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Abstract
The major drivers of soil variation in Saskatchewan at scales finer than the existing soil maps are parent material variance,

slope position, and salinity. There is therefore a need to generate finer-scale parent material maps as part of updating soil maps
in Saskatchewan. As spatially referenced soil point data are lacking in Saskatchewan, predictive soil mapping methods that
disaggregate existing soil parent material maps are required. This study focused on investigating important environmental
covariates to use in parent material disaggregation, particularly bare soil composite imagery (BSCI). Synthetic point observa-
tions were generated using an area-proportional approach based on existing soil survey polygons and a random forest model
was trained with those synthetic observations to predict parent material classes. Including BSCI as environmental covariates
increased model accuracy from 0.38 to 0.52 and the model Kappa score from 0.19 to 0.35 compared with models where it was
not included. Models that included training points from all locations, regardless of whether BSCI was available, and included
BSCI as environmental covariates had similar results to the BSCI model with an accuracy of 0.48 and a Kappa value of 0.30.
Based on these results, BSCI is an important covariate for parent material disaggregation in the Saskatchewan Prairies. Future
work to disaggregate soil classes based on slope position and salinity, and to combine those methods with parent material
disaggregation is needed to generate detailed soil maps for the Canadian Prairies.

Key words: predictive soil mapping, bare soil composite, soil map dissaggregation, remote sensing, soil parent material

Résumé
Les principaux facteurs qui régissent la variation des sols en Saskatchewan à une échelle plus fine que celle des cartes pé-

dologiques existantes sont la variance du matériau originel, la position de la pente et la salinité. Lorsqu’on actualisera les
cartes du sol de la Saskatchewan, il faudrait donc produire des cartes plus précises du matériau originel. Puisqu’on manque
de données ponctuelles avec références spatiales pour les sols de la province, il conviendrait d’élaborer des méthodes prévi-
sionnelles qui dissocieront le matériau originel des cartes du sol actuelles. Les auteurs ont examiné d’importantes covariables
environnementales qu’on pourrait utiliser à cette fin, notamment les images composites du sol nu. Pour cela, ils ont créé
des observations ponctuelles synthétiques en recourant à une méthode de calcul proportionnel de la surface, articulée sur
les polygones d’arpentage existants, et ont appliqué ces observations à un modèle à forêt aléatoire afin de prédire les classes
de matériau originel. Ajouter les images composites du sol nu aux covariables environnementales fait passer l’exactitude du
modèle de 0,38 à 0,52 et sa valeur Kappa de 0,19 à 0,35, comparativement à celles des modèles qui n’incluent pas de telles
images. Les modèles formés avec des points de chaque endroit, que des images composites du sol nu soient disponibles ou pas,
et comprenant de telles images dans leurs covariables environnementales donnent des résultats similaires à ceux du modèle
avec les images composites du sol nu (exactitude de 0,48 et valeur Kappa de 0,30). De ces résultats on conclut que les images
composites du sol nu constituent une importante covariable pour la dissociation du matériau originel dans les prairies de la
Saskatchewan. Il faudrait entreprendre d’autres recherches afin de dissocier les classes de sol d’après la position de la pente et
la salinité, et combiner ces méthodes à la dissociation selon le matériau originel en vue de produire des cartes pédologiques
détaillées des Prairies canadiennes. [Traduit par la Rédaction]

Mots-clés : cartes prévisionnelles du sol, images composites du sol nu, dissociation des cartes pédologiques, télédétection,
matériau originel
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Introduction

The Province of Saskatchewan had extensive surveying and
soil mapping activities conducted between 1958 and 1998.
The resulting soil survey maps were produced at scales of
1:100000 or coarser and are available in an easily accessible
digital platform (SKSIS Working Group 2018). While these
maps were essential for agriculture management and land
use planning in Saskatchewan throughout the late 20th cen-
tury, there is increasing demand for more detailed soil maps
to support targeted land use planning, soil carbon manage-
ment, and precision agriculture. To meet these needs, pre-
dictive soil mapping using machine learning tools, in combi-
nation with a suite of environmental covariates, has been an
increasing focus of research in Saskatchewan and around the
world (McBratney et al. 2003).

As there is currently limited public spatially explicit point
data for predictive soil mapping in Saskatchewan, there is
a need for mapping approaches that do not rely solely on
field-collected point data for model training. Given the ex-
tensive, coarse-scale, soil maps available, there is the poten-
tial to disaggregate those maps using established techniques
to generate improved soil maps across the agricultural region
of Saskatchewan. Polygon disaggregation by generating syn-
thetic training points based on polygon labels is one such ap-
proach (Holmes et al. 2015; Chaney et al. 2016). Initial poly-
gon disaggregation approaches focused on assigning equal
points to polygons and randomly assigning class labels based
on their relative proportions within a polygon (Odgers et al.
2014). Improvements have since been made to polygon disag-
gregation by incorporating area-proportional sampling and
informing class assignment based on soil–landscape relation-
ships (Møller et al. 2019). Additionally, the use of random for-
est models with a single sampling procedure was found to be
much more computationally efficient than approaches that
used multiple sampling procedures and C5.0 decision trees,
with only a slight decrease in predictive accuracy (Møller et
al. 2019).

Parent material is one of the key soil-forming factors
(Jenny 1941) and a major control of important soil proper-
ties in the Canadian Prairies. Currently, in Saskatchewan,
the finest-scale parent material maps are the classifications
included in Saskatchewan’s detailed soil survey. More de-
tailed parent material maps are necessary to map soil varia-
tion at finer scales. A previous study in Saskatchewan identi-
fied that finer-scale mapping of hydropedological parameters
can delineate soil variation associated with topography, but
this typically requires high-resolution digital elevation mod-
els (DEMs), which are not widely available in Saskatchewan
(Pennock et al. 2014; Kiss and Bedard-Haughn 2021). Success-
ful disaggregation of parent material maps may not depend
on such data requirements, making it a potential approach to
improve soil maps across the Saskatchewan prairies. There
have been successful studies in disaggregating existing par-
ent material maps in British Columbia (Heung et al. 2014;
Bulmer et al. 2016), which did not rely on high-resolution
DEMs for model environmental covariates.

