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Introduction
The border region between the United States and Mexico con-
tains desert scrub to montane forest ecosystems with different 
wildfire histories due to variation in their climates, topographic 
features, fuel loads, and land-uses.1,2 Over the past several dec-
ades, fire suppression, woody plant encroachment, spread of 
non-native invasive species, and aridification have interacted to 
increase wildfire frequency and severity.3-5 High fuel loads and 
catastrophic wildfire threaten human life and infrastructure, 
degrade wildlife habitat, and imperil natural and cultural 
resources.6 Fuel treatments that include prescribed fire, man-
aged wildfire, mechanical fuel reduction, herbicide application, 
and livestock grazing have been historically implemented 
throughout the border region to reduce wildfire risk, improve 
ecosystem condition, and increase the safety and security of 
border operations. A recent example of these efforts is the 
Southern Border Fuels Management Initiative, which was ini-
tiated in 2017 to conduct fuel treatments across  1,300 kilom-
eters of Department of the Interior (DOI) lands along the 
US-Mexico border.7

Despite large investments in fuel treatments, our knowledge 
about the effectiveness of treatments to reduce fuel loads, miti-
gate wildfire risk, and improve ecosystem health remains lim-
ited. Enhanced understanding about treatment effectiveness 
and resulting changes to wildfire risk and ecosystem condition 
can improve future efforts in face of a growing wildfire threat 
in the coming decades. We addressed this important informa-
tion gap by conducting a literature review of fuel treatment and 

wildfire risk studies in ecosystems that occur along the 
US-Mexico border over the past 34 years. The goal of our 
review was to determine (1) when and where along the border 
wildfire and fuel treatment studies have taken place, and (2) the 
current state of knowledge on wildfire and fuel treatments 
along the border and important information gaps that can be 
filled with future research.

Methods
In January 2020, the lead author searched the Web of Science 
Core Collection from the years 1986 to 2019 using a combina-
tion of terms that included locations and ecosystems near the 
US-Mexico border, along with keywords such as “fire” and 
“risk.” While the US-Mexico border region is often defined by 
an area that covers 100 km in either direction from the interna-
tional border,8 we included studies if they occurred within an 
ecosystem that fell within this area, but the study site was geo-
graphically further away. To find studies that examined fuel 
treatments, keywords such as “fuel* treatment*,” “prescribed 
fire,” “mechanical thinning,” “mastication,” and “herbicide” 
were included. Studies were excluded if they were conducted in 
regions outside the southwestern United States and northern 
Mexico or if their focus was not on relevant ecosystems or fire-
related topics. Sixty different keyword searches were initially 
performed, but only 19 searches returned 90 useable studies 
published in peer-reviewed papers selected for this review.

Selected studies were categorized by the year of publication, 
location, ecoregion, land ownership, topic of study, and fuel 
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treatments used where the study took place. We mapped the 
locations of the studies using information available from coor-
dinates, figures, or written descriptions. We calculated the 
number of studies in each category relative to the total number 
of studies and summed the number of publications that 
occurred in 5-year intervals from 1986 to 2019. We extracted 
and summarized relevant information from the studies by 
topic, which fell under the wildfire risk and fuel treatment 
theme of the review.

Results and Discussion
The number of publications on wildfire risk and fuel treat-
ments in ecosystems that occur along the US-Mexico border 
has increased over the last 34 years from 5 studies (6% of the 
total number of 90 selected studies) published between 1986 
and 1999 to 30 (33% of total) published between 2015 and 
2019 (Figure 1). Forty-two percent of the 90 selected studies 
focused on wildfire risk and fuel treatments in ecosystems 
along the US-Mexico border were conducted in Arizona, 18% 
in New Mexico, 10% in California, 5% in Texas, and 1% in 
Mexico, whereas 20% took place across multiple states, and 4% 
were conducted in nonborder states within ecosystems that 
extend to the border region (ie, the Mojave Desert in southern 
Nevada) (Figures 2 and 3A). Twenty-four percent of the 
selected studies were conducted in the Chihuahuan Desert, 
21% were based in the Sonoran Desert, 17% were in the Mojave 
Desert, 25% were in the Madrean Archipelago (Sky Island 

