humus appears dark black to brown and along
with high moisture content even 5% SOM is sufficient for

darker appearance. The darker appearance with higher mois-
ture content is attributed to higher light absorbance. How-
ever, the long-term higher moisture content also affects the
soil color by enhancing anaerobic conditions and affecting
state of iron oxides in soil (Jackson 2008). This study reports
the calibration and validation of 22 supervised regression
and machine learning algorithms to evaluate the potential
of soil images captured by a digital camera to predict SOM
and SMC. These models developed prediction relationships
among SOM and SMC (measured in the laboratory) and vari-
ous color- and texture-related features derived from images.
Color parameters demonstrated high correlation with both
SOM and SMC. Overall, the predicted SMC with greater ac-
curacy than SOM implied that SMC exerts a considerable in-
fluence in imparting color to the soil. Results revealed a sat-
isfactory agreement between the image parameters and the
laboratory-measured SOM (R2 and RMSE of 0.74 and 9.80% us-
ing cubist) and SMC (R2 and RMSE of 0.86 and 8.79% using RF)
for the validation data set using six predictor variables. Over-
all, GPRs and tree models (cubist, RF, and boosted trees) best
captured and explained the nonlinear relationships between
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SOM, SMC, and image parameters for this study. The soil color
was also affected by temperature, climate, and mineral con-
tent; therefore, more research involving real field condition
across different soil type and climatic regions was needed to
establish a standard methodology for predicting SMC, SOM,
and other soil properties using digital images. The advantage
of this methodology over the traditional method would be
rapid estimation of soil properties at a much reduced cost and
be environmentally safe. Taken together, digital image-based
soil characterization provides an opportunity to be used for
proximal soil sensing.
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