One potential approach to improve soil parent mate-
rial map disaggregation in the Saskatchewan Prairies is to

incorporate bare soil composite imagery (BSCI) as an envi-
ronmental covariate. BSCI is generated by mining archival
remote sensing imagery to isolate pixels where bare soil is
present and using the resulting data stack to generate a com-
posite image of bare soil conditions. The creation of BSCI
has become a possibility with the development of large-scale
cloud computing infrastructure (Gorelick et al. 2017). This is
particularly necessary in the Canadian Prairies as pixels with
vegetation or dead plant residue cover that exceed 20% make
direct estimation of soil properties difficult (Bartholomeus et
al. 2007, 2008). Vegetation or residue-free images are rare in
Saskatchewan in recent decades due to the widespread adop-
tion of conservation tillage (Statistics Canada 2017). BSCI has
been used in a variety of locations such as Germany (Rogge et
al. 2018), Brazil (Safanelli et al. 2020), and globally (Demattê
et al. 2020) for predicting soil properties such as soil organic
carbon. Recently, BSCI has been used to successfully gener-
ate historical soil carbon maps and clay content maps for
Saskatchewan (Sorenson et al. 2021). Both soil organic carbon
and clay content vary with parent material, along with other
factors, and therefore there is potential that BSCI could sup-
port parent material map disaggregation in Saskatchewan.

This study had two main objectives. The first objective was
to evaluate the potential of disaggregation approaches to
generate finer-scale parent material maps in Saskatchewan,
specifically by using a more computationally efficient ran-
dom forest model approach with a single set of syntheti-
cally generated training data derived from existing soil sur-
vey maps of soil parent materials. The second objective of
this study was to investigate the value of BSCI for improving
parent material disaggregation in Saskatchewan.

Materials and methods

Soil parent material context
Nearly the entire extent of Saskatchewan’s soils is formed

on unconsolidated transported parent materials, predomi-
nantly the result of glacial processes (Anderson and Cerkow-
niak 2010). The most common soil parent materials in
Saskatchewan are glacial tills (often enriched with limestone-
rich bedrock), followed by glaciolacustrine and fluvial de-
posits (Table 1). Due to the overall slope of the land and
drainage to the northeast, large glacial lakes formed that
caused extensive glaciolacustrine deposits associated with
proglacial lakes (Anderson and Cerkowniak 2010). Addition-
ally, high-energy streams from the melting glaciers were re-
sponsible for the creation of fluvial deposits along deltas that
formed where streams entered glacial lakes. Minor areas of
eolian landscapes are also present, which formed due to post-
glacial wind erosion. Minor areas of bedrock, eolian, peat,
and colluvium are also present. The existing parent material
map, from Saskatchewan’s detailed soil survey polygons, is
provided in Fig. 1.

Remote sensing data
Remote sensing data for the agricultural regions of

Saskatchewan (Fig. 1) were acquired using Google Earth En-
gine (Gorelick et al. 2017) to be used as environmental
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Table 1. Distribution of parent material types in the detailed soil survey polygons of Saskatchewan (SKSIS Working Group
2018) and the National Pedon Database parent material class counts (Agriculture and Agri-Food Canada 2016).

Soil survey polygons National Pedon Database

Parent material Total area (ha) Percentage (%) Count Percentage (%)

Not applicable 917948 2.5 NA NA

Bedrock 545856 1.5 7 0.8

Colluvium 232922 0.6 2 0.2

Eolian 385221 1.0 9 1.0

Fluvial 7687880 20.8 365 39.1

Lacustrine 6451544 17.5 274 29.3

Lacustrine over till 3458704 9.4 130 13.9

Peat 455332 1.2 NA NA

Till 16807393 45.5 147 15.7

Total 36942800 100.0 934 100.0

covariates in the parent material disaggregation models.
Landsat 7 Tier 1 surface reflectance data were acquired from
1999 to 2021, with several band indices calculated (Table 2).
The median anthocyanin reflectance index (ARI), which is as-
sociated with anthocyanin pigments in plant foliage (Gitelson
et al. 2001), was calculated for data from the months of July
and August. This index was included as it has been useful
for discriminating vegetation differences in Alberta for peat-
land mapping (DeLancey et al. 2019). The median canopy re-
sponse salinity index (CRSI) was also calculated using data
from the months of July and August, as it has been used to
distinguish soil differences associated with salinity (Scudiero
et al. 2015). The median normalized difference vegetation
index (NDVI) was calculated for the months of July and Oc-
tober, separately. These months were selected as July corre-
sponds to peak photosynthetic activity, and only non-arable
cropland would have any photosynthetic activity in Octo-
ber. Non-arable cropland would be expected to be prefer-
entially located on sandier parent materials or those with
steeper slopes. The standard deviation of NDVI using data
from May to October was also determined. Level 1 C data
from Sentinel 2 were acquired for the months of May to Oc-
tober from 2015 to 2020 to generate the median red-edge in-
flection index (REIP). The REIP was included in the study, as
it has been an important parameter for discriminating veg-
etation differences in Alberta (DeLancey et al. 2019). Each
parameter was median focal filtered using a 3 × 3 win-
dow size and exported from Google Earth Engine at 30 m
spatial resolution. The Google Earth Engine scripts for gen-
erating these covariates are available on GitHub (Sorenson
2021a).

Data from the Sentinel 1 platform were also retrieved from
Google Earth Engine. Processing of the Sentinel 1 data was
done using the methodology in Hird et al. (2017). The median
vertical–vertical (VV) and vertical–horizontal (VH) backscat-
ter was determined using data from May to October from
2015 to 2020. To focus more on broader landscape trends,
rather than fine-scale variation, the data were median focal
filtered with a 9 × 9 window size and exported at a 30 m spa-
tial resolution, rather than the default 10 m, to match the
resolution of the Landsat 7 data. The Google Earth Engine

script for generating these covariates is available on GitHub
(Sorenson 2021a).