mountain ecoregion of southeastern Arizona and southwestern 
New Mexico) and other forested ecoregions of the Southwest, 
and 13% were conducted in other ecoregions or across multiple 
ecoregions (Figure 3B). Most studies were conducted on fed-
eral lands (85%), and of those federal studies, 43% were con-
ducted on DOI lands, 25% occurred on US Department of 
Agriculture lands, 5% were on lands managed by the 
Department of Defense, and 12% were conducted on lands 
managed by multiple or other agencies (Figure 3C). Thirty-
four studies addressed fuel treatments, and within these stud-
ies, 65% examined prescribed fire, 12% looked at mechanical 
treatments (thinning, pile and burn, hand-pulling of invasive 
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Figure 1.  The number of studies that address wildfire risk and fuel 

reduction treatments along the US-Mexico border through time.

Figure 2.  Locations of studies in ecosystems that occur along the US-Mexico border that address wildfire risk and fuel reduction treatments.
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species), 3% explored livestock grazing, and 20% considered 
multiple combinations of these treatments. Herbicide applica-
tion was a secondary treatment examined in these studies but 
was not studied independently of other treatments. Studies 
that addressed both fuel treatments and wildfire risk could be 
divided into the primary topics of fire effects on native species 
(27%), invasive species (25%), woody encroachment (13%), 
historical fire regimes (15%), and remote sensing and modeling 
(20%) (Figure 3D).

Studies that addressed fire effects on native species found 
that fire can both increase9 and decrease10,11 the growth and 
productivity of native species. Several studies found mixed 
effects on plant species that depended on plant traits, fire char-
acteristics, and pre-fire treatments.12-17 Woody plants were 
often negatively affected by fire, whereas grasses and forb spe-
cies often experienced post-fire increases in abundance.13,18 
However, rapid-reproducing woody species fared better fol-
lowing fire than poor recruiters,15,16 and some perennial grasses 
that invested heavily in above ground compared with below 
ground production did not respond well to fire.12 Negative 
responses to fire were further exacerbated by low soil nutrient19 
and water availability20 conditions. Fire changed the spatial 
patterning of native vegetation21 and leaf litter decomposi-
tion,22 and enhanced soil erosion by decreasing native perennial 
vegetation cover.23 Similar to the large variation in the responses 
of native plant species, native wildlife species had both positive 
and negative responses to fire.10,24 Forest-dwelling species 
responded positively to fires that created intermediate hetero-
geneity in vegetation structure.25,26 Importantly, preexisting 
fuel treatments including livestock grazing,27 prescribed fire 
alone,28 or prescribed fire in combination with mechanical 
treatments20,29-33 reduced subsequent wildfire severity, associ-
ated declines in productivity and mortality of native species, 

and enhanced post-wildfire recovery.30 Long-term fuel treat-
ment effects on native species were assessed by Havstad and 
James,34 who found that native vegetation cover was not influ-
enced by prescribed fire 13 years after the burn treatment appli-
cation, and by Strom and Fulé,29 who projected that fuel 
treatments had multidecadal effects on native vegetation struc-
ture. These contrasting results can be explained by the recovery 
time of the species and ecosystems studied.

Studies on invasive species tended to focus on the grasses 
red brome (Bromus rubens) and schismus (Schismus spp.) in the 
Mojave Desert, buffelgrass (Pennisetum ciliare) in the Sonoran 
Desert, and Lehmann lovegrass (Eragrostis lehmanniana) in the 
Sonoran and Chihuahuan deserts. Studies on these non-native 
flammable species found that fire promoted their spread, lead-
ing to increased fire frequency and thereby supporting a posi-
tive feedback loop between fire and the invasive species.35-41 
The change in invasive species following wildfire can depend 
on fire frequency and severity39 and soil type.42 Although some 
studies found that the cover of invasive species did not increase 
after fire,42-44 all studies generally agreed that invasive species 
increased wildfire risk.45-52 Some of the factors these papers 
discussed as leading to the propagation of invasive species, and 
therefore the rise of wildfire risk, included high precipita-
tion42,43,51,52 and high soil nitrogen.48,51 Fuel treatments caused 
a reduction,49,53 as well as no changes to invasive species 
abundance.42,43,47,54,55