Bare soil composite imagery
BSCI was generated using Google Earth Engine and the

methodology from Sorenson et al. (2021). Atmospherically
corrected Tier 1 surface reflectance data for Landsat 5 were re-
trieved for the months of July and August from 1984 to 1995.
Landsat 5 data from this time period, rather than more recent
Sentinel-2 or Landsat 7 and 8 data, were used because the
total number of acres in Saskatchewan under conventional
tillage peaked in 1970 and declined to only 18% of farmland
by 2006 (Statistics Canada 2015). Therefore, more recent im-
agery is heavily affected by crop residues. The months were
limited to July and August to ensure that crop residues from
previous years had time to decompose, thereby reducing the
influence of crop residues on BSCI. Clouds, shadows, and low-
quality pixels were filtered using the Landsat quality assess-
ment band (pixel_qa). The Landsat 5 data had seven bands:
Band 1 corresponding to blue light (450–520 nm), Band 2 cor-
responding to green light (520–600 nm), Band 3 correspond-
ing to red light (620–690 nm), Band 5 (1550–1750 nm), Band 6
(10400–12 500 nm), and Band 7 (2080–2350 nm). Band 6 was
not used in the analysis.

Image collections were filtered using NDVI, normalized
burn ratio (NBR2), normalized difference water index (NDWI)
(Demattê et al. 2018), and normalized difference index 7
(NDI7) (Sorenson et al. 2021). Pixels were kept as likely repre-
senting the bare soil surface if the NDVI value was less than
0.3 (Demattê et al. 2020), NBR2 was less than 0.1 (Demattê
et al. 2020), NDWI was less than 0.5 (Du et al. 2016), and
NDI7 was less than 0 (Kokaly et al. 2017). Additionally, any
region mapped as pasture or grassland in Agriculture and
Agri-Food Canada’s 2019 Annual Crop Inventory was masked
(Agriculture and Agri-Food Canada 2019). While 2019 does
not match the years of the bare soil imagery collections, both
land uses tend to be managed for long term. Following fil-
tering and masking, the median reflectance values for each
pixel were calculated, and then spatially filtered using a cir-
cular 10 × 10 median focal filter. The focal filtering was done
to account for the 300 m location uncertainty reported in the
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Fig. 1. Overview maps of imagery and parent material in Saskatchewan. (a) True colour red-green-blue median surface re-
flectance image (Landsat 7 Bands 3–2-1) for Saskatchewan from July and August from 1999 to 2021. The black points indicate
the location of the National Pedon Database sample locations used for validation. The squares with yellow diagonal lines indi-
cate the locations of the finer spatial resolution example maps. (b) Existing Saskatchewan soil parent material map. Coordinates
are in UTM Zone 13 N NAD83.
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Table 2. Complete list of features included in the analysis prior to feature selection.

Feature Data source Band ratio equation

Band ratios

Median anthocyanin reflectance index
(ARI)

July and August Landsat 7 from 1999 to
2021

Band 4
Band 1 − Band 4

Band 2

Median canopy response salinity index
(CRSI)

July and August Landsat 7 from 1999 to
2021

[
(Band4×Band3)−(Band2×Band1)
(Band4×Band3)+(Band2×Band1)

]1/2

Median normalized difference vegetation
index (NDVI)

July Landsat 7 from 1999 to 2021, and
October Landsat 7 from 1999 to 2021

Band 4−Band 3
Band 4+Band 3

Standard deviation of NDVI May to October Landsat 7 from 1999 to
2021

Median red-edge inflection index (REIP) May to October Sentinel 2 from 2015 to
2020

702 + 40
[

(Band 4+Band 7)/2 − Band 5
Band 6− Band 5

]

Feature Data source Filtering levels

Terrain attributes

Terrain ruggedness index (TRI) 10 × 10
window size

Advanced land observation satellite
(ALOS) digital surface model

� No spatial filtering
� 3 × 3, 5 × 5, and 9 × 9 median focal

filtering of the input surface model
� 3 × 3 median focal filtering of the output

data

TRI 20 × 20 window size ALOS digital surface model
� 9 × 9 median focal filtering of the input

surface model

Standard deviation of elevation ALOS digital surface model
� 3 × 3 focal window with 3 × 3 median focal

filter of the input surface model
� 5 × 5 focal window with 3 × 3 median focal

filter of the input surface model
� 9 × 9 focal window with 3 × 3 median focal

filter of the input surface model
� 21 × 21 focal window with 3 × 3 median

focal filter of the input surface model
� 21 × 21 focal window with 9 × 9 median

focal filter of the input surface model
� 101 × 101 focal window with 9 × 9 median

focal filter of the input surface model

Feature Data source Bands

Remote sensing bands

Bare soil composite imagery (BSCI) July and August Landsat 5 from 1984 to
1995

Band 1, Band 2, Band 3, Band 4, Band 5, and
Band 7

Sentinel 1 synthetic aperture radar May to October Sentinel 1 with 9 × 9
median focal filtering from 2015 to 2020

Vertical–vertical (VV) and Vertical–horizontal
(VH) polarization.

Note: Band ratio equations for each band ratio were used as an environmental covariate in the analysis. The listed bands correspond to Landsat 5 and 7 except for the
red-edge inflection point which correspond to Sentinel 2 bands.

National Pedon Database and to smooth out fine-scale varia-
tion more likely attributable to factors other than parent ma-
terial. The final filtered composite image was then aggregated
to a spatial resolution of 30 m. Additional details and band ra-
tio equations are available in Sorenson et al. (2021) and the
Google Earth Engine script is available on GitHub (Sorenson
2021b). Example results for the BSCI are provided in Fig. 2,
which includes true colour red-green-blue images of the bare
soil surface.

Terrain attributes
Terrain attributes were determined using the 30 m digital

surface model from the Advanced Land Observation Satellite

(ALOS) (Japan Aerospace Exploration Agency 2015) retrieved
using Google Earth Engine. Two terrain attributes, terrain
ruggedness index (TRI) and the standard deviation of ele-
vation, were calculated using a range of median focal fil-
tering window sizes and calculation window sizes (Table 2).
Median focal filtering was used, rather than mean, as it is
less sensitive to the effects of outliers. These attributes were
selected, as they represent coarser scale patterns in land-
scape variability rather than specific fine-scale patterns re-
lated to factors such as local landscape morphometry, hydro-
logical characteristics, and landscape exposure. While these
finer-scale attributes were documented to improve predic-
tive parent material mapping at 100 m in British Columbia
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Fig. 2. Imagery for the four finer spatial resolution example areas. The first row corresponds to the northeast example area, the
second row is the northwest example area, the third row is the southwest example area, and the fourth row is the southeast
example area. The figures in column (a) are true colour red-green-blue median surface reflectance image (Landsat 7 Bands 3-2-1)
for Saskatchewan from July and August from 1999 to 2021. The figures in column (b) are true colour red-green-blue median
reflectance bare soil pixel composite images (Landsat 5 Bands 3-2-1) for Saskatchewan from 1984 to 1995. This represents a
true colour image of the exposed soil surface. The white areas in column (b) correspond to areas either without bare soil pixels
present or permanent pasture areas that have been masked. Coordinates are in UTM Zone 13 N NAD83.
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(Heung et al. 2014; Bulmer et al. 2016), the characteris-
tics of prairie landscapes make these attributes challeng-
ing to accurately calculate with currently available DEMs
in Saskatchewan. Satellite-derived DEMs with spatial resolu-
tions of 30 m, like the ALOS model used here, lack the hor-
izontal and vertical accuracy to capture fine-scale variation
in the relatively low-relief Canadian Prairies. Specifically, the
ALOS 30 m DEM has a reported vertical root mean square er-
ror of 1.78 m (Caglar et al. 2018), which is greater than the
relief differences driving soil property differences in some
hummocky landscapes in Saskatchewan (Landi et al. 2004).
Additionally, 30 m spatial resolution is not fine enough to
consistently characterize slope and topographic variation in
many Saskatchewan landscapes (Landi et al. 2004). However,
currently these are the best freely available DEM data for
Saskatchewan. Therefore, this study focused on using terrain
attributes that accounted for general degrees of variability
more broadly.

TRI was calculated using the system for automated geosci-
entific analyses (SAGA) (Conrad et al. 2015). The TRI was cal-
culated with either a window size of 10 or 20 (Table 2), and
with the following median focal filters applied to the DEM
prior to processing: no filter, 3 × 3, 5 × 5, and 9 × 9 (Table 2).
Applying a 3 × 3 median focal filter to the TRI results with no
filter on the DEM was also tested. The standard deviation of
elevation was calculated using Google Earth Engine with win-
dow sizes of 3 × 3, 5 × 5, 9 × 9, and 21 × 21 following 3 × 3
median focal filtering of the DEM (Table 2). The standard de-
viation of elevation was also calculated using window sizes of
21 × 21 and 101 × 101 for a 9 × 9 median focal-filtered DEM.
Examples of the terrain features determined as important en-
vironmental covariates during model development are illus-
trated in Fig. 3. TRI was not calculated using a 101 × 101
window because of the computational time required com-
pared to standard deviation. Multiple scales were consid-
ered as multi-scale digital terrain analysis has been shown
to improve predictive soil mapping results (Behrens et al.
2010).

Model development
Predictive models were developed using the detailed soil

survey polygons as training data, which were mapped at a
1:100 000 scale. The disaggregation approach was similar to
Møller et al. (2019) where a single set of area-proportionally
sampled synthetic training points were generated and a ran-
dom forest model was trained. This approach was selected for
the computational efficiency (Møller et al. 2019). Synthetic
training data were developed by randomly assigning points
within each polygon on an area proportional basis. The num-
ber of points generated for each polygon was equal to the
natural logarithm of the polygon area divided by the area of
the smallest polygon in the data set. This number was then
multiplied by 5 for the final number of points per polygon.
The rationale for this approach was that it ensured multi-
ple training points are generated for each polygon and that
larger polygons have more points generated to reduce the
likelihood that they are underrepresented in the training
data.

Points were assigned to the parent material class based
on the first deposition layer described for the polygon that
they were generated in, with the exception of the lacustrine
over till class, which reflects both the first and second de-
position layers. Polygons with parent material values of un-
differentiated indicated that there is too much variability in
parent materials at the mapping scale of the detailed soil sur-
vey polygons to assign a parent material class, so data from
these polygons were not used for model development. As
each polygon has a single component, the single component
was used to assign the training data label. Multi-component
polygons in the parent material maps were labelled as
undifferentiated and they were excluded during training
data creation. In total, 5 786 772 synthetic training points
were generated. The scripts for generating the training data
from the parent material polygons are available on GitHub
(Sorenson 2021c).

The parent material classes for the synthetic training
points generated from the detailed soil survey polygons were
simplified. Fluvial eolian and fluvial lacustrine parent mate-
rials were grouped as fluvial because of the similar char-
acteristics of these materials. Additionally, minor parent
materials with very similar characteristics were removed,
specifically glaciolacustrine and glaciofluvial. Fluvial eolian and
fluvial lacustrine were grouped as fluvial. Fen and sphagnum peat
were grouped as a single peat class. Lacustro-till were relabelled
as lacustrine due to its infrequent occurrence and high simi-
larity to lacustrine deposits. Residual and undifferentiated bedrock
were combined into a bedrock class. The final parent material
classes were: bedrock, colluvium, eolian, fluvial, lacustrine, lacus-
trine over till, peat, and till.

To improve the computational efficiency of the model
building, the total points were randomly subset to three sets
with 1 000 000 training points from the original 5786772.
Separate training subsamples were generated for the three
following models: (1) the BSCI-only model, which includes only
training points from locations where BSCI is available and
includes BSCI as environmental covariates, (2) the exhaustive
model, which includes training points from all locations, re-
gardless if BSCI is available and includes BSCI as environmen-
tal covariates, and (3) the BSCI-excluded model, which also in-
cludes training points from all locations but does not include
BSCI as environmental covariates. Where BSCI imagery was
not available, a null value of 0 was set for model development
purposes.