Similar to invasive species, woody plant species have 
increased in abundance along the US-Mexico border over the 
past several decades, including in areas previously occupied by 
grasslands.56,57 Woody plant encroachment can increase the 
risk of a high severity fire, and several studies addressed treat-
ments to reverse this pattern and help restore a low-severity fire 
regime. These studies found reduced woody plant abundance 

Figure 3.  Studies that address wildfire risk and fuel reduction treatments along the US-Mexico border by (A) state and country, (B) ecoregion, (C) land 

ownership, and (D) topic.
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following prescribed burns in most cases,55,58-60 but woody 
regeneration and interactions with grass species were variable 
depending on the fire season, fire return interval, and the degree 
of livestock grazing.21,34,61-63 Fire rather than livestock grazing 
may have a larger role in maintaining grass dominance in the 
border region, although the mechanisms behind the balance of 
woody plants and grasses remain controversial.56 Reductions in 
woody plant cover had a positive effect on wildlife species 
requiring more open and grass-dominated habitat, but negative 
effects on wildlife species requiring a higher density of woody 
vegetation.64 Despite strong effects on wildlife, many woody 
plant species including mesquite recovered quickly following 
treatments.65

Historical wildfire regimes have been the topic of multiple 
studies that typically assess wildfire frequency, size, and sever-
ity. Many of these studies examined the relationship between 
fire characteristics and topographic attributes,66-69 or fire char-
acteristics and climate—specifically how wildfire risk can 
increase after antecedent wet years that increase fuel loads, fol-
lowed by dry fire years.68,70-72 Historical fire regimes along the 
border interact with land-use and associated characteristics—
including livestock grazing,73-75 land ownership,76 and the 
degree of remoteness and historical management practices.2 
Larger fires were found to historically occur within the United 
States compared with Mexico, likely due to higher levels of fire 
exclusion and resulting fuel buildup.2

Much of the research on the topic of remote sensing and 
modeling was conducted across different plant communities 
including desert scrub, woodland, and forest of the Madrean 
Archipelago. Many studies focused on fuel types and biomass 
to assess wildfire risk77-84 or used spectral vegetation indices to 
measure impacts of previous fires.83,85 In addition, remote sens-
ing was commonly used with the goal of modeling the spread 
of invasive grasses because of their role in increasing wildfire 
risk.3,86,87 Using environmental characteristics to predict wild-
fire likelihood and severity was an approach found in several 
studies using slope, elevation, and climate.88-90

Soil was not a major topic of border studies included in our 
review despite its inclusion in searches. However, the influence 
of soils on wildfire and the effect of wildfire on soils were sec-
ondarily addressed in the literature. Wildfire frequency was 
enhanced with increasing elevation and soil moisture69 and in 
shallow and fine-textured soils compared with deep and coarse-
textured soils.89 Brooks,45 Allred and Snyder,9 and Ladwig 
et al19 all found an increase in soil nitrogen after fire, which has 
been shown to cause higher growth of invasive plants, increas-
ing the risk of potential fires.37,46,48,51,91 Multiple studies docu-
mented that fire promotes the redistribution of sediment and 
soil nutrients from under woody plant canopies to areas 
between woody plants, which can promote increases in peren-
nial grass cover and reductions in woody encroachment.58-60,92 
Fire increased soil bulk density, runoff, sediment yield, and 
channelization while reducing water infiltration in ecosystems 
along the US-Mexico border.23,93 In addition to increased 

susceptibility to water erosion, post-fire soils were exposed to 
elevated wind erosion, which could be further amplified by 
land-use that reduces perennial vegetation.94,95