Following creation of the training data, random forest
models were built using the ranger package in R (Wright and
Ziegler 2017). As class imbalances exist in the training data,
the case weights term in the ranger model was used to bal-
ance across classes during model building. The case weights
term in the ranger package allows for probabilities to be as-
signed to each training point that determines the likelihood
a point will be sampled during individual tree building in
the random forest. As a result, each tree of the random for-
est can be built with balanced classes, and the overall ran-
dom forest model will therefore be built on class balanced
data even if the original data set has imbalanced classes. Case
weights were set so that each parent material class had an
equal chance of being subsampled for each individual tree
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Fig. 3. Terrain attribute imagery for the three terrain parameters selected as important predictors by the feature selection
process. The first row provides imagery for the portion of Saskatchewan with conventional soil survey maps at 1:100000. The
bottom row is the imagery for the southwest example area. The figures in column (a) are the ALOS DEM with a 3 × 3 median
filter applied and the standard deviation of elevation calculated with a 21 × 21 window. Figs. in column (b) are the ALOS DEM
with a 9 × 9 median filter applied and the standard deviation of elevation calculated with a 21 × 21 window. The figures in
column (c) are the ALOS DEM with a 9 × 9 median filter applied and the standard deviation of elevation calculated with a
101 × 101 window. Coordinates are in UTM Zone 13 N NAD83.

built in the random forest. An initial model was built us-
ing all environmental covariates listed in Table 2 to deter-
mine feature importance based on Gini index. Features were
then selected for the final models using a backward feature
selection process, where random forest models were built
using sequentially less features. For each iteration, the fea-
ture importances were recalculated, and the least important
feature was removed. The final features selected were deter-
mined based on where the out-of-bag classification error was
minimized. In total, the BSCI-only model used 16 features, the
exhaustive model used 20 features, and the BSCI-excluded model
used 11 features (Table 3). Final random forest models were
built for each scenario with the following model hyperparam-
eters: probability set to true, extra trees as the split rule, and
case weights set so that subsampling probability was equal-
ized across parent material classes to reduce the influence of
class imbalances on the model. The scripts for generating the
random forest models and resulting parent material maps are
available on GitHub (Sorenson 2021c).

Validation data
Data from the National Pedon Database (Table 1) were used

as model validation data (Agriculture and Agri-Food Canada
2016). Historically, the samples were collected to represent
modal soils from dominant soil types from a region and were
collected by horizon with analyses performed on the homog-
enized horizon samples. The location accuracy for these sam-
ples is low, with specific locations estimated relative to land
marks by the soil surveyors. The estimated location uncer-
tainty is approximately ±300 m. The 300 m uncertainty is the
location uncertainty reported for the data in the National Pe-
don Database. These soil pedon observations were used to in-
form the soil survey parent material mapping and so they are
not completely independent from the maps used as training
data, but the point observations themselves were not used
in the model training. The soil parent material classes were
simplified for this study based on the original parent mate-
rial classes in the survey database using the same approach
as the training data.
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Table 3. Final features used for each of the three predictive models along with feature importance values for the final
model.

Feature Importance

BSCI-only model

Sentinel 1 VH polarization 61115

Standard deviation of 9 × 9 median filtered elevation with a 101 × 101 focal window 51431

Standard deviation of NDVI 50107

Median ARI 49904

Bare Soil Composite Band 5 48257

Bare Soil Composite Band 1 44765

Median October NDVI 43946

Bare Soil Composite Band 7 43831

Bare Soil Composite Band 3 43756

Bare Soil Composite Band 2 43657

Sentinel 1 VV polarization 43423

Bare Soil Composite Band 4 43141

Standard deviation of 3 × 3 median filtered elevation with a 21 × 21 focal window 40012

Standard deviation of 3 × 3 median filtered elevation with a 9 × 9 focal window 36929

Bare Soil Composite Band 6 35721

Median July NDVI 35564

Exhaustive model

Sentinel 1 VH polarization 55924

Standard deviation of 9 × 9 median filtered elevation with a 101 × 101 focal window 48665

Sentinel 1 VV polarization 47296

Median ARI 42597

Standard deviation of NDVI 41207

Median REIP 35934

Median October NDVI 35181

Median July NDVI 33683

Standard deviation of 3 × 3 median filtered elevation with a 21 × 21 focal window 33393

Standard deviation of 9 × 9 median filtered elevation with a 21 × 21 focal window 32690

Bare Soil Composite Band 5 32644

Bare Soil Composite Band 7 32160

Median CRSI 31071

TRI 20 × 20 window size with 9 × 9 median focal filtering 30248

Standard deviation of 3 × 3 median filtered elevation with a 9 × 9 focal window 29528

Bare Soil Composite Band 6 28869

Bare Soil Composite Band 1 28533

TRI 10 × 10 window size with 3 × 3 median focal filtering 27851

Bare Soil Composite Band 2 27420

Bare Soil Composite Band 4 26981

BSCI-excluded model

Sentinel 1 VH polarization 88441

Standard deviation of 9 × 9 median filtered elevation with a 101 × 101 focal window 70274

Sentinel 1 VV polarization 68883

Standard deviation of NDVI 64801

Median ARI 63417

Median October NDVI 61536

Median REIP 57571

Standard deviation of 3 × 3 median filtered elevation with a 21 × 21 focal window 55560

Median July NDVI 53353

Standard deviation of 9 × 9 median filtered elevation with a 21 × 21 focal window 52061

Median CRSI 50442

Note: These models include only training data with BSCI present, using training data with and without BSCI, and without using BSCI.
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Table 4. Confusion matrix for the independent validation results of the BSCI-only model.

Most likely parent material prediction

Predicted class

Actual class Bedrock Colluvium Eolian Fluvial Lacustrine
Lacustrine

over till Till
Class producer

accuracy

Bedrock 1 1 1 1 1 0.2

Colluvium 1 0

Eolian 6 2 0.75

Fluvial 4 149 30 25 25 0.64

Lacustrine 42 114 39 46 0.47

Lacustrine
over till

18 49 29 18 0.25

Till 1 8 16 17 76 0.64

Overall
accuracy

0.52

Kappa 0.35

Second most likely parent material prediction

Predicted class

Actual class Bedrock Colluvium Eolian Fluvial Lacustrine
Lacustrine

over till Till
Class producer

accuracy

Bedrock 1 1 3 0.2

Colluvium 1 0

Eolian 1 1 2 1 3 0.13

Fluvial 4 32 53 43 101 0.14

Lacustrine 40 50 64 87 0.21

Lacustrine
over till

14 18 37 45 0.32

Till 3 25 37 34 19 0.16

Overall
accuracy

0.19

Kappa −0.04

The distribution of parent material classes amongst pedon
validation data did not match the distribution of parent ma-
terial classes reflected by the detailed soil survey polygons
(Table 1). This was likely because the pedon data were col-
lected to provide example profiles for the range of soil as-
sociations present in Saskatchewan, not to sample parent
material classes on a proportional basis. The most frequent
parent material in the pedon validation data was fluvial, fol-
lowed by lacustrine, till, and then lacustrine over till (Table 1).
Minor amounts of eolian, bedrock, and colluvium parent mate-
rials were present. No peat data are present in the validation
data. For the detailed soil survey polygon data, the most com-
mon parent material class was till, followed by fluvial and then
lacustrine (Table 1).

Model validation
Model performance was evaluated based on overall model

accuracy, Cohen’s Kappa, which measures inter-rater reliabil-
ity and considers agreement occurring by chance, and spe-
cific class producer accuracy. Accuracy and Kappa values in
this study are reported on a scale of 0–1. Producer accuracy
refers to the number of correctly predicted observations of a
soil class per the total number of observations of that class

(Malone et al. 2017), and is referred in the results simply as
class accuracy.

Uncertainty estimates
Prediction confidence was determined using the confusion

index (Burrough et al. 1997; Odgers et al. 2011; Brungard et
al. 2015), which is calculated with the following equation:

CI = {
1 − [

umax − u(max −1)
]}

where CI is the confusion index, umax is the probability value
of the most likely prediction based on the random forest pro-
portion of votes in the ensemble, and u(max−1) is the probabil-
ity value for the second most likely prediction based on the
proportion votes in the ensemble. Confidence interval values
closer to 1 indicate less certainty and values closer to 0 indi-
cate more certainty in the prediction.

Results and discussion
The results of this study are presented in two sections.

The first section is a review of the results for the BCSI-
only model, the BCSI-excluded model, and the exhaustive model.
The second section provides details on the model features

Downloaded From: https://bioone.org/journals/Canadian-Journal-of-Soil-Science on 11 Nov 2024
Terms of Use: https://bioone.org/terms-of-use

http://dx.doi.org/10.1139/CJSS-2021-0154


Canadian Science Publishing

Can. J. Soil Sci. 103: 47–63 (2023) | dx.doi.org/10.1139/CJSS-2021-0154 57

Table 5. Confusion matrix for the independent validation results of the exhaustive model.

Most likely parent material prediction

Predicted class

Actual class Bedrock Colluvium Eolian Fluvial Lacustrine
Lacustrine

over till Till Peat
Class producer

accuracy

Bedrock 2 1 1 1 0

Colluvium 1 0

Eolian 5 3 0.63

Fluvial 8 118 38 32 33 4 0.52

Lacustrine 20 122 54 45 0.55

Lacustrine
over till

11 50 36 17 0.52

Till 1 7 19 29 62 0.53

Overall
accuracy

0.48

Kappa 0.30

Second most likely parent material prediction

Predicted class

Actual class Bedrock Colluvium Eolian Fluvial Lacustrine
Lacustrine

over till Till Peat
Class producer

accuracy

Bedrock 1 4 0.2

Colluvium 1 0

Eolian 1 2 2 3 0.13

Fluvial 4 41 64 46 78 0.18

Lacustrine 2 44 48 65 82 0.20

Lacustrine
over till

1 11 22 40 40 0.10

Till 2 11 38 32 35 0.30

Overall
accuracy

0.23

Kappa 0.01

that were most important amongst each of the three model
types.

Model performance
Overall, the BSCI-only model was the best performing model.

The accuracy for the most probable parent material was
0.52 and Kappa was 0.35 (Table 4). The model performance
for the exhaustive model was very similar, but slightly lower,
with an overall accuracy of 0.48 and Kappa of 0.30 (Table
5). The model performance for the BSCI-excluded model was
lowest, with an accuracy of 0.38 and a Kappa value of 0.19
(Table 6). Predictive results were comparable between the
two models that included BSCI environmental covariates
(Fig. 4). However, it is important to note that the BSCI-only
model could only generate predicted maps for those regions
where BSCI imagery exists, which is a significant limitation
(Fig. 5).

In comparison, classification accuracy for regional-scale
parent material mapping in British Columbia had an overall
accuracy value of 0.779 and Kappa values of 0.697 (Heung et
al. 2014). That study focused on topographic derivatives that
appear to work well in British Columbia. The greater relief in
British Columbia improves results with coarser-scale DEMs

with higher vertical error, compared to that in the Cana-
dian Prairies where relief changes related to changes in soil
properties can be shallower than the DEM vertical error
(Landi et al. 2004). The better results in British Columbia
compared to this Saskatchewan study might be explained
by the less spatially extensive study area mapped in the
British Columbia study (5472 km2 in British Columbia ver-
sus 298000 km2 in Saskatchewan). A second British Columbia
study targeting a more extensive study area (945000 km2) had
comparable accuracies to this study with values of 0.411 or
0.415, depending on whether a balanced or constrained ap-
proach was used for predicting parent material (Bulmer et al.
2016)

Cross-class confusion for the BSCI-only model showed vari-
ance in performance across the parent material classes. Due
to the lack of validation points, the mapping performance for
colluvium and peat classes cannot be evaluated as part of this
study (Table 4). Eolian and bedrock classes had few validation
points resulting in less certainty in the overall predictions for
those classes. The bedrock class observations were predicted
across the parent material classes. Predictive accuracy for the
eolian parent material class was the highest with a class accu-
racy of 0.75 (Table 4). Fluvial and till parent materials had the
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Table 6. Confusion matrix for the independent validation results of the BSCI-excluded model.