Knowledge Gaps and Future Research
Our review highlights the state of knowledge of wildfire and 
fuel treatments in ecosystems that occur along the US-Mexico 
border and reveals several knowledge gaps and avenues for 
future research. Although invasive grasses in the southwestern 
United States and northern Mexico typically increase wildfire 
risk, more work is needed to better link the effects of different 
invasive species, including research, on fire-related traits in 
invasive species compared with native species and how these 
traits interact with environmental conditions to influence wild-
fire risk. The suppression of invasive species and promotion of 
native species are now occurring at large spatial scales, yet we 
know little about how these efforts are influencing wildfire risk 
and ecosystem recovery across broad management units. The 
importance of climate effects on wildfire and related invasive 
species abundance, together with forecasts of increasing aridity 
along the US-Mexico border,96 suggests a growing need for 
studies that project how future climate will influence wildfire 
and the associated spread of invasive species. While future 
warming is likely to extend the fire season length and increase 
fuel flammability,4 previous research in the US-Mexico border 
region has revealed the importance of antecedent wet condi-
tions in promoting fine fuel production necessary to increase 
wildfire activity.72 Villarreal et al97 report in this special collec-
tion that recent fires deviate from historical fire regimes for 
most ecosystems along the border, especially at extreme ends of 
bioclimatic gradients. These results point out the need to 
experimentally impose climate extremes through rainfall or 
temperature manipulation98 in conjunction with fire to deter-
mine important interactions that affect ecosystem condition. 
Research will have added value for future decision-making if 
connections are made between past fire-environment relation-
ships and how fires might respond to future conditions.

More recently occurring wildfires have been used to under-
stand how historical fuel treatments have affected fire behavior, 
and this research avenue is likely to be increasingly helpful for 
fire mitigation as the frequency and severity of wildfires are 
expected to intensify.3,4 Pairing post-fire ecosystem monitoring 
with measurements that took place in the same area before the 
wildfire occurred offers a promising method to understand 
recovery patterns and opportunities for management interven-
tion. Most of the fuel treatment studies we reviewed examined 
changes to wildfire risk over relatively short periods of time, 
but long-term monitoring is necessary to assess how the risk 
profile changes through time and when treatments need to be 
repeated.99 Studies that assess post-fire linkages between veg-
etation and wildlife are especially helpful to understand ecosys-
tem-level effects, yet are not abundant in the literature. 
Prescribed burning was the primary fuel treatment found in 
this review, but studies on the potential for fuel breaks and 
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different treatment combinations and frequencies could help 
determine other effective prevention measures.

The variable topography, soils, and vegetation of the 
US-Mexico border not only present unique challenges for 
understanding wildfire activity, but also present opportunities 
for studies that employ environmental gradients, cross-site 
comparisons, and networked experiments to expand our 
knowledge. Similarly, the patchwork of land-uses and owner-
ship along the border creates incentive to further explore how 
these factors influence wildfire activity and invites new research 
that crosses jurisdictional boundaries, including across the 
international border. Indeed, Villarreal et al2,97 emphasize the 
need for continued collaboration and shared data sets from 
both sides of the border to adequately learn from historical fire 
regimes and understand the potential of future changes. 
Connectivity of fuels and related fire hazards across the 
US-Mexico border makes collaborative resource management 
increasingly important to reduce the risk of transboundary 
wildfire transmission and to improve ecosystem health.100,101

Studies were less common on the Mexico side of the border 
where much of the land is privately or communally (ejidos) held, 
and government-sponsored fire suppression and fuel manage-
ment strategies often exist alongside local traditional burning 
practices and communal fire management.102 Intentional fuel 
treatments in the Mexican borderlands are uncommon, but 
recently Mexican state and federal government agencies, uni-
versities, and local communities have collaborated on prescribed 
burns along the border,103 with the objectives of reducing fuels, 
studying treatment effectiveness, and providing training on fuel 
management. Within the United States, studies in this review 
were particularly lacking on Native American lands and in 
Texas (Figure 1). The increasing number of studies on wildfire 
risk and fuel treatments along the US-Mexico border signifies a 
growing body of knowledge to inform land management deci-
sion-making in the region. Continued studies along the border, 
particularly research that fills important knowledge gaps, will 
help protect ecosystems and human populations that are at risk 
of negative fire impacts and will expand the knowledge needed 
to prepare for future wildfire regimes.
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