Most likely parent material prediction

Predicted class

Actual class Bedrock Colluvium Eolian Fluvial Lacustrine
Lacustrine

over till Till Peat Class accuracy

Bedrock 2 1 2 1 0

Colluvium 1 1 0

Eolian 1 2 3 3 0.22

Fluvial 4 4 130 66 49 100 12 0.37

Lacustrine 1 42 116 64 48 3 0.43

Lacustrine
over till

1 16 46 48 17 2 0.38

Till 3 4 17 27 27 62 6 0.44

Overall
accuracy

0.38

Kappa 0.19

Second most likely parent material prediction

Predicted class

Actual class Bedrock Colluvium Eolian Fluvial Lacustrine
Lacustrine

over till Till Peat Class accuracy

Bedrock 1 1 2 2 0

Colluvium 1 1 0

Eolian 1 2 1 1 3 1 0.22

Fluvial 3 87 84 69 95 27 0.26

Lacustrine 2 63 77 57 73 2 0.28

Lacustrine
over till

1 17 41 27 43 1 0.21

Till 1 31 43 21 46 4 0.32

Overall
accuracy

0.26

Kappa 0.03

majority of the validation points classified correctly, with the
primary misclassification for fluvial being lacustrine (Table 4).
Interestingly, an area mapped as till in the southwest corner
of the southeast example area was mapped as fluvial deposits
rather than till even though it was mapped as till in the origi-
nal detailed soil polygons (Fig. 4). Without validation data in
this area, the accuracy of this mapping cannot be confirmed.
However, some of this area could include tills reworked by
fluvial processes as they are adjacent to a large glacial lake
that was present in this region of Saskatchewan (SKSIS Work-
ing Group 2018).

Till was primarily misclassified as lacustrine over till, which
is the parent material with the most similar characteristics,
and surface expression influenced by the underlying Till. Pre-
dictions for lacustrine parent material observations were less
than 50% correct, with a class accuracy of 0.47. There was
a fairly even distribution of misclassifications across fluvial,
lacustrine over till, and till observations. Lacustrine over till ob-
servations were classified correctly 25% of the time, with the
class being primarily misclassified as lacustrine. This is likely
because of the importance of bands 5 and 7, which are re-
lated to clay content (Sorenson et al. 2021), to the model,
and the similar surface textures between these two parent
materials.

Cross-class confusion for the exhaustive model (Table 5) was
similar to the BSCI-only model. Overall, this model had slightly
lower class accuracies for the eolian, fluvial, and till parent
material classes. There was a slight increase in class accura-
cies for the lacustrine and lacustrine over till classes. There were
major changes in the performances per class for the BSCI-
excluded model. The accuracies of all classes dropped (Table 6).
This was particularly the case for the eolian class. This is likely
because of the lack of bare soil imagery Bands 5 and 7 to iden-
tify the lower clay content areas associated with eolian parent
materials. Based on these shifts in overall accuracy, Kappa,
and individual class accuracies, the utility of the BSCI-excluded
model is low.

Feature importance
Overall, the most important feature for the BSCI-only model

was the Sentinel-1 VH backscatter (Table 3). A possible expla-
nation for the importance of this feature is that VH backscat-
ter has been shown to be related to aboveground biomass
(Laurin et al. 2018). By comparison, the VV backscatter was
less important (11th most important feature). VV is sensi-
tive to soil moisture, but does vary with vegetation charac-
teristics as well (Vreugdenhil et al. 2018). Particularly under
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Fig. 4. Parent material prediction results for each of the four example areas illustrated in Fig. 1. The first row corresponds to
the northeast example area, the second row is the northwest example area, the third row is the southwest example area, and
the fourth row is the southeast example area. The figures in column (a) are the prediction results from the BSCI-only model. The
figures in column (b) are the prediction results from the exhaustive model. Figs. in column (c) are the prediction results from the
BSCI-excluded model. The figures in column (d) are the detailed soil survey polygons displayed by parent material. Coordinates
are in UTM Zone 13 N NAD83.

water-limiting conditions, finer textured soils have increased
yields and associated biomass (He et al. 2013), and parent
materials having higher average clay contents, and therefore
biomass, are likely the reason Sentinel-1 VH backscatter was
an important feature. Additionally, increased biomass would
be associated with areas managed as pasture, which is
also associated with coarser parent materials such as fluvial
deposits.

The second most important feature was the standard devia-
tion of 9 × 9 median focal filtered elevation with a 101 × 101
focal window. This terrain feature was the most smoothed
and coarsest-scale feature of the terrain attributes (Fig. 3), sug-
gesting that the coarser-scale terrain attributes were more
useful for parent material mapping in Saskatchewan, at
least given the ALOS DEM used in this study. The coarse
smoothing resulted in a terrain feature associated with
larger-scale landscape heterogeneity. This likely was help-
ful in differentiating between glacial till with heterogeneous

hummocky landforms compared to level or undulating la-
custrine landscapes that would have low amounts of terrain
variability.

Optical remote sensing features were then the next most
important features, with the median ARI being one of the
most important of these features (Table 3). The ARI is a func-
tion of anthocyanin pigments in foliage (Gitelson et al. 2001)
and is likely corresponding to variation in plant composition,
which would be closely related to management practices.
Coarser-textured hummocky parent materials, such as fluvial
parent materials, are more likely to be managed as pasture
compared to annually cropped lacustrine deposits. The stan-
dard deviation of NDVI was the most important NDVI feature
(third-most important feature overall). Areas with higher
NDVI standard deviations indicated more changes in NDVI
over the growing season. This is expected to be influenced
by factors such as management practices, which, in turn, are
influenced by soil and parent material type. The standard
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Fig. 5. Parent material prediction results for the agricultural region of Saskatchewan. The figures in column (a) are the pre-
diction results from the BSCI-only model, column (b) are the prediction results from the exhaustive model, and column (c) are the
prediction results from the BSCI-excluded model. Coordinates are in UTM Zone 13 N NAD83.

deviation of NDVI has been shown to be a useful remote
sensing feature for land use monitoring and land classifi-
cation (Becker et al. 2021). The median October NDVI and
Median July NDVI were less important as the eleventh
and fourteenth most important features, respectively
(Table 3).

While not the most important features, BSCI features
were reasonably important: the fifth and eighth most impor-
tant features were the BSCI bands 5 and 7 (Table 3), which
correspond to shortwave infrared bands. The importance of
these bands could be due to increased absorption in these
wavelengths with higher clay contents considering they were
found to be the most important bands for mapping clay con-
tent in Saskatchewan with BSCI (Sorenson et al. 2021). Clay
has absorption features within Landsat 5’s shortwave bands
range (Rossel et al. 2010). However, these bands cover a wide
portion of the shortwave infrared portion of the electromag-
netic spectrum that may reflect other soil properties such as
soil organic carbon, so their relationship to clay content is not
certain. The sixth, ninth, and tenth most important features
were the visible light bands for the BSCI. These bands were
important predictors for SOC prediction in Saskatchewan
(Sorenson et al. 2021), along with the near-infrared band
which was the 12th most important feature. Silt and clay con-
tent, which are affected by parent material type, has been
documented to be positively related to soil organic carbon
concentration in Saskatchewan (Plante et al. 2006).

Standard deviation of a 3 × 3 median-filtered elevation
with a 21 × 21 focal window was the 13th most impor-
tant feature, which would be reflective of finer-scale terrain
patterns compared to the 9 × 9 filtered 101 × 101 stan-
dard deviation (Fig. 3). Including a feature that characterizes
the terrain patterns at different scales likely helped distin-
guish different parent materials as the contrasts amongst
some parent materials were greater at coarser scales (i.e.,
lacustrine versus lacustrine over till) and others were greater
at finer scales (i.e., lacustrine versus fluvial). While inclusion

of finer-scale terrain attributes did improve the results, the
coarsest-scale terrain attribute was more important (Table
3), at least for mapping parent material in Saskatchewan
with a 30 m DEM, and in conjunction with other re-
mote sensing features. While TRI has value quantifying
topographic heterogeneity in other prediction soil mapping
studies (Brungard et al. 2015), the simple standard deviation
of elevation was determined to be more important by the ran-
dom forest models in this study for the BCSI-only mapping.

The most important features for the exhaustive model were
very similar to the BSCI-only model (Table 3). There were,
however, differences in terms of the relative importance of
each feature. The importance of Sentinel-1 VV backscatter
was much greater for the exhaustive model than for the BSCI-
only model. The likely reason for this is that because this
model included areas where bare soil composite data were
not present, the model needed to rely on other feature to dis-
tinguish differences amongst parent material classes. There
was also an additional terrain feature included in the final
selected feature set, particularly different focal window sizes
for the standard deviation of elevation and two TRI features.
In contrast with the BSCI-only model, BSCI band 3 was not in-
cluded in the final model. Overall, BSCI was less important
and bands 5 and 7 were found to be the most important
BSCI bands. The reduction in importance of the BSCI bands
could be partially explained by the fact that a significant por-
tion of the training data would not have variance in bare soil
values.

The median REIP and CRSI were also important features
for the exhaustive model. The REIP is an approximation of
the near-infrared red inflection point in vegetation spectra.
The location of REIP is highly correlated with foliar chloro-
phyll content, photosynthetic activity, and a good predictor
of leaf area index in wheat (Herrmann et al. 2010). CRSI has
been documented to be related to salinity in other contexts
(Scudiero et al. 2015). Salinity is affected by many factors with
drainage and hydraulic conductivity being two important
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factors (Eilers et al. 1997). Both factors vary within the dif-
ferent parent material classes in this study, which explains
why they were less important for parent material mapping
compared to other features.

For the BSCI-excluded model, Sentinel 1 backscatter, stan-
dard deviation of elevation, and NDVI attributes were most
important, with the standard deviation of NDVI as most im-
portant NDVI feature followed by the median October NDVI
(Table 3). As bare soil composite data were not present, the
model found features related to land use such as the standard
deviation of NDVI to be the best as separating parent material
classes. Sentinel 1 VH backscatter was the most important
feature followed by the standard deviation of 9 × 9 median fil-
tered elevation with a 101 × 101 focal window, and then Sen-
tinel 1 VV backscatter. Other important features were ARI,
REIP, the standard deviation of 3 × 3 median filtered eleva-
tion with a 21 × 21 focal window, median July NDVI, and then
the standard deviation of 9 × 9 median filtered elevation with
a 21 × 21 focal window, followed by the CRSI. For all three
models, the coarsest scale terrain attribute was the most im-
portant terrain attribute, as the greatest differences amongst
parent material classes were apparent in the larger-scale ter-
rain variability-associated features. Other studies have found
local and landscape morphometric features along with hy-
drological characteristics useful (Heung et al. 2017). With a
higher quality DEM, these features would also likely be use-
ful in the Canadian Prairies as well; however, with the 30 m
DEM available, the coarser scale properties were more useful
in the context of this study. This could be because the scale
of terrain variation in the Canadian prairies is such that a 30
m DEM cannot consistently detect all slope positions in the
landscape, and the coarser scale terrain analysis has enough
of the upper and lower slope positions in the DEM to better
characterize overall variability if not specific slope positions
at a given point.

Conclusion
Parent material disaggregation has an important role in

predictive soil mapping efforts in the Canadian Prairies. The
major drivers of soil variation at scales finer than the exist-
ing soil maps are parent material variance, slope position,
and salinity. Disaggregating parent material maps to create
finer resolution maps is an important step for creating more
detailed soil maps in the Canadian Prairies to support a vari-
ety of end uses. Based on these results, the inclusion of BSCI
is an important covariate for parent material disaggregation
in the Canadian Prairies and is likely essential for generat-
ing useful maps when high-resolution DEMs are not avail-
able. The model that did not include BSCI were less accurate
overall. Therefore, parent material mapping in the Canadian
prairies through disaggregation methods may currently need
to be limited to areas where BSCI is available to ensure out-
put maps with acceptable accuracy. Future work to disaggre-
gate soil classes based on slope position and salinity, and to
combine those methods with parent material disaggregation
is needed to generate detailed soil maps for the Canadian
Prairies.
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